Articles in 2023

Filter By:

  • As long-read sequencing technologies continue to advance, the possibility of obtaining maps of DNA and RNA modifications at single-molecule resolution has become a reality. Here we highlight the opportunities and challenges posed by the use of long-read sequencing technologies to study epigenetic and epitranscriptomic marks and how this will affect the way in which we approach the study of health and disease states.

    • Morghan C. Lucas
    • Eva Maria Novoa
    Comment
  • Nature is often hidden, sometimes overcome, seldom extinguished. —Francis Bacon

    • Alexander Derry
    • Martin Krzywinski
    • Naomi Altman
    This Month
  • Dimension reduction is a cornerstone of exploratory data analysis; however, traditional methods fail to preserve the spatial context of spatial genomics data. In this work, we develop a nonnegative spatial factorization (NSF) model that allows interpretable, parts-based decomposition of spatial single-cell count data. NSF allows label-free annotation of regions of interest in spatial genomics data and identifies genes and cells that can be used to define those regions.

    Research Briefing
  • We developed an advanced deep learning approach called local shape descriptors (LSDs) to enable analysis of large electron microscopy datasets with increased efficiency. This technique will speed processing of future petabyte-sized datasets and democratize connectomics research by enabling these analyses using modest computational infrastructure available to most laboratories.

    Research Briefing