Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anaerobic nitrate reduction divergently governs population expansion of the enteropathogen Vibrio cholerae

Abstract

To survive and proliferate in the absence of oxygen, many enteric pathogens can undergo anaerobic respiration within the host by using nitrate (NO3) as an electron acceptor1,2. In these bacteria, NO3 is typically reduced by a nitrate reductase to nitrite (NO2), a toxic intermediate that is further reduced by a nitrite reductase3. However, Vibrio cholerae, the intestinal pathogen that causes cholera, lacks a nitrite reductase, leading to NO2 accumulation during nitrate reduction4. Thus, V. cholerae is thought to be unable to undergo NO3-dependent anaerobic respiration4. Here, we show that during hypoxic growth, NO3 reduction in V. cholerae divergently affects bacterial fitness in a manner dependent on environmental pH. Remarkably, in alkaline conditions, V. cholerae can reduce NO3 to support population growth. Conversely, in acidic conditions, accumulation of NO2 from NO3 reduction simultaneously limits population expansion and preserves cell viability by lowering fermentative acid production. Interestingly, other bacterial species such as Salmonella typhimurium, enterohaemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium also reproduced this pH-dependent response, suggesting that this mechanism might be conserved within enteric pathogens. Our findings explain how a bacterial pathogen can use a single redox reaction to divergently regulate population expansion depending on the fluctuating environmental pH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NO2 accumulation preserves V. cholerae viability at the cost of population expansion during anaerobic growth.
Fig. 2: NO2 production during anaerobic growth slows toxic fermentative acidification of V. cholerae.
Fig. 3: V. cholerae undergoes anaerobic NO3 respiration under alkaline conditions.
Fig. 4: Disruption of NO3 respiration in V. cholerae negatively affects fitness.

Similar content being viewed by others

Data availability

Raw metabolomic data from V. cholerae samples grown anaerobically in the presence or absence of nitrate and nitrite have been included as Supplementary Information (see Supplementary Dataset).

References

  1. Wallace, N., Zani, A., Abrams, E. & Sun, Y. The impact of oxygen on bacterial enteric pathogens. Adv. Appl. Microbiol. 95, 179–204 (2016).

    Article  CAS  Google Scholar 

  2. Vazquez-Torres, A. & Baumler, A. J. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr. Opin. Microbiol. 29, 1–8 (2016).

    Article  CAS  Google Scholar 

  3. Arkenberg, A., Runkel, S., Richardson, D. J. & Rowley, G. The production and detoxification of a potent cytotoxin, nitric oxide, by pathogenic enteric bacteria. Biochem. Soc. Trans. 39, 1876–1879 (2011).

    Article  CAS  Google Scholar 

  4. Braun, M. & Thony-Meyer, L. Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae. J. Bacteriol. 187, 5996–6004 (2005).

    Article  CAS  Google Scholar 

  5. Lopez, C. A., Rivera-Chavez, F., Byndloss, M. X. & Baumler, A. J. The periplasmic nitrate reductase NapABC supports luminal growth of Salmonella enterica serovar Typhimurium during colitis. Infect. Immun. 83, 3470–3478 (2015).

    Article  CAS  Google Scholar 

  6. Spees, A. M. et al. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. mBio 4, e00430-13 (2013).

    Article  Google Scholar 

  7. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  CAS  Google Scholar 

  8. Bueno, E., Mesa, S., Bedmar, E. J., Richardson, D. J. & Delgado, M. J. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid. Redox. Signal. 16, 819–852 (2012).

    Article  CAS  Google Scholar 

  9. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  CAS  Google Scholar 

  10. Cole, J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136, 1–11 (1996).

    Article  CAS  Google Scholar 

  11. Heidelberg, J. F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483 (2000).

    Article  CAS  Google Scholar 

  12. Almeida, J. S., Julio, S. M., Reis, M. A. & Carrondo, M. J. Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46, 194–201 (1995).

    Article  CAS  Google Scholar 

  13. Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).

    Article  CAS  Google Scholar 

  14. Gao, S. H. et al. Determining multiple responses of Pseudomonas aeruginosa PAO1 to an antimicrobial agent, free nitrous acid. Environ. Sci. Technol. 50, 5305–5312 (2016).

    Article  CAS  Google Scholar 

  15. Yarbrough, J. M., Rake, J. B. & Eagon, R. G. Bacterial inhibitory effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes. Appl. Environ. Microbiol. 39, 831–834 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, Y., Pijuan, M., Zeng, R. J. & Yuan, Z. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environ. Sci. Technol. 42, 8260–8265 (2008).

    Article  CAS  Google Scholar 

  17. Lidder, S. & Webb, A. J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate–nitrite–nitric oxide pathway. Br. J. Clin. Pharmacol. 75, 677–696 (2013).

    Article  CAS  Google Scholar 

  18. Tannenbaum, S. R., Fett, D., Young, V. R., Land, P. D. & Bruce, W. R. Nitrite and nitrate are formed by endogenous synthesis in the human intestine. Science 200, 1487–1489 (1978).

    Article  CAS  Google Scholar 

  19. Mandlik, A. et al. RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10, 165–174 (2011).

    Article  CAS  Google Scholar 

  20. Cameron, D. E., Urbach, J. M. & Mekalanos, J. J. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc. Natl Acad. Sci. USA 105, 8736–8741 (2008).

    Article  CAS  Google Scholar 

  21. Nygren, E., Li, B. L., Holmgren, J. & Attridge, S. R. Establishment of an adult mouse model for direct evaluation of the efficacy of vaccines against Vibrio cholerae. Infect. Immun. 77, 3475–3484 (2009).

    Article  CAS  Google Scholar 

  22. Bergaust, L., Mao, Y., Bakken, L. R. & Frostegard, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 76, 6387–6396 (2010).

    Article  CAS  Google Scholar 

  23. Bueno, E., Bedmar, E. J., Richardson, D. J. & Delgado, M. J. Role of Bradyrhizobium japonicum cytochrome c550 in nitrite and nitrate respiration. FEMS Microbiol. Lett. 279, 188–194 (2008).

    Article  CAS  Google Scholar 

  24. Rowley, G. et al. Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium. Biochem. J. 441, 755–762 (2012).

    Article  CAS  Google Scholar 

  25. Kelso, B. H. L., Smith, R. V. & Laughlin, R. J. Effects of carbon substrates on nitrite accumulation in freshwater sediments. Appl. Environ. Microbiol. 65, 5 (1999).

    Google Scholar 

  26. Philips, S., Laanbroek, J. H. & Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 1, 26 (2002).

    Article  Google Scholar 

  27. Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).

    Article  Google Scholar 

  28. Silvester, K. R., Bingham, S. A., Pollock, J. R., Cummings, J. H. & O’Neill, I. K. Effect of meat and resistant starch on fecal excretion of apparent N-nitroso compounds and ammonia from the human large bowel. Nutr. Cancer 29, 13–23 (1997).

    Article  CAS  Google Scholar 

  29. Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 46, 183–196 (1999).

    CAS  PubMed  Google Scholar 

  30. Merrell, D. S. et al. Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–645 (2002).

    Article  CAS  Google Scholar 

  31. Donnenberg, M. S. & Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun. 59, 4310–4317 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hawver, L. A., Giulietti, J. M., Baleja, J. D. & Ng, W. L. Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability. mBio 7, e01863-16 (2016).

    Article  Google Scholar 

  33. A, J. et al. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal. Chem. 77, 8086–8094 (2005).

    Article  CAS  Google Scholar 

  34. Gullberg, J., Jonsson, P., Nordstrom, A., Sjostrom, M. & Moritz, T. Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 331, 283–295 (2004).

    Article  CAS  Google Scholar 

  35. Jonsson, P. et al. High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal. Chem. 77, 5635–5642 (2005).

    Article  CAS  Google Scholar 

  36. Schauer, N. et al. GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579, 1332–11337 (2005).

    Article  CAS  Google Scholar 

  37. Nicholas, D. J. D. & Nason, A. Determination ofnitrate and nitrite. Meth. Enzymol. 3, 981–984 (1957).

    Article  Google Scholar 

  38. Espaillat, A. et al. Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallogr. D Biol. Crystallogr. 70, 79–90 (2014).

    Article  CAS  Google Scholar 

  39. McDonald, N. D., Lubin, J. B., Chowdhury, N. & Boyd, E. F. Host-derived sialic acids are an important nutrient source required for optimal bacterial fitness in vivo. mBio 7, e02237-15 (2016).

    Article  Google Scholar 

  40. Sasabe, J. et al. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 1, 16125 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Knut and Alice Wallenberg Foundation (KAW), The Laboratory of Molecular Infection Medicine Sweden (MIMS), the Swedish Research Council and the Kempe Foundation. The Waldor Lab is supported by the Howard Hughes Medical Institute (HHMI) and the National Institutes of Health (NIH R01-AI-O42347). B.S. was supported by the National Sciences and Engineering Research Council of Canada (NSERC PSGD3-487259). We thank C. Patthey for help with the cell sorting experiments and J. J. Mekalanos for the V. cholerae C6706 Tn-mutant library.

Author information

Authors and Affiliations

Authors

Contributions

E.B. performed the bacterial in vitro experiments and analysed the results. B.S. performed the animal experiments. E.B. and F.C. were responsible for the overall design of the study. E.B., B.S., M.K.W. and F.C. were responsible for the writing of the manuscript.

Corresponding author

Correspondence to Felipe Cava.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15, Supplementary Tables 1–4 and Supplementary References.

Reporting Summary

Supplementary Dataset

Vibrio cholerae metabolomics under anaerobic conditions supplemented with nitrate or nitrite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, E., Sit, B., Waldor, M.K. et al. Anaerobic nitrate reduction divergently governs population expansion of the enteropathogen Vibrio cholerae. Nat Microbiol 3, 1346–1353 (2018). https://doi.org/10.1038/s41564-018-0253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0253-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology