Reviews & Analysis

Filter By:

Year
  • We developed Tapioca, an integrative ensemble machine learning-based framework, to accurately predict global protein–protein interaction network dynamics. Tapioca enabled the characterization of host regulation during reactivation from latency of an oncogenic virus. Introducing an interactome homology analysis method, we identified a proviral host factor with broad relevance for herpesviruses.

    Research Briefing
  • sc-SPORT offers a way to probe RNA structure at the single-cell level. It reveals cell-to-cell heterogeneity in RNA folding.

    • Elizabeth A. Jolley
    • Philip C. Bevilacqua
    News & Views
  • We pinpoint PCR artifacts as the primary source of inaccurate quantification in both short- and long-read RNA sequencing, a problem that intensifies with an increase in PCR cycles in both bulk and single-cell sequencing contexts. To overcome this challenge, we engineered a novel unique molecular identifier (UMI) barcode composed of homotrimer nucleotide blocks. This design facilitates accurate quantification of RNA molecules, substantially improving molecular counting.

    Research Briefing
  • We developed a prime editing (PE) strategy by incorporating a 5′–3′ exonuclease activity, which enhanced the efficacy and precision of ≥30-nucleotide DNA insertions without a secondary nick. Our optimization of the PE complex revealed that recruiting the exonuclease via an RNA aptamer outperformed direct protein fusions.

    Research Briefing
  • Intrinsically disordered regions of proteins are prevalent across the kingdoms of life; however, biophysical characterization is expensive, requiring specialized expertise and equipment and time-consuming sample preparation. By combining simulations and deep learning, we have developed a method to predict their average ensemble properties directly from sequence.

    Research Briefing