Physical sciences articles within Nature Communications

Featured

  • Article
    | Open Access

    Covalent organic frameworks form a porous skeleton with a precise pore size and geometry, but control of the pore surface is challenging. Here, a protocol is introduced for pore surface engineering of covalent organic frameworks, allowing the control of composition and density of organic groups in the pores.

    • Atsushi Nagai
    • , Zhaoqi Guo
    •  & Donglin Jiang
  • Article |

    DNA nanotubes could be used to transport nano-cargo and incorporated into nano-devices. In this study, rolling circle amplification is used to generate DNA subunits, and their thermodynamic growth results in the formation of nanotubes with a controlled diameter.

    • Ofer I. Wilner
    • , Ron Orbach
    •  & Itamar Willner
  • Article |

    The miniaturization of optical devices is crucial for their on-chip integration with a variety of technological applications. Here, Liuet al. present an ultracompact beam splitter to control the direction of light through the generation of surface plasmon polaritons.

    • John S.Q. Liu
    • , Ragip A. Pala
    •  & Mark L. Brongersma
  • Article |

    Leaves and tissues contain three-dimensional networks of fluidic channels, but similar artificial self-assembling systems have not yet been produced. Jamalet al. develop methods to produce three-dimensional microfluidic networks with curved geometries from the self-assembly of photopatterned polymers.

    • Mustapha Jamal
    • , Aasiyeh M. Zarafshar
    •  & David H. Gracias
  • Article
    | Open Access

    Controlling the magnetic properties of nanoparticles is important to enable their widespread use in applications. Antoniaket al. combine X-ray absorption spectroscopy and density functional theory calculations to uncover the origin of these properties in order to appropriately tailor nanoparticle design.

    • Carolin Antoniak
    • , Markus E. Gruner
    •  & Heiko Wende
  • Article |

    Graphene may be used in nanoscale electronics and devices, but the ability to synthesise uniform graphene with well-controlled layer numbers is necessary for these applications. Using a Ni–Mo alloy, this study demonstrates single-layer graphene growth with 100% surface coverage and tolerance to variations in growth conditions.

    • Boya Dai
    • , Lei Fu
    •  & Zhongfan Liu
  • Article |

    Surface characterization of soft materialsin situis challenging due to the importance of non-covalent interactions. Now, a new chemical imaging method is reported that generates images of surface interactions by combining many molecular probe trajectories.

    • Robert Walder
    • , Nathaniel Nelson
    •  & Daniel K. Schwartz
  • Article |

    Advanced rechargeable lithium-ion batteries have potential applications in the renewable energy and sustainable road transport fields. Junget al. have developed a lithium battery that uses pre-existing concepts but has highly competitive energy densities, life span and cycling properties.

    • Hun-Gi Jung
    • , Min Woo Jang
    •  & Bruno Scrosati
  • Article
    | Open Access

    Magnetostriction—the property that causes ferromagnetic materials to change shape during the process of magnetization—has a range of technological applications. Here, by varying the presence of structural disorder in textured Co1-xFexfilms, unusually strong magnetostrictive properties are presented.

    • Dwight Hunter
    • , Will Osborn
    •  & Ichiro Takeuchi
  • Article
    | Open Access

    Stimulus-responsive hydrogels have previously been developed that display heat-, light-, pH- or redox-induced sol–gel transitions. Nakahataet al. develop a self-healing supramolecular hydrogel based on host–guest polymers in which redox potential can induce a reversible sol–gel phase transition.

    • Masaki Nakahata
    • , Yoshinori Takashima
    •  & Akira Harada
  • Article |

    Intercalating alkali metals into picene—a hydrocarbon with five linearly fused benzene rings—results in superconducting materials. Now, alkali-metal-doped phenanthrene, which consists of three fused benzene rings, is also found to be superconducting, opening up a broader class of organic superconductors.

    • X.F. Wang
    • , R.H. Liu
    •  & X.H. Chen
  • Article
    | Open Access

    In the theory of general relativity time flows at different rates depending on the space–time geometry. Here, a drop in the visibility of a quantum 'clock' interference in a gravitational potential is predicted, which cannot be explained without the general relativistic notion of time.

    • Magdalena Zych
    • , Fabio Costa
    •  & Časlav Brukner
  • Article |

    Nanofluidic diodes are utilized for the rectification of ionic transport, but their rectifying properties cannot be altered after the devices are made. Here, a field-effect reconfigurable nanofluidic diode is reported in which the forward direction and the degree of rectification can be modulated by a gate voltage.

    • Weihua Guan
    • , Rong Fan
    •  & Mark A. Reed
  • Article |

    Hoop-shaped aromatic hydrocarbons can be considered as finite models of single-wall carbon nanotubes. Hitosugiet al. describe the bottom-up synthesis of a macrocyclic tetramer of chrysene, and show that its persistent rotational isomers are finite models of chiral nanotubes.

    • Shunpei Hitosugi
    • , Waka Nakanishi
    •  & Hiroyuki Isobe
  • Article |

    Molecular probes that can detect aqueous sulphides could help to elucidate their roles in biological signalling. Qianet al. develop two sulphide-selective fluorescent probes and demonstrate their ability to image free sulphide in living cells.

    • Yong Qian
    • , Jason Karpus
    •  & Chuan He
  • Article |

    The ability to control the charge and spin of single molecules at metal interfaces underpins the concept of molecular electronics. Mugarzaet al. examine these properties using scanning tunnelling microscopy, and uncover their influence on the magnetism and transport properties of the molecule/metal systems.

    • Aitor Mugarza
    • , Cornelius Krull
    •  & Pietro Gambardella
  • Article |

    Simple routes to self-assembling magnetic materials are elusive. Tew and colleagues produce copolymers containing cobalt complexes, which phase separate to give ferromagnetic properties at room temperature following heat treatment.

    • Zoha M. AL-Badri
    • , Raghavendra R. Maddikeri
    •  & Gregory N. Tew
  • Article
    | Open Access

    Nanocrystals are used in light-emitting diodes and solar cells, but their charge transport in films is unclear. Here, the study of PbS nanocrystal films reveals the role of mid-gap states in their charge transport, suggesting different design needs for devices operated in dark (transistors) versus light (solar cells) conditions.

    • Prashant Nagpal
    •  & Victor I. Klimov
  • Article
    | Open Access

    Advanced biofuels with comparable properties to petroleum-based fuels could be microbially produced from lignocellulosic biomass. In this study,Escherichia coliis engineered to produce bisabolene, the immediate precursor of bisabolane, a biosynthetic alternative to D2 diesel.

    • Pamela P. Peralta-Yahya
    • , Mario Ouellet
    •  & Taek Soon Lee
  • Article
    | Open Access

    Spin ices are magnetic materials in which excitations equivalent to monopoles can occur. Using high-pressure techniques, Zhouet al. synthesize a new member of the spin ice family, Dy2Ge2O7, in which monopoles exist at higher densities, and can stabilize as dimers.

    • H.D. Zhou
    • , S.T. Bramwell
    •  & J.S. Gardner
  • Article |

    Quasi-three-dimensional plasmonic crystals have potential uses in miniaturized photonics. In this study, a method is described to enhance plasmonic resonance in the crystals by coupling them to optical modes of Fabry–Perot type cavities, with possible applications in photonic and sensor components.

    • Debashis Chanda
    • , Kazuki Shigeta
    •  & John A. Rogers
  • Article
    | Open Access

    Plasmon resonances occur as collective excitations of surface electrons in noble metal nanoparticles. This study presents a new way of manipulating their behaviour by creating bimetallic dimers which, as a result of their asymmetric composition, give rise to unusual optical properties.

    • Timur Shegai
    • , Si Chen
    •  & Mikael Käll
  • Article |

    The manipulation of electrons forms the basis of modern technology, whereas electrical signalling processes in nature are based on ions and protons. Rolandi and colleagues present a proton transistor based on polysaccharide nanofibres, which can control the flow of protonic currents.

    • Chao Zhong
    • , Yingxin Deng
    •  & Marco Rolandi
  • Article
    | Open Access

    Inertial sensors using atom interferometry have applications in geophysics, navigation- and space-based tests of fundamental physics. Here, the first operation of an atom accelerometer during parabolic flights is reported, demonstrating high-resolution measurements at both 1g and 0g.

    • R. Geiger
    • , V. Ménoret
    •  & P. Bouyer
  • Article
    | Open Access

    Transparent conducting oxides are wide bandgap conductors that have found a range of applications in optoelectronic devices. In this study, Hosono and colleagues fabricate the first transparent conducting oxide based on germanium.

    • Hiroshi Mizoguchi
    • , Toshio Kamiya
    •  & Hideo Hosono
  • Article |

    Plasmonic nanostructures can be used to manipulate objects larger than the wavelength of light but create thermal heating. In this work, the trapping and controlled rotation of nanoparticles is demonstrated using a plasmonic nanotweezer with a heat sink, predicting a reduction in heating compared with previous designs.

    • Kai Wang
    • , Ethan Schonbrun
    •  & Kenneth B. Crozier
  • Article
    | Open Access

    The paradigm of reservoir computing shows that, like the human brain, complex networks can perform efficient information processing. Here, a simple delay dynamical system is demonstrated that can efficiently perform computations capable of replacing a complex network in reservoir computing.

    • L. Appeltant
    • , M.C. Soriano
    •  & I. Fischer
  • Article |

    Protein microarrays are useful both in basic research and also in disease monitoring and diagnosis, but their dynamic range is limited. By using plasmonic gold substrates with near-infrared fluorescent enhancement, Tabakman et al. demonstrate a multiplexed protein array with improved detection limits and dynamic range.

    • Scott M. Tabakman
    • , Lana Lau
    •  & Hongjie Dai
  • Article |

    It is unclear whether the Fermi surface in the normal state of underdoped cuprates is ambipolar or solely nodal. Here, measuring the second harmonic oscillations in underdoped YBa2Cu3O6+xreveals the origin as an oscillatory chemical potential, based on which a Fermi surface consisting of a nodal pocket is identified.

    • Suchitra E. Sebastian
    • , N. Harrison
    •  & G.G. Lonzarich
  • Article |

    Hydrogels have a variety of applications including tissue engineering and controlled drug delivery. Here, liquid-crystal hydrogels are developed which transform into a fluid solution upon cooling; cells can be encapsulated in the gel at room temperature, then released at physiological temperatures.

    • Zhegang Huang
    • , Hyojin Lee
    •  & Myongsoo Lee
  • Article |

    Property coupling by heteroepitaxy is severely limited in material combinations with highly dissimilar bonding. This report presents a chemical boundary condition methodology to actively engineer two-dimensional film growth in such systems that otherwise collapse into island formation and rough morphologies.

    • Elizabeth A. Paisley
    • , Mark. D. Losego
    •  & Jon-Paul Maria
  • Article |

    Quadrupoles have many engineering applications, but experimental observations of fluidic multipoles have not been reported. This study presents an experimental two-dimensional microfluidic quadrupole, a theoretical analysis consistent with observations, and a first application as a channel-free floating gradient generator.

    • Mohammad A. Qasaimeh
    • , Thomas Gervais
    •  & David Juncker
  • Article
    | Open Access

    The measurement of the total cross-section of proton–proton collisions is of fundamental importance for particle physics. Here, the first measurement of the inelastic cross-section is presented for proton–proton collisions at an energy of 7 teraelectronvolts using the ATLAS detector at the Large Hadron Collider.

    • G. Aad
    • , B. Abbott
    •  & L. Zwalinski
  • Article |

    Photodetection is believed to be among the most promising potential applications for graphene. Here, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors is increased by up to two orders of magnitude.

    • T.J. Echtermeyer
    • , L. Britnell
    •  & K.S. Novoselov
  • Article
    | Open Access

    Cell-penetrating peptides can deliver molecular cargoes into living cells, and cross biological membranes by transduction—a non-endocytic mechanism. Here, the transduction efficiency of cyclic arginine-rich peptides is shown to be higher than that of more flexible linear peptides.

    • Gisela Lättig-Tünnemann
    • , Manuel Prinz
    •  & M. Cristina Cardoso
  • Article
    | Open Access

    Various methods have been investigated to locally control atmospheric precipitation. In this study, field experiments show that laser-induced condensation is initiated when the relative humidity exceeds 70%, and that this effect is largely a result of photochemical HNO3formation.

    • S. Henin
    • , Y. Petit
    •  & J.-P. Wolf
  • Article
    | Open Access

    Determining the direction of the magnetic field of light is important for optical applications. Here, scattering of light from a subwavelength aperture in a metal plane is shown to be governed by its magnetic vector, providing the magnetic field orientation independently of the electric field.

    • H.W. Kihm
    • , S.M. Koo
    •  & D.-S. Kim
  • Article |

    Multiple scattering complicates femtosecond optics such that phase conjugation allows spatial focusing and imaging through a multiple scattering medium, but temporal control is problematic. McCabeet al. report the full spatio-temporal characterization and recompression of a femtosecond speckle field.

    • David J. McCabe
    • , Ayhan Tajalli
    •  & Béatrice Chatel
  • Article
    | Open Access

    At extreme temperature and pressure, materials can form new dense phases with unusual physical properties. Here, laser-induced microexplosions are used to produce a superdense, stable, body-centred-cubic form of aluminium, which was previously predicted to exist at pressures above 380GPa.

    • Arturas Vailionis
    • , Eugene G. Gamaly
    •  & Saulius Juodkazis