Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical short-range disorder in lithium oxide cathodes

Abstract

Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1,2,3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid capacity deterioration and thus short battery life2,4. Here we report an approach that addresses these issues using the integration of chemical short-range disorder (CSRD) into oxide cathodes, which involves the localized distribution of elements in a crystalline lattice over spatial dimensions, spanning a few nearest-neighbour spacings. This is guided by fundamental principles of structural chemistry and achieved through an improved ceramic synthesis process. To demonstrate its viability, we showcase how the introduction of CSRD substantially affects the crystal structure of layered Li cobalt oxide cathodes. This is manifested in the transition metal environment and its interactions with oxygen, effectively preventing detrimental sliding of crystal slabs and structural deterioration during Li removal. Meanwhile, it affects the electronic structure, leading to improved electronic conductivity. These attributes are highly beneficial for Li-ion storage capabilities, markedly improving cycle life and rate capability. Moreover, we find that CSRD can be introduced in additional layered oxide materials through improved chemical co-doping, further illustrating its potential to enhance structural and electrochemical stability. These findings open up new avenues for the design of oxide cathodes, offering insights into the effects of CSRD on the crystal and electronic structure of advanced functional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Screening the crystal structure of LiMeO2 compositions.
Fig. 2: CSRD configuration of LiCoO2.
Fig. 3: Electrochemical performance.
Fig. 4: Crystal and electronic structure information of the CSRD−LiCoO2 cathode.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the main text and Supplementary Information. All relevant data are available from the corresponding authors upon request.

References

  1. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  3. Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-Spinel Phase Transition in LixMnO2. Electrochem. Solid-State Lett. 4, A78 (2001).

    Article  CAS  Google Scholar 

  4. Reimers, J. N. & Dahn, J. R. Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Elliott, S. R. in Physics of Amorphous Materials 2nd edn 139–151 (Longman, 1990).

  6. Greer, A. L. in Intermetallic Compounds—Principles and Practice Vol. 1 (eds Westbrook, J. H. & Fleischer, R. L.) 731–754 (Wiley, 1995).

  7. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zhang, N. et al. The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Commun. 5, 5231 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Cartledge, G. H. Studies on the periodic system. I. The ionic potential as a periodic function. J. Am. Chem. Soc. 50, 2855–2863 (1928).

    Article  CAS  Google Scholar 

  14. Wang, Q. et al. Designing lithium halide solid electrolytes. Nat. Commun. 15, 1050 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antaya, M., Cearns, K., Preston, J. S., Reimers, J. N. & Dahn, J. R. In situ growth of layered, spinel, and rock‐salt LiCoO2 by laser ablation deposition. J. Appl. Phys. 76, 2799–2806 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Kanno, R. et al. Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure. J. Electrochem. Soc. 143, 2435–2441 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Sakurai, Y., Arai, H. & Yamaki, J. Preparation of electrochemically active α-LiFeO2 at low temperature. Solid State Ion. 113-115, 29–34 (1998).

    Article  CAS  Google Scholar 

  18. Werder, D. J., Chen, C. H., Cava, R. J. & Batlogg, B. Diffraction evidence for oxygen-vacancy ordering in annealed Ba2YCu3O7−δ (0.3 ≤ δ ≤ 0.4) superconductors. Phys. Rev. B 37, 2317–2319 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Li, L. et al. Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy. Acta Mater. 243, 118537 (2023).

    Article  CAS  Google Scholar 

  20. Yang, J. H., Kim, H. & Ceder, G. Insights into layered oxide cathodes for rechargeable batteries. Molecules 26, 3173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rossen, E., Reimers, J. N. & Dahn, J. R. Synthesis and electrochemistry of spinel LT-LiCoO2. Solid State Ionics 62, 53–60 (1993).

    Article  CAS  Google Scholar 

  22. Gummow, R. J., Thackeray, M. M., David, W. I. F. & Hull, S. Structure and electrochemistry of lithium cobalt oxide synthesised at 400 °C. Mater. Res. Bull. 27, 327–337 (1992).

    Article  CAS  Google Scholar 

  23. Hua, W. et al. Chemical and structural evolution during the synthesis of layered Li(Ni,Co,Mn)O2 oxides. Chem. Mater. 32, 4984–4997 (2020).

    Article  CAS  Google Scholar 

  24. Duffiet, M. et al. Probing Al distribution in LiCo0.96Al0.04O2 materials using 7Li, 27Al, and 59Co MAS NMR combined with synchrotron X-ray diffraction. Inorg. Chem. 59, 2890–2899 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, C., Avdeev, M., Chen, L. & Hu, Y.-S. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew. Chem. Int. Ed. 57, 7056–7060 (2018).

    Article  CAS  Google Scholar 

  26. Ménétrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1135–1140 (1999).

    Article  Google Scholar 

  27. Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Yang, X. et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv. Energy Mater. 12, 2200197 (2022).

    Article  CAS  Google Scholar 

  29. Yang, X. et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv. Funct. Mater. 30, 2004664 (2020).

    Article  CAS  Google Scholar 

  30. Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 layered Lix CoO2 (x ≈ 0.5): an electron diffraction study. J. Electrochem. Soc. 150, A366 (2003).

    Article  CAS  Google Scholar 

  31. Chen, Z., Lu, Z. & Dahn, J. R. Staging phase transitions in LixCoO2. J. Electrochem. Soc. 149, A1604 (2002).

    Article  CAS  Google Scholar 

  32. Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).

    Article  ADS  CAS  Google Scholar 

  35. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Zsoldos, E. S., Cormier, M. M. E., Ball, M., Rathore, D. & Dahn, J. R. The effects of small amounts of cobalt in LiNi1-xCoxO2 on lithium-ion diffusion. J. Electrochem. Soc. 170, 070502 (2023).

    Article  ADS  Google Scholar 

  37. Wang, Q. et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries. Nat. Sustain. 7, 338–347 (2024).

    Article  Google Scholar 

  38. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fu, A. et al. Enabling interfacial stability of LiCoO2 batteries at an ultrahigh cutoff voltage ≥ 4.65 V via a synergetic electrolyte strategy. J. Mater. Chem. A 11, 3703–3716 (2023).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  43. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article  ADS  CAS  Google Scholar 

  44. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  ADS  CAS  Google Scholar 

  45. Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 73, 195107 (2006).

    Article  ADS  Google Scholar 

  46. Wolverton, C. Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Mater. 49, 3129–3142 (2001).

    Article  ADS  CAS  Google Scholar 

  47. Urban, A., Matts, I., Abdellahi, A. & Ceder, G. Computational design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries. Adv. Energy Mater. 6, 1600488 (2016).

    Article  Google Scholar 

  48. Yao, Z. et al. Revealing the conversion mechanism of transition metal oxide electrodes during lithiation from first-principles. Chem. Mater. 29, 9011–9022 (2017).

    Article  CAS  Google Scholar 

  49. Hart, G. L. W., Nelson, L. J. & Forcade, R. W. Generating derivative structures at a fixed concentration. Comput. Mater. Sci. 59, 101–107 (2012).

    Article  CAS  Google Scholar 

  50. Hart, G. L. W. & Forcade, R. W. Algorithm for generating derivative structures. Phys. Rev. B 77, 224115 (2008).

    Article  ADS  Google Scholar 

  51. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Netherlands Organization for Scientific Research (NWO) under the VICI (No. 16122), National Nature Science Foundation of China (No. 51991344, 52373228 and 12105372), National Key R&D Program of China (No. 2021YFA1202802), Key-Area Research and Development Program of Guangdong Province (No. 2023B0909030001).

Author information

Authors and Affiliations

Authors

Contributions

Q.W. and C.Z. conceived the idea and designed the experiments. M.W. and B.L. supervised the research. Q.W., C.Z. and D.Z. performed the synthesis, material characterization and electrochemical measurements. Z.Y. performed the DFT calculation and interpreted the data with Q.W.; J.W. and X.B. performed the STEM and EELS measurements and analysed the data with Q.W.; C.Z. and H.G. collected the NPD data and interpreted the data with Q.W.; C.L conducted the solid-state NMR measurements and interpreted the data with Q.W. All authors participated in analysing and discussing the results. Q.W., C.Z., M.W., Z.Y., B.L. and H.L. prepared the Article with the input of all authors.

Corresponding authors

Correspondence to Qidi Wang, Hong Li, Baohua Li, Marnix Wagemaker or Chenglong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Marca Doeff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yao, Z., Wang, J. et al. Chemical short-range disorder in lithium oxide cathodes. Nature 629, 341–347 (2024). https://doi.org/10.1038/s41586-024-07362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07362-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing