Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin Berry curvature-enhanced orbital Zeeman effect in a kagome metal

Abstract

Berry phases and the related concept of Berry curvature can give rise to many unconventional phenomena in solids. Here, we discover a colossal orbital Zeeman effect of topological origin in a bilayer kagome metal, TbV6Sn6. Using spectroscopic imaging scanning tunnelling microscopy, we reveal that the magnetic field leads to a splitting of the gapped Dirac dispersion into two branches with enhanced momentum-dependent g factors, resulting in a substantial renormalization of the Dirac band. These measurements provide a direct observation of a magnetic field-controlled orbital Zeeman coupling to the orbital magnetic moments of up to 200 Bohr magnetons near the gapped Dirac points. Our work provides direct insight into the momentum-dependent nature of topological orbital moments and their tunability via the magnetic field, concomitant with the evolution of the spin Berry curvature. These results can be extended to explore large orbital magnetic moments driven by the Berry curvature governed by other quantum numbers beyond spin, such as the valley in certain graphene-based structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TbV6Sn6 crystal structure and electronic band structure.
Fig. 2: The evolution of the electronic density of states as a function of the magnetic field and temperature.
Fig. 3: Momentum-space visualization of the Dirac band using spectroscopic imaging STM.
Fig. 4: Dirac band evolution and the saturation of the effective g factor.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available via Zenodo at https://zenodo.org/records/10800955 (ref. 63) and upon request from the corresponding author. Source data are provided with this paper.

Code availability

The computer code used for data analysis is available upon request from the corresponding authors.

References

  1. Xiao, D., Chang, M. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  2. Xiao, D., Shi, J. & Niu, Q. Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005).

    Article  ADS  Google Scholar 

  3. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    Article  ADS  Google Scholar 

  4. Thonhauser, T., Ceresoli, D., Vanderbilt, D. & Resta, R. Orbital magnetization in periodic insulators. Phys. Rev. Lett. 95, 137205 (2005).

    Article  ADS  Google Scholar 

  5. Koshino, M. Chiral orbital current and anomalous magnetic moment in gapped graphene. Phys. Rev. B 84, 125427 (2011).

    Article  ADS  Google Scholar 

  6. Lee, J. Y. et al. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nat. Commun. 10, 5333 (2019).

    Article  ADS  Google Scholar 

  7. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  Google Scholar 

  8. Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    Article  Google Scholar 

  9. He, W.-Y., Goldhaber-Gordon, D. & Law, K. T. Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene. Nat. Commun. 11, 1650 (2020).

    Article  ADS  Google Scholar 

  10. Sun, S., Song, Z., Weng, H. & Dai, X. Topological metals induced by the Zeeman effect. Phys. Rev. B 101, 125118 (2020).

    Article  ADS  Google Scholar 

  11. Zhang, S., Dai, X. & Liu, J. Spin-polarized nematic order, quantum valley Hall states, and field-tunable topological transitions in twisted multilayer graphene systems. Phys. Rev. Lett. 128, 026403 (2022).

    Article  ADS  Google Scholar 

  12. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article  ADS  Google Scholar 

  13. Yin, J.-X. X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    Article  ADS  Google Scholar 

  14. Ye, L. et al. de Haas–van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2. Nat. Commun. 10, 4870 (2019).

    Article  ADS  Google Scholar 

  15. Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    Article  ADS  Google Scholar 

  16. Lin, Z. et al. Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry. Phys. Rev. B 102, 155103 (2020).

    Article  ADS  Google Scholar 

  17. Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    Article  ADS  Google Scholar 

  18. Ren, Z. et al. Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films. npj Quantum Mater. 7, 109 (2022).

    Article  ADS  Google Scholar 

  19. Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, 1–8 (2022).

    Google Scholar 

  20. Zhang, H. et al. Topological magnon bands in a room-temperature kagome magnet. Phys. Rev. B 101, 100405 (2020).

    Article  ADS  Google Scholar 

  21. Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).

    Article  ADS  Google Scholar 

  22. Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020).

    Article  ADS  Google Scholar 

  23. Li, M. et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat. Commun. 12, 3129 (2021).

    Article  ADS  Google Scholar 

  24. Li, H. et al. Manipulation of Dirac band curvature and momentum-dependent g factor in a kagome magnet. Nat. Phys. 18, 644–649 (2022).

    Article  Google Scholar 

  25. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  ADS  Google Scholar 

  26. Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).

    Article  ADS  Google Scholar 

  27. Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

    Article  ADS  Google Scholar 

  28. Yin, J.-X. X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    Article  ADS  Google Scholar 

  29. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5 and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article  Google Scholar 

  30. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  ADS  Google Scholar 

  31. Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. J. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).

    Article  ADS  Google Scholar 

  32. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  ADS  Google Scholar 

  33. Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    Article  ADS  Google Scholar 

  34. Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

    Article  ADS  Google Scholar 

  35. Li, H. et al. Small fermi pockets intertwined with charge stripes and pair density wave order in a kagome superconductor. Phys. Rev. X 13, 031030 (2023).

    Google Scholar 

  36. Chen, K.-W. et al. Magnetic breakdown and spin-zero effect in quantum oscillations in kagome metal CsV3Sb5. Commun. Mater. 4, 96 (2023).

    Article  Google Scholar 

  37. Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article  ADS  Google Scholar 

  38. Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    Google Scholar 

  39. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).

    Article  Google Scholar 

  40. Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    Article  ADS  Google Scholar 

  41. Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).

    Article  Google Scholar 

  42. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article  ADS  Google Scholar 

  43. Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).

    Article  ADS  Google Scholar 

  44. Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    Article  Google Scholar 

  45. Pokharel, G. et al. Electronic properties of the topological kagome metals YV6Sn6 and GdV6Sn6. Phys. Rev. B 104, 235139 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  46. Pokharel, G. et al. Highly anisotropic magnetism in the vanadium-based kagome metal TbV6Sn6. Phys. Rev. Mater. 6, 104202 (2022).

    Article  Google Scholar 

  47. Rosenberg, E. et al. Uniaxial ferromagnetism in the kagome metal TbV6Sn6. Phys. Rev. B 106, 115139 (2022).

    Article  ADS  Google Scholar 

  48. Arachchige, H. W. S. et al. Charge density wave in kagome lattice intermetallic ScV6Sn6. Phys. Rev. Lett. 129, 216402 (2022).

    Article  ADS  Google Scholar 

  49. Peng, S. et al. Realizing kagome band structure in two-dimensional kagome surface states of RV6Sn6 (R = Gd, Ho). Phys. Rev. Lett. 127, 266401 (2021).

    Article  ADS  Google Scholar 

  50. Cheng, S. et al. Nanoscale visualization and spectral fingerprints of the charge order in ScV6Sn6 distinct from other kagome metals. npj Quantum Mater. 9, 14 (2024).

    Article  ADS  Google Scholar 

  51. Di Sante, D. et al. Flat band separation and robust spin Berry curvature in bilayer kagome metals. Nat. Phys. 19, 1135–1142 (2023).

    Article  Google Scholar 

  52. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  53. Xing, Y. et al. Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 5613 (2020).

    Article  ADS  Google Scholar 

  54. Di Sante, D. et al. Electronic correlations and universal long-range scaling in kagome metals. Phys. Rev. Res. 5, L012008 (2023).

    Article  Google Scholar 

  55. Tamai, A. et al. High-resolution photoemission on Sr2RuO4 reveals correlation-enhanced effective spin–orbit coupling and dominantly local self-energies. Phys. Rev. X 9, 021048 (2019).

    Google Scholar 

  56. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  ADS  Google Scholar 

  57. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  58. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  59. Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  60. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  ADS  Google Scholar 

  61. Eck, P. Library code. GitHub https://github.com/philipp-eck/post_wan (2023).

  62. Taguchi, K. et al. Spin Hall conductivity in topological Dirac semimetals. Phys. Rev. B 101, 235201 (2020).

    Article  ADS  Google Scholar 

  63. Li, H. Raw data for Colossal orbital Zeeman effect driven by tunable spin-Berry curvature in a kagome metal. Zenodo https://zenodo.org/records/10800955 (2024).

Download references

Acknowledgements

We thank X. Hu and X. Li for useful discussions. I.Z. gratefully acknowledges the support from DOE Early Career Award DE-SC0020130 for STM measurements. Z.W. acknowledges the support of US Department of Energy, Basic Energy Sciences grant no. DE-FG02-99ER45747 and Cottrell SEED award no. 27856 from the Research Corporation for Science Advancement. F.M. greatly acknowledges the SoE action of pnrr, number SOE_0000068. S.D.W. and G.P. gratefully acknowledge support via the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i programme under award DMR-1906325. P.E. was supported by the SFB 1170 ToCoTronics, funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project ID 258499086. G.S. acknowledges financial support from the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter-ct.qmat (EXC 2147, project-id 390858490) and through “QUAST” FOR 5249-449872909 (project P05). D.D.S. has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 897276. P.E. gratefully acknowledges the Gauss Center for Supercomputing e.V. (www.gauss-center.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Center (www.lrz.de).

Author information

Authors and Affiliations

Authors

Contributions

H.L. performed the STM experiments. H.L. analysed the STM data with help from S.C. G.P. synthesized and characterized the samples under the supervision of S.D.W. P.E., G.S. and D.D.S. performed density functional theory calculations. Z.W. provided theoretical input on the interpretation of STM data. C.B. and F.M. provided insights on angle-resolved photoemission spectroscopy data in connection to STM data. H.L., G.S., D.D.S., S.D.W., Z.W. and I.Z. wrote the paper with input from all authors. I.Z. supervised the project.

Corresponding author

Correspondence to Ilija Zeljkovic.

Ethics declarations

Competing interests

The authors declare no competing financial or non-financial interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature-dependent dI/dV spectra.

Average dI/dV spectra acquired over the same region of the Sn surface at about 2 K and at 4.2 K. The two spectra appear nearly identical. STM setup conditions: tunneling current Iset = 1 nA, sample bias Vsample = 300 mV, bias excitation Vexc = 2 mV; 0 T magnetic field.

Extended Data Fig. 2 Evolution of the Dirac band as a function of magnetic field direction.

Radial linecut of Fourier transforms of dI/dV maps (which we refer to as \(S(q,E)\) in the text) for (a-d) positive magnetic fields and (e-h) negative magnetic fields (the minus sign denotes the reversal of the magnetic field direction from parallel to antiparallel to the c-axis). The band dispersion appears to be the same for positive and negative magnetic fields of the same magnitude. STM setup conditions: tunneling current Iset = 1.5 nA, sample bias Vsample = 300 mV, bias excitation Vexc = 2 mV.

Extended Data Fig. 3 Determination of wave vector dispersion from Fourier transform (FT) linecuts.

(a) The second derivative of radially averaged Fourier transform linecuts, \({\partial }_{q}{\partial }_{E}S(q,E)\), at \(E\)=260 mV from 0 T (blue circles) to 6 T (red circles). Black lines are the Gaussian fits to the data to locate the wave vector q-space positions. (b-f) The second derivative of radially averaged FT linecuts \({\partial }_{q}{\partial }_{E}S(q,E)\). All Fourier transforms are applied to dI/dV maps, which are processed by subtracting the average value from each dI/dV map to artificially suppress the bright center in the resulting Fourier transform and smoothed on 1 pixel length scale prior to the Fourier transform. Dark blue points are extracted by row fits method as shown in (a), while the white dots are extracted by column fits, the same as was done in Fig. 4. The data points obtained by the two extraction methods match reasonably well with one another.

Extended Data Fig. 4 Theoretical model.

(a,b) Electronic band structure of TbV6Sn6 in the vicinity of the K point (a) without and (b) with spin-orbit coupling included. The bands’ colors in (b) highlights the strength of the orbital magnetic moment, with red and blue being positive and negative contributions, respectively. The blue arrow in (a) denotes the Dirac point that is gapped by magnitude Δ in (b). (c) Evolution of the orbital moment of the topmost Dirac cone upon a continuous change of the Dirac gap Δ. The gap is artificially tuned by acting on the strength of the local spin-orbit coupling in our first-principles calculations. For the calculation of the Berry curvature and orbital magnetic moments, the Kohn–Sham wave functions were projected onto a Tb d, V d and Sn s, p-type basis [Ref. 60], and the quantities were computed by using our in-house post-wan library [https://github.com/philipp-eck/post_wan], consistent with [Ref. 62].

Extended Data Fig. 5 Band extraction using different fitting methods.

White and blue points are the same second derivative fits as described in Extended Data Fig. 3. The red points with error bars are extracted peaks (E(q) ± δE) for each q point by fitting a Gaussian function to the vertical/column linecuts. The error bar δE represents standard error of peak position in energy axis from Gaussian peak fittings of QPI vertical linecuts (number of data points for each vertical linecut is 95). It can be seen that the extracted band does not vary substantially by using different fitting methods.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Figs. 1–6.

Source data

Source Data Fig. 1

Band structure plots.

Source Data Fig. 2

Temperature-dependent spectral peak evolution.

Source Data Fig. 4

Field-dependent evolution of band features.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cheng, S., Pokharel, G. et al. Spin Berry curvature-enhanced orbital Zeeman effect in a kagome metal. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02487-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing