Articles in 2012

Filter By:

  • Researchers report the entanglement-enhanced measurement of a delicate material system, in which they non-destructively probe an 85Rb atomic spin ensemble by near-resonant Faraday rotation. They use narrowband, atom-resonant ‘NOON’ states to beat the standard quantum limit of sensitivity by more than five standard deviations, both on a per-photon and a per-damage basis.

    • Florian Wolfgramm
    • Chiara Vitelli
    • Morgan W. Mitchell
    Letter
  • Researchers focus 10 keV X-ray free-electron laser radiation to an area of 0.95 µm × 1.20 µm with near-100%-efficiency using reflective optics. This approach increases the fluence by a factor of 40,000 and provides a power density of 6 × 1017 W cm−2.

    • Hirokatsu Yumoto
    • Hidekazu Mimura
    • Kazuto Yamauchi
    Letter
  • Scientists report that the photovoltaic effect and a photo-induced bolometric effect, rather than thermoelectric effects, dominate the photoresponse during a classic photoconductivity experiment in biased graphene. The findings shed light on the hot-electron-driven photoresponse in graphene and its energy loss pathway via phonons.

    • Marcus Freitag
    • Tony Low
    • Phaedon Avouris
    Article
  • Researchers demonstrate that Bell's measure — a commonly used test of quantum nonlocality — can be used in classical optical schemes to separate incoherence associated with statistical fluctuations from incoherence based on correlation. This technique may be useful for quantum information applications such as classical optical coherence theory and optical signal processing.

    • Kumel H. Kagalwala
    • Giovanni Di Giuseppe
    • Bahaa E. A. Saleh
    Article
  • Magnetic effects are fundamentally weak at optical frequencies. Now, by applying inhomogeneous strain in photonic band structures of a honeycomb lattice of waveguides, scientists show experimentally and theoretically that it is possible to induce a pseudomagnetic field at optical frequencies. The field yields 'photonic Landau levels', which suggests the possibility of achieving greater field enhancements and slow-light effects in aperiodic photonic crystal structures than those available in periodic structures.

    • Mikael C. Rechtsman
    • Julia M. Zeuner
    • Alexander Szameit
    Article
  • Random lasing in the presence of nonlinearities and disordered gain media is still poorly understood. Researchers now present a semiclassical theory for multimode random lasing in the strongly scattering regime. They show that Anderson localization — a wave-interference effect — is not affected by the presence of nonlinearities, but instead suppresses interactions between simultaneously lasing modes.

    • Peter Stano
    • Philippe Jacquod
    Article
  • Researchers demonstrate large cross-phase shifts of 0.3 mrad per photon in a single pass through room-temperature Rb atoms confined to a hollow-core photonic bandgap fibre. The response time of less than 5 ns indicates that phase modulation bandwidths greater than 50 MHz are possible with a highly sensitive atomic-vapour-based scheme.

    • Vivek Venkataraman
    • Kasturi Saha
    • Alexander L. Gaeta
    Letter
  • Coherent control is a powerful tool for controlling light–matter interactions in time and frequency. Now, scientists show that counter-propagating broadband pulses can be used to generate fully controlled spatial excitation patterns. This spatial control approach also reduces decoherence, providing a high-frequency resolution similar to that of an optical frequency comb.

    • Itan Barmes
    • Stefan Witte
    • Kjeld S. E. Eikema
    Letter
  • Researchers at Osaka University in Japan have developed a hyperspectral stimulated Raman microscope that can image the chemical bonds in living tissues at video rates.

    • Hervé Rigneault
    • Esben Andresen
    News & Views