Materials science articles within Nature Communications

Featured

  • Article
    | Open Access

    Covalent organic frameworks form a porous skeleton with a precise pore size and geometry, but control of the pore surface is challenging. Here, a protocol is introduced for pore surface engineering of covalent organic frameworks, allowing the control of composition and density of organic groups in the pores.

    • Atsushi Nagai
    • , Zhaoqi Guo
    •  & Donglin Jiang
  • Article |

    DNA nanotubes could be used to transport nano-cargo and incorporated into nano-devices. In this study, rolling circle amplification is used to generate DNA subunits, and their thermodynamic growth results in the formation of nanotubes with a controlled diameter.

    • Ofer I. Wilner
    • , Ron Orbach
    •  & Itamar Willner
  • Article |

    Leaves and tissues contain three-dimensional networks of fluidic channels, but similar artificial self-assembling systems have not yet been produced. Jamalet al. develop methods to produce three-dimensional microfluidic networks with curved geometries from the self-assembly of photopatterned polymers.

    • Mustapha Jamal
    • , Aasiyeh M. Zarafshar
    •  & David H. Gracias
  • Article
    | Open Access

    Controlling the magnetic properties of nanoparticles is important to enable their widespread use in applications. Antoniaket al. combine X-ray absorption spectroscopy and density functional theory calculations to uncover the origin of these properties in order to appropriately tailor nanoparticle design.

    • Carolin Antoniak
    • , Markus E. Gruner
    •  & Heiko Wende
  • Article |

    Advanced rechargeable lithium-ion batteries have potential applications in the renewable energy and sustainable road transport fields. Junget al. have developed a lithium battery that uses pre-existing concepts but has highly competitive energy densities, life span and cycling properties.

    • Hun-Gi Jung
    • , Min Woo Jang
    •  & Bruno Scrosati
  • Article |

    Graphene may be used in nanoscale electronics and devices, but the ability to synthesise uniform graphene with well-controlled layer numbers is necessary for these applications. Using a Ni–Mo alloy, this study demonstrates single-layer graphene growth with 100% surface coverage and tolerance to variations in growth conditions.

    • Boya Dai
    • , Lei Fu
    •  & Zhongfan Liu
  • Article
    | Open Access

    Magnetostriction—the property that causes ferromagnetic materials to change shape during the process of magnetization—has a range of technological applications. Here, by varying the presence of structural disorder in textured Co1-xFexfilms, unusually strong magnetostrictive properties are presented.

    • Dwight Hunter
    • , Will Osborn
    •  & Ichiro Takeuchi
  • Article
    | Open Access

    Stimulus-responsive hydrogels have previously been developed that display heat-, light-, pH- or redox-induced sol–gel transitions. Nakahataet al. develop a self-healing supramolecular hydrogel based on host–guest polymers in which redox potential can induce a reversible sol–gel phase transition.

    • Masaki Nakahata
    • , Yoshinori Takashima
    •  & Akira Harada
  • Article |

    Intercalating alkali metals into picene—a hydrocarbon with five linearly fused benzene rings—results in superconducting materials. Now, alkali-metal-doped phenanthrene, which consists of three fused benzene rings, is also found to be superconducting, opening up a broader class of organic superconductors.

    • X.F. Wang
    • , R.H. Liu
    •  & X.H. Chen
  • Article |

    Hoop-shaped aromatic hydrocarbons can be considered as finite models of single-wall carbon nanotubes. Hitosugiet al. describe the bottom-up synthesis of a macrocyclic tetramer of chrysene, and show that its persistent rotational isomers are finite models of chiral nanotubes.

    • Shunpei Hitosugi
    • , Waka Nakanishi
    •  & Hiroyuki Isobe
  • Article |

    The ability to control the charge and spin of single molecules at metal interfaces underpins the concept of molecular electronics. Mugarzaet al. examine these properties using scanning tunnelling microscopy, and uncover their influence on the magnetism and transport properties of the molecule/metal systems.

    • Aitor Mugarza
    • , Cornelius Krull
    •  & Pietro Gambardella
  • Article |

    Simple routes to self-assembling magnetic materials are elusive. Tew and colleagues produce copolymers containing cobalt complexes, which phase separate to give ferromagnetic properties at room temperature following heat treatment.

    • Zoha M. AL-Badri
    • , Raghavendra R. Maddikeri
    •  & Gregory N. Tew
  • Article
    | Open Access

    Nanocrystals are used in light-emitting diodes and solar cells, but their charge transport in films is unclear. Here, the study of PbS nanocrystal films reveals the role of mid-gap states in their charge transport, suggesting different design needs for devices operated in dark (transistors) versus light (solar cells) conditions.

    • Prashant Nagpal
    •  & Victor I. Klimov
  • Article
    | Open Access

    Spin ices are magnetic materials in which excitations equivalent to monopoles can occur. Using high-pressure techniques, Zhouet al. synthesize a new member of the spin ice family, Dy2Ge2O7, in which monopoles exist at higher densities, and can stabilize as dimers.

    • H.D. Zhou
    • , S.T. Bramwell
    •  & J.S. Gardner
  • Article |

    The manipulation of electrons forms the basis of modern technology, whereas electrical signalling processes in nature are based on ions and protons. Rolandi and colleagues present a proton transistor based on polysaccharide nanofibres, which can control the flow of protonic currents.

    • Chao Zhong
    • , Yingxin Deng
    •  & Marco Rolandi
  • Article
    | Open Access

    Transparent conducting oxides are wide bandgap conductors that have found a range of applications in optoelectronic devices. In this study, Hosono and colleagues fabricate the first transparent conducting oxide based on germanium.

    • Hiroshi Mizoguchi
    • , Toshio Kamiya
    •  & Hideo Hosono
  • Article |

    It is unclear whether the Fermi surface in the normal state of underdoped cuprates is ambipolar or solely nodal. Here, measuring the second harmonic oscillations in underdoped YBa2Cu3O6+xreveals the origin as an oscillatory chemical potential, based on which a Fermi surface consisting of a nodal pocket is identified.

    • Suchitra E. Sebastian
    • , N. Harrison
    •  & G.G. Lonzarich
  • Article |

    Hydrogels have a variety of applications including tissue engineering and controlled drug delivery. Here, liquid-crystal hydrogels are developed which transform into a fluid solution upon cooling; cells can be encapsulated in the gel at room temperature, then released at physiological temperatures.

    • Zhegang Huang
    • , Hyojin Lee
    •  & Myongsoo Lee
  • Article |

    Property coupling by heteroepitaxy is severely limited in material combinations with highly dissimilar bonding. This report presents a chemical boundary condition methodology to actively engineer two-dimensional film growth in such systems that otherwise collapse into island formation and rough morphologies.

    • Elizabeth A. Paisley
    • , Mark. D. Losego
    •  & Jon-Paul Maria
  • Article
    | Open Access

    At extreme temperature and pressure, materials can form new dense phases with unusual physical properties. Here, laser-induced microexplosions are used to produce a superdense, stable, body-centred-cubic form of aluminium, which was previously predicted to exist at pressures above 380GPa.

    • Arturas Vailionis
    • , Eugene G. Gamaly
    •  & Saulius Juodkazis
  • Article
    | Open Access

    High-power mechanical energy harvesting could be an alternative to batteries, but efficient energy conversion technology has been missing. Here, a novel mechanical-to-electrical energy conversion method is described that is based on reverse electrowetting and is uniquely suited for high-power energy harvesting.

    • Tom Krupenkin
    •  & J. Ashley Taylor
  • Article
    | Open Access

    An electron pocket exists in the Fermi-surface of the high temperature superconductor YBa2Cu3Oy, but its origin is unknown. Here, YBa2Cu3Oy and La1.8−xEu0.2SrxCuO4 are both shown to exhibit Fermi-surface reconstruction, and in the latter, this is due to stripe order, suggesting that the same mechanism exists in YBa2Cu3Oy.

    • F. Laliberté
    • , J. Chang
    •  & Louis Taillefer
  • Article |

    Composites of carbon nanotubes and superconductors provide technologically important new, or improved, functionalities. Here, with a chemical solution approach, well-aligned carbon nanotube forests embedded in a superconducting NbC matrix are shown to effectively enhance the superconducting properties of NbC.

    • G.F. Zou
    • , H.M. Luo
    •  & Q.X. Jia
  • Article |

    The development of practical photonic quantum technologies will be aided by the spatial control of entangled photons. Lenget al. achieve on-chip spatial control of entangled photons by using domain engineering, rather than by using external optical elements.

    • H.Y. Leng
    • , X.Q. Yu
    •  & S.N. Zhu
  • Article
    | Open Access

    Being able to determine the wetting properties of individual nanoparticles would aid the preparation of particles with controlled surface properties. Isaet al. develop an in situ freeze-fracture shadow-casting method and use this to determine structural and thermodynamic properties of various 10 nm particles at fluid interfaces.

    • Lucio Isa
    • , Falk Lucas
    •  & Erik Reimhult
  • Article |

    Ferromagnetic systems produced by the transition metal doping of semiconductors may be used as components of spintronic devices. Here, a new ferromagnet, Li1+y(Zn1-xMnx)As, is prepared in bulk quantities and shown to have a critical temperature approaching 50 K.

    • Z. Deng
    • , C.Q. Jin
    •  & Y.J. Uemura
  • Article
    | Open Access

    Magnesium is an ideal rechargeable battery anode material, but coupling it with a low-cost sulphur cathode, requires a non-nucleophilic electrolyte. Kimet al. prepare a non-nucleophilic electrolyte from hexamethyldisilazide magnesium chloride and aluminium trichloride, and show its compatibility with a sulphur cathode.

    • Hee Soo Kim
    • , Timothy S. Arthur
    •  & John Muldoon
  • Article
    | Open Access

    High critical temperature superconductors could be used to produce ideal electric power lines, but the misalignment of crystalline grain boundaries reduces current density. Here, pnictide superconductors are found to be more tolerant to misaligned grain boundaries than cuprates.

    • Takayoshi Katase
    • , Yoshihiro Ishimaru
    •  & Hideo Hosono
  • Article
    | Open Access

    Flux-closure patterns are rarely observed in ferroelectric materials and almost exclusively form at the nanoscale. McQuaidet al. report mesoscopic dipole closure patterns formed in free-standing single-crystal lamellae of BaTiO3, thought to result from an unusual set of experimental conditions.

    • R.G.P. McQuaid
    • , L.J. McGilly
    •  & J.M. Gregg
  • Article |

    Brillouin interactions between sound and light can excite mechanical resonances in photonic microsystems, with potential for sensing and frequency reference applications. The authors demonstrate experimental excitation of mechanical resonances ranging from 49 to 1,400 MHz using forward Brillouin scattering.

    • Gaurav Bahl
    • , John Zehnpfennig
    •  & Tal Carmon
  • Article |

    Single-molecule magnets could be useful for the development of spintronic devices. Here single-molecule magnets are encapsulated in carbon nanotubes without affecting the properties of the guest molecules, which may be useful in the development of spintronic or high-density magnetic storage devices.

    • Maria del Carmen Giménez-López
    • , Fabrizio Moro
    •  & Andrei N. Khlobystov
  • Article
    | Open Access

    In some iron-based materials, unconventional superconductivity can emerge near a quantum phase transition where long-range magnetic order vanishes. Giovannettiet al.show that the magnetic quantum phase transition in an iron pnictide superconductor is very close to the quantum tricritical point.

    • Gianluca Giovannetti
    • , Carmine Ortix
    •  & José Lorenzana
  • Article
    | Open Access

    Interacting electrons in one dimension are predicted to have independent spin and charge excitations. Wakehamet al. show evidence of this behaviour in a bulk conductor by measuring a ratio of thermal to electrical conductivity orders of magnitude larger than in conventional three-dimensional metals.

    • Nicholas Wakeham
    • , Alimamy F. Bangura
    •  & Nigel E. Hussey
  • Article
    | Open Access

    The fractional quantum Hall effect occurs when electrons move in Landau levels. In this study, using a theoretical flat-band lattice model, the fractional quantum Hall effect is observed in the presence of repulsive interactions when the band is one third full and in the absence of Landau levels.

    • D.N. Sheng
    • , Zheng-Cheng Gu
    •  & L. Sheng
  • Article |

    Covalent reactions on carbon nanotube surfaces typically occur at random positions on the hexagonal lattice. Denget al. show that Billups–Birch reductive alkylation takes place at, and propagates from, sp3defect sites, leading to confinement of the reaction fronts in the tubular direction.

    • Shunliu Deng
    • , Yin Zhang
    •  & YuHuang Wang
  • Article
    | Open Access

    Two-qubit operation is an essential part of quantum computation, but implementation has been difficult. Gotoet al.introduce optically controllable internuclear coupling in semiconductors providing a simple way of switching inter-qubit couplings in semiconductor-based quantum computers.

    • Atsushi Goto
    • , Shinobu Ohki
    •  & Tadashi Shimizu
  • Article |

    Interactions between charge, orbital and lattice degrees of freedom in correlated electron systems have resulted in predictions of new electronic phases of matter. Carlson and Dahmen propose two protocols for detecting disordered electron nematics in condensed matter systems using non-equilibrium methods.

    • E.W. Carlson
    •  & K.A. Dahmen
  • Article |

    The unoccupied electronic levels of graphene are modified by corrugation, doping and presence of impurities. Here, the authors map discrete electronic domains within a single graphene sheet using scanning transmission X-ray microscopy and provide insight into the modification of unoccupied levels.

    • Brian J. Schultz
    • , Christopher J. Patridge
    •  & Sarbajit Banerjee
  • Article
    | Open Access

    A bubble at an air–liquid interface can form a liquid jet upon bursting, spraying aerosol droplets into the air. Leeet al. show that jetting is analogous to pinching-off in liquid coalescence, which may be useful in applications that prevent jet formation and in the improved incorporation of aerosols in climate models.

    • Ji San Lee
    • , Byung Mook Weon
    •  & Wah-Keat Lee
  • Article |

    Waveplates are used in optoelectronics to alter the polarization of light, but they do not typically perform achromatically, which is important for applications such as three-dimensional displays. Here, biologically inspired periodically multilayered structures are produced, which function as achromatic visible-light waveplates.

    • Yi-Jun Jen
    • , Akhlesh Lakhtakia
    •  & Jyun-Rong Lai