Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vanadium oxide and a sharp onset of cold-trapping on a giant exoplanet

Abstract

The abundance of refractory elements in giant planets can provide key insights into their formation histories1. Owing to the low temperatures of the Solar System giants, refractory elements condense below the cloud deck, limiting sensing capabilities to only highly volatile elements2. Recently, ultra-hot giant exoplanets have allowed for some refractory elements to be measured, showing abundances broadly consistent with the solar nebula with titanium probably condensed out of the photosphere3,4. Here we report precise abundance constraints of 14 major refractory elements on the ultra-hot giant planet WASP-76b that show distinct deviations from proto-solar and a sharp onset in condensation temperature. In particular, we find nickel to be enriched, a possible sign of the accretion of the core of a differentiated object during the evolution of the planet. Elements with condensation temperatures below 1,550 K otherwise closely match those of the Sun5 before sharply transitioning to being strongly depleted above 1,550 K, which is well explained by nightside cold-trapping. We further unambiguously detect vanadium oxide on WASP-76b, a molecule long suggested to drive atmospheric thermal inversions6, and also observe a global east–west asymmetry7 in its absorption signals. Overall, our findings indicate that giant planets have a mostly stellar-like refractory elemental content and suggest that temperature sequences of hot Jupiter spectra can show abrupt transitions wherein a mineral species is either present or completely absent if a cold trap exists below its condensation temperature8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-correlation results for species detected in the atmosphere of WASP-76b.
Fig. 2: Retrieved elemental composition of the atmosphere of WASP-76b relative to iron.
Fig. 3: Rest-frame absorption signals on WASP-76b.

Similar content being viewed by others

Data availability

The MAROON-X data used in this work are available at https://udemontreal-my.sharepoint.com/:f:/g/personal/stefan_pelletier_umontreal_ca/EkYThK-JMKFHlclyx7RnlIABySi6V60HuZC0c_9m6LfE6Q?e=vGErBT. The ESPRESSO data used to confirm the VO detection are publicly available on Dace (https://dace.unige.ch/dashboard/). Source data are provided with this paper.

Code availability

The MAROON-X reduction pipeline33 used by the instrument team to perform the data extraction is public software available from Gemini at https://github.com/GeminiDRSoftware/MAROONXDR. The atmospheric modelling and retrievals use SCARLET17,40, HELIOS-K44 (https://helios-k.readthedocs.io), FastChem58 (https://github.com/exoclime/FastChem), emcee64 (https://emcee.readthedocs.io/en/stable/) and corner.py88 (https://corner.readthedocs.io/en/latest/). The ESPRESSO data analysis was performed using Tayph66 (https://github.com/Hoeijmakers/tayph). The main analysis routines written for this work and using the astropy89,90, matplotlib91, numpy92, scipy93 and scikit-learn94 Python libraries are available at https://udemontreal-my.sharepoint.com/:f:/g/personal/stefan_pelletier_umontreal_ca/EmXMwsPp2JFCnckKJNWkf7ABrEomi5EqmadxK4Hofd7ItQ?e=73GbIp.

References

  1. Lothringer, J. D. et al. A new window into planet formation and migration: refractory-to-volatile elemental ratios in ultra-hot Jupiters. Astrophys. J. 914, 12 (2021).

    Article  ADS  CAS  Google Scholar 

  2. Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H. & Owen, T. C. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003).

    Article  ADS  CAS  Google Scholar 

  3. Gibson, N. P., Nugroho, S. K., Lothringer, J., Maguire, C. & Sing, D. K. Relative abundance constraints from high-resolution optical transmission spectroscopy of WASP-121b, and a fast model-filtering technique for accelerating retrievals. Mon. Not. R. Astron. Soc. 512, 4618–4638 (2022).

    Article  ADS  CAS  Google Scholar 

  4. Maguire, C. et al. High-resolution atmospheric retrievals of WASP-121b transmission spectroscopy with ESPRESSO: consistent relative abundance constraints across multiple epochs and instruments. Mon. Not. R. Astron. Soc. 519, 1030–1048 (2023).

    Article  ADS  Google Scholar 

  5. Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).

    Article  ADS  CAS  Google Scholar 

  6. Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419 (2008).

    Article  ADS  CAS  Google Scholar 

  7. Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lothringer, J. D. et al. UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b. Nature 604, 49–52 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. West, R. G. et al. Three irradiated and bloated hot Jupiters:-WASP-76b, WASP-82b, and WASP-90b. Astron. Astrophys. 585, A126 (2016).

    Article  Google Scholar 

  10. Seifahrt, A., Stürmer, J., Bean, J. L. & Schwab, C. MAROON-X: a radial velocity spectrograph for the Gemini Observatory. Proc. SPIE 10702, 107026D (2018).

    Google Scholar 

  11. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465, 1049–1051 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H- opacity, and thermal dissociation of molecules. Astrophys. J. 866, 27 (2018).

    Article  ADS  Google Scholar 

  13. Prinoth, B. et al. Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b. Nat. Astron. 6, 449–457 (2022).

    Article  ADS  Google Scholar 

  14. Spiegel, D. S., Silverio, K. & Burrows, A. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009).

    Article  ADS  CAS  Google Scholar 

  15. Mahaffy, P. R. et al. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. J. Geophys. Res. Planets 105, 15061–15071 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Wardenier, J. P., Parmentier, V., Lee, E. K. H., Line, M. R. & Gharib-Nezhad, E. Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte Carlo radiative transfer. Mon. Not. R. Astron. Soc. 506, 1258–1283 (2021).

    Article  ADS  CAS  Google Scholar 

  17. Pelletier, S. et al. Where is the water? Jupiter-like C/H ratio but strong H2O depletion found on τ Boötis b using SPIRou. Astron. J 162, 73 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Tabernero, H. M. et al. ESPRESSO high-resolution transmission spectroscopy of WASP-76 b. Astron. Astrophys. 646, A158 (2021).

    Article  CAS  Google Scholar 

  19. Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Article  Google Scholar 

  20. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220 (2003).

    Article  ADS  CAS  Google Scholar 

  21. Roman, M. T. et al. Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures. I. Thermal structures and broadband phase-curve predictions. Astrophys. J. 908, 101 (2021).

    Article  ADS  CAS  Google Scholar 

  22. Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).

    Article  ADS  CAS  Google Scholar 

  23. Gao, P., Wakeford, H. R., Moran, S. E. & Parmentier, V. Aerosols in exoplanet atmospheres. J. Geophys. Res. Planets 126, e2020JE006655 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Grossman, L. Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972).

    Article  ADS  CAS  Google Scholar 

  25. Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).

    Article  ADS  Google Scholar 

  26. Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling. Astrophys. J. 887, 170 (2019).

    Article  ADS  CAS  Google Scholar 

  27. Liu, S.-F. et al. The formation of Jupiter’s diluted core by a giant impact. Nature 572, 355–357 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Morley, C. V. et al. Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756, 172 (2012).

    Article  ADS  Google Scholar 

  29. Savel, A. B. et al. No umbrella needed: confronting the hypothesis of iron rain on WASP-76b with post-processed general circulation models. Astrophys. J. 926, 85 (2022).

    Article  ADS  Google Scholar 

  30. Kesseli, A. Y., Snellen, I. A. G., Casasayas-Barris, N., Mollière, P. & Sánchez-López, A. An atomic spectral survey of WASP-76b: resolving chemical gradients and asymmetries. Astron. J 163, 107 (2022).

    Article  ADS  CAS  Google Scholar 

  31. Ivshina, E. S. & Winn, J. N. TESS transit timing of hundreds of hot Jupiters. Astrophys. J. Suppl. Ser. 259, 62 (2022).

    Article  ADS  Google Scholar 

  32. Fu, G. et al. The Hubble PanCET program: transit and eclipse spectroscopy of the strongly irradiated giant exoplanet WASP-76b. Astron. J 162, 108 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Seifahrt, A. et al. On-sky commissioning of MAROON-X: a new precision radial velocity spectrograph for Gemini North. Proc. SPIE 11447, 114471F (2020).

    Google Scholar 

  34. Gibson, N. P. et al. Revisiting the potassium feature of WASP-31b at high resolution. Mon. Not. R. Astron. Soc. 482, 606–615 (2019).

    Article  ADS  CAS  Google Scholar 

  35. Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).

    Article  ADS  CAS  Google Scholar 

  36. Cabot, S. H. C., Madhusudhan, N., Hawker, G. A. & Gandhi, S. On the robustness of analysis techniques for molecular detections using high-resolution exoplanet spectroscopy. Mon. Not. R. Astron. Soc. 482, 4422–4436 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Zhang, M., Chachan, Y., Kempton, E. M.-R., Knutson, H. A. & Chang, W. H. PLATON II: new capabilities and a comprehensive retrieval on HD 189733b transit and eclipse data. Astrophys. J. 899, 27 (2020).

    Article  ADS  CAS  Google Scholar 

  38. Benneke, B. & Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

    Article  ADS  Google Scholar 

  39. Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article  ADS  Google Scholar 

  40. Benneke, B. Strict upper limits on the carbon-to-oxygen ratios of eight hot Jupiters from self-consistent atmospheric retrieval. Preprint at https://arxiv.org/abs/1504.07655 (2015).

  41. Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).

    Article  ADS  Google Scholar 

  42. Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. 887, L14 (2019).

    Article  ADS  CAS  Google Scholar 

  43. Grimm, S. L. & Heng, K. Helios-K: an ultrafast, open-source opacity calculator for radiative transfer. Astrophys. J. 808, 182 (2015).

    Article  ADS  Google Scholar 

  44. Grimm, S. L. et al. HELIOS-K 2.0 opacity calculator and open-source opacity database for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 253, 30 (2021).

    Article  ADS  CAS  Google Scholar 

  45. Patrascu, A. T., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – IX. The spectrum of AlO. Mon. Not. R. Astron. Soc. 449, 3613–3619 (2015).

    Article  ADS  CAS  Google Scholar 

  46. Burrows, A., Ram, R. S., Bernath, P., Sharp, C. M. & Milsom, J. A. New CrH opacities for the study of L and brown dwarf atmospheres. Astrophys. J. 577, 986 (2002).

    Article  ADS  CAS  Google Scholar 

  47. Bernath, P. F. MoLLIST: molecular line lists, intensities and spectra. J. Quant. Spectrosc. Radiat. Transf. 240, 106687 (2020).

    Article  CAS  Google Scholar 

  48. Allard, N. F., Spiegelman, F. & Kielkopf, J. F. K–H2 line shapes for the spectra of cool brown dwarfs. Astron. Astrophys. 589, A21 (2016).

    Article  ADS  Google Scholar 

  49. Allard, N. F., Spiegelman, F., Leininger, T. & Molliere, P. New study of the line profiles of sodium perturbed by H2. Astron. Astrophys. 628, A120 (2019).

    Article  ADS  CAS  Google Scholar 

  50. McKemmish, L. K. et al. ExoMol molecular line lists – XXXIII. The spectrum of titanium oxide. Mon. Not. R. Astron. Soc. 488, 2836–2854 (2019).

    Article  ADS  CAS  Google Scholar 

  51. McKemmish, L. K., Yurchenko, S. N. & Tennyson, J. ExoMol line lists – XVIII. The high-temperature spectrum of VO. Mon. Not. R. Astron. Soc. 463, 771–793 (2016).

    Article  ADS  CAS  Google Scholar 

  52. Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  53. Kurucz, R. L. Including all the lines: data releases for spectra and opacities. Can. J. Phys. 95, 825–827 (2017).

    Article  ADS  CAS  Google Scholar 

  54. Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database. https://physics.nist.gov/asd (National Institute of Standards and Technology, 2009).

  55. Borysow, A. Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K. Astron. Astrophys. 390, 779–782 (2002).

    Article  ADS  Google Scholar 

  56. Bell, K. L. & Berrington, K. A. Free-free absorption coefficient of the negative hydrogen ion. J. Phys. B Atom. Mol. Phys. 20, 801–806 (1987).

    Article  ADS  CAS  Google Scholar 

  57. John, T. L. Continuous absorption by the negative hydrogen ion reconsidered. Astron. Astrophys. 193, 189–192 (1988).

    ADS  CAS  Google Scholar 

  58. Stock, J. W., Kitzmann, D. & Patzer, A. B. C. FastChem 2: an improved computer program to determine the gas-phase chemical equilibrium composition for arbitrary element distributions. Mon. Not. R. Astron. Soc. 517, 4070–4080 (2022).

    Article  ADS  CAS  Google Scholar 

  59. Seidel, J. V. et al. Into the storm: diving into the winds of the ultra-hot Jupiter WASP-76 b with HARPS and ESPRESSO. Astron. Astrophys. 653, A73 (2021).

    Article  CAS  Google Scholar 

  60. Casasayas-Barris, N. et al. The atmosphere of HD 209458b seen with ESPRESSO - no detectable planetary absorptions at high resolution. Astron. Astrophys. 647, A26 (2021).

    Article  CAS  Google Scholar 

  61. Gandhi, S. et al. Spatially resolving the terminator: variation of Fe, temperature, and winds in WASP-76 b across planetary limbs and orbital phase. Mon. Not. R. Astron. Soc. 515, 749–766 (2022).

    Article  ADS  CAS  Google Scholar 

  62. Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J 157, 114 (2019).

    Article  ADS  CAS  Google Scholar 

  63. Line, M. R. et al. A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere. Nature 598, 580–584 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  65. Essen, C. V. et al. HST/STIS transmission spectrum of the ultra-hot Jupiter WASP-76 b confirms the presence of sodium in its atmosphere. Astron. Astrophys. 637, A76 (2020).

    Article  Google Scholar 

  66. Hoeijmakers, H. J. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS) - IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b. Astron. Astrophys. 641, A123 (2020).

    Article  CAS  Google Scholar 

  67. Pluriel, W. et al. Toward a multidimensional analysis of transmission spectroscopy - II. Day-night-induced biases in retrievals from hot to ultrahot Jupiters. Astron. Astrophys. 658, A42 (2022).

    Article  CAS  Google Scholar 

  68. Landman, R. et al. Detection of OH in the ultra-hot Jupiter WASP-76b. Astron. Astrophys. 656, A119 (2021).

    Article  CAS  Google Scholar 

  69. May, E. M. et al. Spitzer phase-curve observations and circulation models of the inflated ultrahot Jupiter WASP-76b. Astron. J 162, 158 (2021).

    Article  ADS  Google Scholar 

  70. Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010).

    Article  ADS  MATH  Google Scholar 

  71. Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011 (2003).

    Article  ADS  CAS  Google Scholar 

  72. Evans, T. M. et al. Detection of H2O and evidence for TiO/VO in an ultra-hot exoplanet atmosphere. Astrophys. J. 822, L4 (2016).

    Article  ADS  Google Scholar 

  73. Evans, T. M. et al. An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Evans, T. M. et al. An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J 156, 283 (2018).

    Article  ADS  CAS  Google Scholar 

  75. Mikal-Evans, T. et al. An emission spectrum for WASP-121b measured across the 0.8–1.1 μm wavelength range using the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 488, 2222–2234 (2019).

    Article  ADS  CAS  Google Scholar 

  76. Mikal-Evans, T. et al. Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b. Mon. Not. R. Astron. Soc. 496, 1638–1644 (2020).

    Article  ADS  Google Scholar 

  77. Wilson, J. et al. Gemini/GMOS optical transmission spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter? Mon. Not. R. Astron. Soc. 503, 4787–4801 (2021).

    Article  ADS  CAS  Google Scholar 

  78. Gandhi, S. et al. Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. Mon. Not. R. Astron. Soc. 495, 224–237 (2020).

    Article  ADS  CAS  Google Scholar 

  79. Merritt, S. R. et al. Non-detection of TiO and VO in the atmosphere of WASP-121b using high-resolution spectroscopy. Astron. Astrophys. 636, A117 (2020).

    Article  CAS  Google Scholar 

  80. Regt, S., de, Kesseli, A. Y., Snellen, I. A. G., Merritt, S. R. & Chubb, K. L. A quantitative assessment of the VO line list: inaccuracies hamper high-resolution VO detections in exoplanet atmospheres. Astron. Astrophys. 661, A109 (2022).

    Article  Google Scholar 

  81. Pepe, F. et al. ESPRESSO at VLT—on-sky performance and first results. Astron. Astrophys. 645, A96 (2021).

    Article  CAS  Google Scholar 

  82. Beltz, H. et al. Magnetic drag and 3D effects in theoretical high-resolution emission spectra of ultrahot Jupiters: the case of WASP-76b. Astron. J 164, 140 (2022).

    Article  ADS  Google Scholar 

  83. Scott, E. R. D. Iron meteorites: composition, age, and origin. Oxford Research Encyclopedia of Planetary Science https://doi.org/10.1093/acrefore/9780190647926.013.206 (2020).

  84. Nittler, L. R., Chabot, N. L., Grove, T. L. & Peplowski, P. N. in Mercury: The View after MESSENGER (eds Anderson, B. J., Nittler, L. R. & Solomon, S. C.) 30–51 (Cambridge Univ. Press, 2018).

  85. Weisberg, M. K. et al. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 19–52 (Univ. Arizona Press, 2006).

  86. Wahl, S. M. et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44, 4649–4659 (2017).

    Article  ADS  Google Scholar 

  87. Debras, F. & Chabrier, G. New models of Jupiter in the context of Juno and Galileo. Astrophys. J. 872, 100 (2019).

    Article  ADS  CAS  Google Scholar 

  88. Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open Source Softw. 1, 24 (2016).

    Article  ADS  Google Scholar 

  89. The Astropy Collaboration et al.Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  90. Astropy Collaboration, T. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J 156, 123 (2018).

    Article  ADS  Google Scholar 

  91. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  92. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is based on observations obtained at the international Gemini Observatory, a program of the National Science Foundation (NSF)’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the NSF on behalf of the Gemini Observatory partnership: the NSF (USA), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea).This work was enabled by observations made from the Gemini North telescope, located within the Maunakea Science Reserve and adjacent to the summit of Maunakea. We are grateful for the privilege of observing the Universe from a place that is unique in both its astronomical quality and its cultural significance. This research has made use of NASA’s Astrophysics Data System and the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with NASA within the Exoplanet Exploration Program. S.P. is supported by the Technologies for Exo-Planetary Science (TEPS) Natural Sciences and Engineering Research Council of Canada (NSERC) CREATE Trainee Program. B.B. acknowledges funding by the NSERC and the Fonds de Recherche du Québec – Nature et Technologies (FRQNT). M.A.-D. is supported by Tamkeen under the NYU Abu Dhabi Research Institute, United Arab Emirates grant CAP3. B.P. acknowledges partial financial support from the Fund of the Walter Gyllenberg Foundation. D.K., A.S. and J.L.B. acknowledge funding from the David and Lucile Packard Foundation, the Heising-Simons Foundation, the Gordon and Betty Moore Foundation, the Gemini Observatory, the NSF (award number 2108465) and NASA (grant numbers 80NSSC22K0117 and 80NSSC19K0293). F.D. thanks the CNRS/INSU Programme National de Planétologie (PNP) and Programme National de Physique Stellaire (PNPS) for funding support. B.K. acknowledges funding from the European Research Council under the European Union’s Horizon 2022 research and innovation programme (grant agreement no. 865624, GPRV). O.L. acknowledges financial support from the FRQNT (270853 and 303926), the NSERC, the Trottier Institute for Research on Exoplanets (iREx) and from the University of Montreal. A.C. acknowledges funding from the French ANR under contract number ANRCE310019 (SPlaSH). This work is supported by the French National Research Agency in the framework of the Investissements d’Avenir programme (ANR-15-IDEX-02), through the funding of the “Origin of Life” project of Grenoble-Alpes University.

Author information

Authors and Affiliations

Authors

Contributions

S.P., B.B. and L.P. conceived the project. S.P. wrote the original MAROON-X observing proposal and the manuscript and carried out the analysis of the MAROON-X data, with B.B. and H.J.H. providing guidance. M.A.-D. performed the accretion modelling portion of the analysis. B.P. independently analysed the ESPRESSO data to confirm the VO detection. D.K., A.S., J.L.B. and J.S. assisted with the observational setup, carried out the observations and performed the MAROON-X data extraction. F.D., B.K., T.H. and A.C. acquired and contributed extra data for the project. L.B. implemented the FastChem equilibrium chemistry code in the modelling framework. A.Y.K., O.L. and N.C.-B. contributed to the stellar contamination detrending algorithm. All co-authors provided comments and suggestions about the manuscript.

Corresponding author

Correspondence to Stefan Pelletier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michael Line and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Data detrending steps and noise model.

a, A single MAROON-X spectral order for the 5.3-h transit time series obtained on 12 September 2020. b, After continuum alignment. c, With the median out-of-transit spectrum divided out. d, Post-removal of stellar and telluric contaminants using PCA, with ten principal components removed in this case. e, The noise model used for an example exposure. The reduction steps take care of removing all telluric and stellar lines, as well as the continuum, whereas the noise model serves to downweigh regions of the spectrum that are noisier. The end product of the data reduction (d) contains the planetary trace buried in noise and serves as the input for the later cross-correlation and retrieval analyses.

Extended Data Fig. 2 Cross-sections of prominent metals, ions and molecules.

Values are computed for a temperature of 2,500 K and include 10−4 bar pressure broadening where applicable. Atoms with only a single valence electron (Li, Na, K, Ca+ and Ba+) have few very strong lines, whereas most other metals tend to be composed of ‘line forests’ on top of a low continuum. Molecules also have forests of spectral lines, but on top of distinct absorption bands. Meanwhile, H acts as a flat source of continuum opacity in this wavelength range, similar to a grey cloud deck. The product of the cross-section and volume-mixing ratio of a species in the atmosphere of WASP-76b determines how detectable it is.

Extended Data Fig. 3 Cross-correlation results for species not detected in the atmosphere of WASP-76b.

Same as Fig. 1 but for species of interest that were notably not detected. Particularly noticeable is the absence of Ti, TiO, Sc and AlO, which MAROON-X should be able to easily detect. Other non-detections are less surprising, as they either have few strong lines in the MAROON-X bandpass (Al) or are not expected to be particularly abundant from chemical-equilibrium predictions (Ti+, V+, CrH).

Extended Data Fig. 4 Independent confirmation of the VO detection on WASP-76b.

a, The VO detection with MAROON-X (490–920 nm, R = 85,000, three transits). b, The VO detection with ESPRESSO (380–790 nm, R = 140,000, two transits7). The ESPRESSO analysis was done with an independent framework13, using an independent model template, on a separate dataset, and also shows a clear VO signal slightly offset to the expected location (black cross) that is consistent with the MAROON-X data. Differences in the overall detection strength and shape are because of MAROON-X having a lower resolution but a redder wavelength coverage, and three instead of two transits. The presence of a VO signal in both the MAROON-X and ESPRESSO transit datasets provides a high degree of confidence as to the robustness of the signal.

Extended Data Fig. 5 Retrieved constraints on the atmospheric and orbital properties of WASP-76b obtained from three MAROON-X transits.

a, Corner plot of the marginalized posterior distributions for the abundance of included species, cloud-top pressure Pc (in bar), scaling parameter α, temperature of different atmospheric layers, Keplerian velocity Kp and systemic velocity Vsys. The shaded regions respectively depict the 39.3%, 86.5%, and 98.9% confidence intervals. b, The sum of the volume-mixing ratio of individual metals, ions and molecules included in the model. The equivalent sums for solar and stellar compositions (dashed lines) are also shown for comparison, with WASP-76b being consistent with slightly (+0.28 dex) super-stellar. c, The resulting vertical temperature structure from the ten temperature points (T0T9, black dots), showing the presence of a stratosphere.

Extended Data Fig. 6 Chemical-equilibrium predictions of the atmospheric composition of WASP-76b.

a, The retrieved temperature–pressure profile and cloud-top continuum pressure. b, Chemical-equilibrium-abundance predictions58 for a wide range of elements given the retrieved temperature–pressure structure (a) and assuming a stellar atmospheric composition18. Measured abundances for WASP-76b at the estimated investigated altitudes are also shown for comparison. Most refractory species (for example, Fe, Mg, Ni, Mn and Cr) are not expected to be substantially ionized below the microbar level and are relatively well approximated by a constant-with-altitude volume-mixing-ratio model. With the exception of V and Ti, most elements are only expected to be bound in molecular form in trace amounts. Alkali metals, calcium and barium all ionize more readily and have deep spectral features and, thus, are expected to be substantially ionized at the lower pressures analysed. Error bars and shaded regions represent 1σ uncertainties.

Source data

Extended Data Fig. 7 Comparison of results from different retrieval prescriptions.

a, Retrieved abundance ratios given different model parameterizations. b, Inferred temperature profile for each associated retrieval prescription. The three retrievals use separate combinations of the VALD52, Kurucz53 and NIST54 opacities and fitted free17, Guillot70 and isothermal temperature–pressure profiles. Despite using differing temperature-structure prescriptions and opacities, the recovered abundance ratios in all three retrievals are consistent within uncertainties. However, assuming an isothermal or Guillot profile can overconstrain the temperature structure. Error bars represent 1σ uncertainties. Shaded regions represent 1σ and 2σ contours.

Source data

Extended Data Fig. 8 Accretion toy model exploring the scenario of WASP-76b accreting a body with a Mercury-like composition.

a, The change in enrichment of elemental-abundance ratios relative to proto-solar as a function of the accreted mass (V/Fe and Ba/Fe behave similarly to Mn/Fe and are not shown for clarity). In this example, the accreted body has a core-mass fraction of 1.95, a mantle composition matching that of the surface of Mercury84 and a core composition of 15% Ni and predominantly Fe as the rest83. The horizontal blue line denotes a proto-solar composition and the vertical dashed lines show the masses of Mercury, Mars and Venus for reference. If too small a body is accreted (≤0.1 M) onto the initial 284 M of WASP-76b, the composition does not change greatly from proto-solar. If too large a body is accreted (≥3 M), the overall composition begins to change too exceptionally. Although all abundance ratios require different masses to be perfectly matched under this assumed enrichment material composition, the overall best fit occurs if a large object between roughly the size of Mars and Venus is added to WASP-76b. b, A comparison between the data and the toy model assuming an accreted mass of 0.5 M, in which the data points except Mn/Fe are reasonably well matched. All error bars denote 1σ uncertainties.

Source data

Extended Data Fig. 9 Rest-frame absorption signals of individual species on WASP-76b.

Shown in each panel are the cross-correlation trails for the species combined in Fig. 3b. Despite their wide range in condensation temperature, most species have a similar ‘kinked’ absorption trail as Fe (dotted white line), probably indicating that condensation is not the sole culprit for the asymmetric signature. One notable exception is ionized calcium, which does not show such an asymmetry, probably because of Ca+ triplet having an absorption depth consistent with analysing an escaping atmosphere18.

Extended Data Table 1 Retrieved abundance constraints for species on WASP-76b

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier, S., Benneke, B., Ali-Dib, M. et al. Vanadium oxide and a sharp onset of cold-trapping on a giant exoplanet. Nature 619, 491–494 (2023). https://doi.org/10.1038/s41586-023-06134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06134-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing