Reviews & Analysis

Filter By:

Year
  • A single light-emitting dye molecule precisely placed within the tiny gap of a metal nanodimer boosts light–matter coupling — a step closer to the development of quantum devices operating at room temperature.

    • Rohit Chikkaraddy
    News & Views
  • Ultracold atoms are a well-established platform for quantum sensing and metrology. This Review discusses the enhanced sensing capabilities that molecules offer for a range of phenomena, including symmetry-violating forces and dark matter detection.

    • David DeMille
    • Nicholas R. Hutzler
    • Tanya Zelevinsky
    Review Article
  • Molecular ions and hybrid platforms that integrate cold trapped ions and neutral particles offer opportunities for many quantum technologies. This Review surveys recent methodological advances and highlights in the study of cold molecular ions.

    • Markus Deiß
    • Stefan Willitsch
    • Johannes Hecker Denschlag
    Review Article
  • Ultracold molecules and ion–neutral systems offer unique access to chemistry in a coherent quantum regime. This Review charts the progress of studies of quantum chemistry in such platforms, highlighting the synergy between theory and experiments.

    • Tijs Karman
    • Michał Tomza
    • Jesús Pérez-Ríos
    Review Article
  • The study of quantum systems in a programmable and controllable fashion is one of the aims of both quantum simulation and computing. This Review covers the prospects and opportunities that ultracold molecules offer in these fields.

    • Simon L. Cornish
    • Michael R. Tarbutt
    • Kaden R. A. Hazzard
    Review Article
  • Cold and ultracold molecules have emerged in the past two decades as a central topic in quantum gas studies. This Review charts the recent advances in cooling and quantum state control techniques that are shaping this evolving field.

    • Tim Langen
    • Giacomo Valtolina
    • Jun Ye
    Review Article
  • The properties of quantum matter arise from the combined effects of dimensionality, interactions and quantum statistics. An experiment now studies what happens to ultracold bosons when the dimensionality of the system changes continuously between one and two dimensions.

    • Jérôme Beugnon
    News & Views
  • Spiral waves of cell density can form and propagate through bacterial biofilms. These waves are formed by a self-organization process that coordinates pulling forces between neighbouring cells.

    • Guram Gogia
    • David R. Johnson
    News & Views
  • The determination of the order parameter symmetry is a critical issue in the study of unconventional superconductors. Ultrasound measurements on UTe2, a candidate spin-triplet superconductor, now provide evidence for the single-component nature of its order parameter.

    • Bohm-Jung Yang
    News & Views
  • The nuclear pore complex of eukaryotic cells senses the mechanical directionality of translocating proteins, favouring the passage of those that have a leading mechanically labile region. Adding an unstructured, mechanically weak peptide tag to a translocating protein increases its rate of nuclear import and accumulation, suggesting a biotechnological strategy to enhance the delivery of molecular cargos into the cell nucleus.

    Research Briefing
  • Rotational symmetry is shown to protect the quadratic dispersion of out-of-plane flexural vibrations in graphene and other two-dimensional materials against phonon–phonon interactions, making the bending rigidity of these materials non-divergent. The quadratic dispersion is then consistent with the propagation of sound in the graphene plane.

    Research Briefing
  • The Q-value of electron capture in 163Ho has been determined with an uncertainty of 0.6 eV c–2 through a combination of high-precision Penning-trap mass spectrometry and precise atomic physics calculations. This high-precision measurement provides insight into systematic errors in neutrino mass measurements.

    Research Briefing
  • As counterparts to optical frequency combs, magnonic frequency combs could have broad applications if their initiation thresholds were low and the ‘teeth’ of the comb plentiful. Progress has now been made through exploiting so-called exceptional points to enhance the nonlinear coupling between magnons and produce wider magnonic frequency combs.

    Research Briefing
  • A practical and hardware-efficient blueprint for fault-tolerant quantum computing has been developed, using quantum low-density-parity-check codes and reconfigurable neutral-atom arrays. The scheme requires ten times fewer qubits and paves the way towards large-scale quantum computing using existing experimental technologies.

    Research Briefing
  • When photons impinge on a material, free electrons can be created by the photoelectric effect. The emitted electron current usually fluctuates with Poisson statistics, but if squeezed quantum light is applied, the electrons bunch up.

    • Alfred Leitenstorfer
    • Peter Baum
    News & Views
  • Questioning the validity of axioms can teach us about physics beyond the standard model. A recent search for the violation of charge conservation and the Pauli exclusion principle yields limits on these scenarios.

    • Alessio Porcelli
    News & Views