Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells

Abstract

Site-specific incorporation of unnatural amino acids (Uaas) in living cells relies on engineered aminoacyl-transfer RNA synthetase–tRNA pairs borrowed from a distant domain of life. Such heterologous suppressor tRNAs often have poor intrinsic activity, presumably due to suboptimal interaction with a non-native translation system. This limitation can be addressed in Escherichia coli using directed evolution. However, no suitable selection system is currently available to do the same in mammalian cells. Here we report virus-assisted directed evolution of tRNAs (VADER) in mammalian cells, which uses a double-sieve selection scheme to facilitate single-step enrichment of active yet orthogonal tRNA mutants from naive libraries. Using VADER we developed improved mutants of Methanosarcina mazei pyrrolysyl-tRNA, as well as a bacterial tyrosyl-tRNA. We also show that the higher activity of the most efficient mutant pyrrolysyl-tRNA is specific for mammalian cells, alluding to an improved interaction with the unique mammalian translation apparatus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The VADER selection scheme.
Fig. 2: Directed evolution of tRNAPyl.
Fig. 3: Characterization of tRNAPyl-A2.1 activity.
Fig. 4: Origin of the improved activity of tRNAPyl-A2.1.
Fig. 5: Directed evolution of tRNATyr.

Similar content being viewed by others

Data availability

Sequences of fully base-paired selected tRNAs are available in Supplementary Tables 2 and 5. Sequences of all of the primers used in the study are available in Supplementary Table 3. The NGS datasets for the tRNAPyl and tRNATyr experiments are available via Zenodo at accession codes https://doi.org/10.5281/zenodo.7186997 and https://doi.org/10.5281/zenodo.7187354, respectively.

Code availability

All scripts used in this manuscript are available on GitHub50.

References

  1. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    Article  CAS  Google Scholar 

  2. Italia, J. S. et al. Expanding the genetic code of mammalian cells. Biochem. Soc. Trans. 45, 555–562 (2017).

    Article  CAS  Google Scholar 

  3. Young, D. D. & Schultz, P. G. Playing with the molecules of life. ACS Chem. Biol. 13, 854–870 (2018).

    Article  CAS  Google Scholar 

  4. Manandhar, M., Chun, E. & Romesberg, F. E. Genetic code expansion: inception, development, commercialization. J. Am. Chem. Soc. 143, 4859–4878 (2021).

    Article  CAS  Google Scholar 

  5. Roy, G. et al. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. mAbs 12, 1684749 (2020).

    Article  Google Scholar 

  6. Schmied, W. H., Elsässer, S. J., Uttamapinant, C. & Chin, J. W. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. J. Am. Chem. Soc. 136, 15577–15583 (2014).

    Article  CAS  Google Scholar 

  7. Zheng, Y., Lewis, T. L. Jr, Igo, P., Polleux, F. & Chatterjee, A. Virus-enabled optimization and delivery of the genetic machinery for efficient unnatural amino acid mutagenesis in mammalian cells and tissues. ACS Synth. Biol. 6, 13–18 (2017).

    Article  CAS  Google Scholar 

  8. Söll, D. & RajBhandary, U. L. tRNA: Structure, Biosynthesis, and Function. (ASM Press, 1995).

  9. Serfling, R. et al. Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Res. 46, 1–10 (2018).

    Article  CAS  Google Scholar 

  10. Anderson, J. C. & Schultz, P. G. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression. Biochemistry 42, 9598–9608 (2003).

    Article  CAS  Google Scholar 

  11. Guo, J., Melancon, C. E. 3rd, Lee, H. S., Groff, D. & Schultz, P. G. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angew. Chem. Int. Ed. Engl. 48, 9148–9151 (2009).

    Article  CAS  Google Scholar 

  12. Rogerson, D. T. et al. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat. Chem. Biol. 11, 496–503 (2015).

    Article  CAS  Google Scholar 

  13. Wang, K. et al. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat. Chem. 6, 393–403 (2014).

    Article  CAS  Google Scholar 

  14. Ellefson, J. W. et al. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nat. Biotechnol. 32, 97–101 (2014).

    Article  CAS  Google Scholar 

  15. Maranhao, A. C. & Ellington, A. D. Evolving orthogonal suppressor tRNAs to incorporate modified amino acids. ACS Synth. Biol. 6, 108–119 (2017).

    Article  CAS  Google Scholar 

  16. Chatterjee, A., Xiao, H. & Schultz, P. G. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Proc. Natl Acad. Sci. USA 109, 14841–14846 (2012).

    Article  CAS  Google Scholar 

  17. Chatterjee, A., Xiao, H., Yang, P. Y., Soundararajan, G. & Schultz, P. G. A tryptophanyl-tRNA synthetase/tRNA pair for unnatural amino acid mutagenesis in E. coli. Angew. Chem. Int. Ed. Engl. 52, 5106–5109 (2013).

    Article  CAS  Google Scholar 

  18. Wang, N., Shang, X., Cerny, R., Niu, W. & Guo, J. Systematic evolution and study of UAGN decoding tRNAs in a genomically recoded bacteria. Sci. Rep. 6, 21898 (2016).

    Article  CAS  Google Scholar 

  19. Anderson, J. C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl Acad. Sci. USA 101, 7566–7571 (2004).

    Article  CAS  Google Scholar 

  20. Hendel, S. J. & Shoulders, M. D. Directed evolution in mammalian cells. Nat. Methods 18, 346–357 (2021).

    Article  CAS  Google Scholar 

  21. Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

    Article  CAS  Google Scholar 

  22. Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

  23. Berman, C. M. et al. An adaptable platform for directed evolution in human cells. J. Am. Chem. Soc. 140, 18093–18103 (2018).

    Article  CAS  Google Scholar 

  24. English, J. G. et al. VEGAS as a platform for facile directed evolution in mammalian cells. Cell 178, 748–761 (2019).

    Article  CAS  Google Scholar 

  25. Erickson, S. B. et al. Precise photoremovable perturbation of a virus–host interaction. Angew. Chem. Int. Ed. Engl. 56, 4234–4237 (2017).

    Article  CAS  Google Scholar 

  26. Kelemen, R. E. et al. A precise chemical strategy to alter the receptor specificity of the adeno-associated virus. Angew. Chem. Int. Ed. Engl. 55, 10645–10649 (2016).

    Article  CAS  Google Scholar 

  27. Agbandje-McKenna, M. & Kleinschmidt, J. AAV capsid structure and cell interactions. Methods Mol. Biol. 807, 47–92 (2011).

    Article  CAS  Google Scholar 

  28. Kelemen, R. E., Erickson, S. B. & Chatterjee, A. Production and chemoselective modification of adeno-associated virus site-specifically incorporating an unnatural amino acid residue into its capsid. Methods Mol. Biol. 1728, 313–326 (2018).

    Article  CAS  Google Scholar 

  29. Italia, J. S., Latour, C., Wrobel, C. J. J. & Chatterjee, A. Resurrecting the bacterial tyrosyl-tRNA synthetase/tRNA pair for expanding the genetic code of both E. coli and eukaryotes. Cell Chem. Biol. 25, 1304–1312 (2018).

    Article  CAS  Google Scholar 

  30. Zheng, Y., Addy, P. S., Mukherjee, R. & Chatterjee, A. Defining the current scope and limitations of dual noncanonical amino acid mutagenesis in mammalian cells. Chem. Sci. 8, 7211–7217 (2017).

    Article  CAS  Google Scholar 

  31. Wan, W., Tharp, J. M. & Liu, W. R. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta 1844, 1059–1070 (2014).

    Article  CAS  Google Scholar 

  32. Shao, S. et al. Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell 167, 1229–1240 (2016).

    Article  CAS  Google Scholar 

  33. Nozawa, K. et al. Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457, 1163–1167 (2009).

    Article  CAS  Google Scholar 

  34. Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234 (2008).

    Article  CAS  Google Scholar 

  35. Hohl, A. et al. Engineering a polyspecific pyrrolysyl-tRNA synthetase by a high throughput FACS screen. Sci. Rep. 9, 11971 (2019).

    Article  Google Scholar 

  36. Ai, H. W., Shen, W., Sagi, A., Chen, P. R. & Schultz, P. G. Probing protein–protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem 12, 1854–1857 (2011).

    Article  CAS  Google Scholar 

  37. Zheng, Y. et al. Expanding the scope of single- and double-noncanonical amino acid mutagenesis in mammalian cells using orthogonal polyspecific leucyl-tRNA synthetases. Biochemistry 57, 441–445 (2018).

    Article  CAS  Google Scholar 

  38. Ernst, R. J. et al. Genetic code expansion in the mouse brain. Nat. Chem. Biol. 12, 776–778 (2016).

    Article  CAS  Google Scholar 

  39. Fan, C., Xiong, H., Reynolds, N. M. & Söll, D. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res. 43, e156 (2015).

    Article  Google Scholar 

  40. Zheng, Y., Gilgenast, M. J., Hauc, S. & Chatterjee, A. Capturing post-translational modification-triggered protein–protein interactions using dual noncanonical amino acid mutagenesis. ACS Chem. Biol. 13, 1137–1141 (2018).

    Article  CAS  Google Scholar 

  41. Grasso, K. T. et al. A facile platform to engineer Escherichia coli tyrosyl-tRNA synthetase adds new chemistries to the eukaryotic genetic code, including a phosphotyrosine mimic. ACS Cent. Sci. 8, 483–492 (2022).

    Article  CAS  Google Scholar 

  42. Italia, J. S. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13, 446–450 (2017).

    Article  CAS  Google Scholar 

  43. Sakamoto, K. et al. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res. 30, 4692–4699 (2002).

    Article  CAS  Google Scholar 

  44. Liu, W., Brock, A., Chen, S., Chen, S. & Schultz, P. G. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Methods 4, 239–244 (2007).

    Article  CAS  Google Scholar 

  45. Chin, J. W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  Google Scholar 

  46. Xiao, H. et al. Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew. Chem. Int. Ed. Engl. 52, 14080–14083 (2013).

    Article  CAS  Google Scholar 

  47. Tian, F. et al. A general approach to site-specific antibody drug conjugates. Proc. Natl Acad. Sci. USA 111, 1766–1771 (2014).

    Article  CAS  Google Scholar 

  48. Jühling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159–D162 (2009).

    Article  Google Scholar 

  49. Chatterjee, A., Xiao, H., Bollong, M., Ai, H. W. & Schultz, P. G. Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc. Natl Acad. Sci. USA 110, 11803–11808 (2013).

    Article  CAS  Google Scholar 

  50. Kelemen, R. VADER processing pipeline (version 1.0) http:github.com/chatterjeelab2022/VADER (2018).

  51. Kim, S. W. et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 38, e98 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation (MCB-1817893), and National Institutes of Health (R35GM136437 to A.C. and U01 AI124302 to T.v.O.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.C., R.E.K. and D.J. designed the project; R.E.K. developed and optimized the original VADER system and performed selections on tRNAPyl; D.J. performed additional selections on tRNAPyl and selections on tRNATyr, and characterized the tRNA mutants; R.L.H. and Z.H. assisted in the characterization of tRNA mutants; K.M., M.P. and X.C. assisted in cloning; T.v.O., Z.Z., B.S. and J.A. were involved in Illumina sequencing and analyses; and A.C., R.E.K. and D.J. prepared the manuscript.

Corresponding author

Correspondence to Abhishek Chatterjee.

Ethics declarations

Competing interests

A patent application has been submitted on the improved tRNA mutants in which A.C., D.J. and R.E.K. are listed as co-inventors. A.C. is a senior advisor at BrickBio, Inc. All other authors have no competing interests.

Peer review

Peer review information

Nature Methods thanks Aditya Kunjapur, Matthew Shoulders and the other, anonymous, reviewer for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–16, Supplementary Tables 1–5

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jewel, D., Kelemen, R.E., Huang, R.L. et al. Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells. Nat Methods 20, 95–103 (2023). https://doi.org/10.1038/s41592-022-01706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-022-01706-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing