Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On-device phase engineering

Abstract

In situ tailoring of two-dimensional materials’ phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The concept of on-device phase engineering.
Fig. 2: Atomic STEM characterization of the on-device polymorphic PdxSey crystal.
Fig. 3: On-device multiphase engineering for fundamental studies and versatile applications.
Fig. 4: Universal mechanism for other 2D layered materials.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the paper and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Pelton, A. D. in Phase Transformations in Materials (ed. Kostorz, G.) 1–80 (Wiley Online Library, 2001).

  2. Chen, Y. et al. Phase engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    Article  Google Scholar 

  4. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021).

    Article  CAS  Google Scholar 

  5. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  6. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals materials: related physics and future opportunities. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Q. et al. Simultaneous synthesis and integration of two-dimensional electronic compositions. Nat. Electron. 2, 164–170 (2019).

    Article  Google Scholar 

  12. Oyedele, A. D. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 141, 8928–8936 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  17. Wang, R. et al. Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 (2018).

    Article  Google Scholar 

  18. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, Y. et al. Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides. Nat. Commun. 14, 8470 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hu, C. et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13. Sci. Adv. 6, eaba4275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frey, N. C. et al. High-throughput search for magnetic and topological order in transition metal oxides. Sci. Adv. 6, eabd1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    Article  PubMed  Google Scholar 

  26. Oberoi, A. et al. Toward high-performance p-type two-dimensional field effect transistors: contact engineering, scaling, and doping. ACS Nano 17, 19709–19723 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Chia, X. & Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018).

    Article  CAS  Google Scholar 

  29. Zhao, X. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, X. C. et al. Spontaneous self-intercalation of copper atoms into transition metal dichalcogenides. Sci. Adv. 6, eaay4092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Morosan, E. et al. Superconductivity in CuxTiSe2. Nat. Phys. 2, 544–550 (2006).

    Article  CAS  Google Scholar 

  34. Kanetani, K. et al. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca. Proc. Natl Acad. Sci. USA 109, 19610–19613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chow, W. L. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29, 1602969 (2017).

    Article  Google Scholar 

  36. Liu, X. et al. Temperature-sensitive spatial distribution of defects in PdSe2 flakes. Phys. Rev. Mater. 5, L041001 (2021).

    Article  CAS  Google Scholar 

  37. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Lai, Z. et al. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater. 20, 1113–1120 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Han, G. H., Duong, D. L., Keum, D. H., Yun, S. J. & Lee, Y. H. Van der Waals metallic transition metal dichalcogenides. Chem. Rev. 118, 6297–6336 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, B. et al. 2D metallic transition-metal dichalcogenides: structures, synthesis, properties, and applications. Adv. Funct. Mater. 31, 2105132 (2021).

    Article  CAS  Google Scholar 

  41. Liu, L. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).

    Article  CAS  Google Scholar 

  46. He, Y. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Voiry, D. et al. The role of electronic oupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, Y. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Sun, Y. et al. Plasma-induced large-area N,Pt-doping and phase engineering of MoS2 nanosheets for alkaline hydrogen evolution. Energy Environ. Sci. 15, 1201–1210 (2022).

    Article  CAS  Google Scholar 

  50. Yang, X. et al. Nitrogen-plasma treated hafnium oxyhydroxide as an efficient acid-stable electrocatalyst for hydrogen evolution and oxidation reactions. Nat. Commun. 10, 1543 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhu, J. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 10, 1348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China under grants 2023YFF1203600 (S.-J.L.) and 2022YFA1402500 (J.S.); the National Natural Science Foundation of China (62122036 (S.-J.L.), 62034004 (F.M.), 61921005 (F.M.), 62204112 (J.S.), 12074176 (B.C.), 12104206 (L.Z.) and 11974156 (J.L.)); the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB44000000 (F.M.)); the Leading-edge Technology Program of Jiangsu Natural Science Foundation (BK20232004 (F.M.)); the Natural Science Foundation of Jiangsu Province (BK20220774 (J.S.)); the Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08C044 (J.L.)); the Shenzhen Science and Technology Program (20200925161102001 (J.L.) and 20210609103649046 (J.L.)); the Science, Technology and Innovation Commission of Shenzhen Municipality (ZDSYS20190902092905285 (J.L.)); and the Quantum Science Strategic Special Project from the Quantum Science Center of the Guangdong-Hong Kong-Macao Greater Bay Area (GDZX2301006 (J.L.)). STEM characterization was performed at the Pico Center from SUSTech Core Research Facilities, which receives support from the Presidential Fund and Development and Reform Commission of Shenzhen Municipality. F.M. and S.-J.L. acknowledge support from the AIQ Foundation and the e-Science Center of the Collaborative Innovation Center of Advanced Microstructures. We also acknowledge the microfabrication center of the National Laboratory of Solid State Microstructures (NLSSM) for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

S.-J.L. and F.M. conceived the idea. S.-J.L. and F.M. supervised the whole project. X. Liu, J.S. and T.C. fabricated devices and performed electrical and Raman measurements. L.Z., G.W., Q.Y. and J.L. performed the electron microscopy experiments and data analysis. J.M. and X. Luo carried out the DFT calculations and data analysis. J.S., Z.S., M.M. and Y.H. carried out the measurements of electrocatalytic performance. J.S. and Z.L. carried out the measurements of contact resistance. X. Liu, S.Y. and L.W. grew the materials. J.S., Y.D., J.X., F.C., B.W., C.P. and B.C. assisted in device processing and characterization. Z.W. assisted in the Raman characterization. X. Liu, J.S., S.-J.L. and F.M. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Xin Luo, Junhao Lin, Shi-Jun Liang or Feng Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Won Yoo, Damien Voiry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Shan, J., Cao, T. et al. On-device phase engineering. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01888-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing