Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cenozoic eastward growth of the Tibetan Plateau controlled by tearing of the Indian slab

Abstract

Formation of the Tibetan Plateau is generally ascribed to the Cenozoic India–Asia collision. However, the origin of along-strike deformation of the Indian mantle lithosphere, especially beneath the eastern Tibetan Plateau region, and its effect on the plateau’s eastward growth remain unclear. Here, we conduct multiscale seismic tomography to provide a revised structure of the Indian mantle lithosphere beneath the eastern Tibetan Plateau region. Our results demonstrate that the Indian mantle lithosphere is currently torn vertically along ~26° N, with its northern portion shallowly subducting northeastwards and the southern portion steeply subducting eastwards into the mantle transition zone. Analysis of tectonic and magmatic records is consistent with advancing and retreating migration of the slab tear after about 50 Myr ago. We suggest that the rigid Yangtze cratonic lithosphere tore the intruding cratonic Indian mantle lithosphere approximately 35 Myr ago, resulting in diverging shallow subduction. The subsequent Miocene rollback of the southeastern Indian mantle lithosphere is proposed to induce a giant turbo-engine-like flow that caused clockwise rotation of the plateau crust and underlying mantle around the eastern syntaxis, leading to differential eastward growth of the Tibetan Plateau.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tectonic setting and P-velocity image of the eastern TP.
Fig. 2: P-wave structure below the eastern TP.
Fig. 3: Three-dimensional view of high-Vp anomalies (>0.8%) at a depth range of 100–400 km below the eastern TP.
Fig. 4: Variations in ages and geochemical data of the Cenozoic magmatic rocks in eastern TP.
Fig. 5: Proposed Cenozoic TP evolution due to differential IML subduction.
Fig. 6: Numerical simulation of two contrasting geodynamic scenarios.

Similar content being viewed by others

Data availability

The mantle velocity model and geochemistry data generated and assembled for the study are available at https://doi.org/10.5281/zenodo.10427925.

Code availability

The seismic tomography software package used in this study is available upon request. The geodynamic code is publically available at https://geodynamics.org.

References

  1. Nábělek, J. et al. Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    ADS  PubMed  Google Scholar 

  2. Owens, T. J. & Zandt, G. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature 387, 37–43 (1997).

    ADS  CAS  Google Scholar 

  3. Chemenda, A. I., Burg, J. & Mattauer, M. Evolutionary model of the Himalaya–Tibet system: geopoem: based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett. 174, 397–409 (2000).

    ADS  CAS  Google Scholar 

  4. Zhao, W. & Morgan, W. J. Uplift of Tibetan Plateau. Tectonics 4, 359–369 (1985).

    ADS  Google Scholar 

  5. Replumaz, A., Negredo, A. M., Villaseñor, A. & Guillot, S. Indian continental subduction and slab break-off during Tertiary collision. Terra Nova 22, 290–296 (2010).

    Google Scholar 

  6. Yue, Y. & Liou, J. G. Two-stage evolution model for the Altyn Tagh fault, China. Geology 27, 227–230 (1999).

    ADS  Google Scholar 

  7. Yin, A. & Taylor, M. H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation. GSA Bull. 123, 1798–1821 (2011).

    Google Scholar 

  8. Gan, W. et al. Initiation of clockwise rotation and eastward transport of southeastern Tibet inferred from deflected fault traces and GPS observations. GSA Bull. 134, 1129–1142 (2021).

    Google Scholar 

  9. England, P. & Houseman, G. Finite strain calculations of continental deformation: 2. Comparison with the India–Asia collision zone. J. Geophys. Res. Solid Earth 91, 3664–3676 (1986).

    Google Scholar 

  10. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R. & Cobbold, P. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10, 611–616 (1982).

    ADS  Google Scholar 

  11. Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001).

    ADS  CAS  PubMed  Google Scholar 

  12. Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).

    ADS  CAS  PubMed  Google Scholar 

  13. Hou, Z. Q., Zhao, Z. D., Gao, Y. F., Yang, Z. M. & Jiang, W. Tearing and dischronal subduction of the Indian continental slab: evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet. Acta Petrol. Sin. 22, 761–774 (2006).

    CAS  Google Scholar 

  14. Chen, Y., Li, W., Yuan, X., Badal, J. & Teng, J. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet. Sci. Lett. 413, 13–24 (2015).

    ADS  CAS  Google Scholar 

  15. Li, J. & Song, X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet. Proc. Natl Acad. Sci. USA 115, 8296–8300 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, C., van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).

    ADS  CAS  Google Scholar 

  17. Lei, J., Zhao, D., Xu, X., Xu, Y. & Du, M. Is there a big mantle wedge under eastern Tibet? Phys. Earth Planet. Inter. 292, 100–113 (2019).

    ADS  Google Scholar 

  18. Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).

    ADS  Google Scholar 

  19. Blisniuk, P. M. et al. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature 412, 628–632 (2001).

    ADS  CAS  PubMed  Google Scholar 

  20. Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).

    ADS  Google Scholar 

  21. Xu, M. et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth. J. Geophys. Res. Solid Earth 125, e2019JB018117 (2020).

    Google Scholar 

  22. Yin, A. & Harrison, T. M. Geologic evolution of the Himalayan–Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 211–280 (2000).

    ADS  CAS  Google Scholar 

  23. Wang, J. H. et al. A tectonic model for Cenozoic igneous activities in the eastern Indo–Asian collision zone. Earth Planet. Sci. Lett. 188, 123–133 (2001).

    ADS  CAS  Google Scholar 

  24. Leloup, P. H. et al. The Ailao Shan–Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251, 3–84 (1995).

    ADS  Google Scholar 

  25. Tapponnier, P. et al. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature 343, 431–437 (1990).

    ADS  Google Scholar 

  26. Hu, J., Faccenda, M. & Liu, L. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett. 470, 13–24 (2017).

    ADS  CAS  Google Scholar 

  27. Zhou, Q. et al. Western U.S. seismic anisotropy revealing complex mantle dynamics. Earth Planet. Sci. Lett. 500, 156–167 (2018).

    ADS  CAS  Google Scholar 

  28. Lev, E., Long, M. & Vanderhilst, R. Seismic anisotropy in eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet. Sci. Lett. 251, 293–304 (2006).

    ADS  CAS  Google Scholar 

  29. Chang, L., Flesch, L. M., Wang, C. & Ding, Z. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data. Geophys. Res. Lett. 42, 5813–5819 (2015).

    ADS  Google Scholar 

  30. Kong, F. et al. Azimuthal anisotropy and mantle flow underneath the southeastern Tibetan Plateau and northern Indochina Peninsula revealed by shear wave splitting analyses. Tectonophysics 747–748, 68–78 (2018).

    ADS  Google Scholar 

  31. Hou, Z. et al. Lithosphere architecture characterized by crust–mantle decoupling controls the formation of orogenic gold deposits. Natl Sci. Rev. 10, nwac257 (2022).

    PubMed  PubMed Central  Google Scholar 

  32. Hou, Z. et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology 45, 563–566 (2017).

    ADS  CAS  Google Scholar 

  33. Zhou, Y. et al. Petrogenesis of Cenozoic high-Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu–Au mineralization in western Yunnan, China. Lithos 324–325, 39–54 (2019).

    ADS  Google Scholar 

  34. Guo, Z. et al. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. J. Petrol. 46, 33–78 (2005).

    ADS  CAS  Google Scholar 

  35. Xu, B. et al. Cenozoic lithospheric architecture and metallogenesis in southeastern Tibet. Earth-Sci. Rev. 214, 103472 (2021).

    CAS  Google Scholar 

  36. Yang, T., Yan, Z., Xue, C., Xin, D. & Dong, M. India indenting Eurasia: a brief review and new data from the Yongping basin on the SE Tibetan Plateau. Geosciences 11, 518 (2021).

    ADS  CAS  Google Scholar 

  37. Lan, J. B., Xu, Y. G., Yang, Q. J. & Huang, X. L. 40 Ma OlB-type mafic magmatism in the Gaoligong belt: results of break-off between subducting Tethyan slab and Indian plate? Acta Petrol. Sin. 23, 1334–1346 (2007).

    CAS  Google Scholar 

  38. Xu, B. et al. Recycled volatiles determine fertility of porphyry deposits in collisional settings. Am. Miner. 106, 656–661 (2021).

    ADS  Google Scholar 

  39. Hou, Z. et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication. Earth Planet. Sci. Lett. 244, 234–250 (2006).

    ADS  CAS  Google Scholar 

  40. Pesicek, J. D., Zhang, H. & Thurber, C. H. Multiscale seismic tomography and earthquake relocation incorporating differential time data: application to the Maule subduction zone, Chile. Bull. Seismol. Soc. Am. 104, 1037–1044 (2014).

    Google Scholar 

  41. Han, S. et al. Joint inversion of body wave arrival times, surface wave dispersion data and receiver functions: method and application to South China. J. Geophys. Res. Solid Earth 127, e2022JB024083 (2022).

    ADS  Google Scholar 

  42. Wei, W., Zhao, D., Xu, J., Zhou, B. & Shi, Y. Depth variations of P-wave azimuthal anisotropy beneath mainland China. Sci. Rep. 6, 29614 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, X., Niu, F., Ding, Z. & Chen, Q. Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth Planet. Sci. Lett. 497, 204–216 (2018).

    ADS  CAS  Google Scholar 

  44. Yao, J. et al. Slab models beneath central Myanmar revealed by a joint inversion of regional and teleseismic traveltime data. J. Geophys. Res. Solid Earth 126, e2020JB020164 (2021).

    ADS  Google Scholar 

  45. Liu, L. & Stegman, D. R. Segmentation of the Farallon slab. Earth Planet. Sci. Lett. 311, 1–10 (2011).

    ADS  CAS  Google Scholar 

  46. Hu, J., Liu, L., Hermosillo, A. & Zhou, Q. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation. Earth Planet. Sci. Lett. 438, 1–13 (2016).

    ADS  CAS  Google Scholar 

  47. Zhou, Q., Liu, L. & Hu, J. Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs. Nat. Geosci. 11, 70–76 (2018).

  48. Peng, D., Liu, L., Hu, J., Li, S. & Liu, Y. Formation of East Asian stagnant slabs due to a pressure-driven cenozoic mantle wind following mesozoic subduction. Geophys. Res. Lett. 48, e2021GL094638 (2021).

    ADS  Google Scholar 

  49. Liu, L., Liu, L. & Xu, Y. Intermittent post-Paleocene continental collision in South Asia. Geophys. Res. Lett. 48, e2021GL094531 (2021).

    ADS  Google Scholar 

  50. Peng, D. & Liu, L. Quantifying slab sinking rates using global geodynamic models with data-assimilation. Earth-Sci. Rev. 230, 104039 (2022).

    Google Scholar 

  51. Guo, Z. et al. Post-collisional high-K calc-alkaline volcanism in Tengchong volcanic field, SE Tibet: constraints on Indian eastward subduction and slab detachment. J. Geol. Soc. 172, 624–640 (2015).

    ADS  CAS  Google Scholar 

  52. Chung, S. L. et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci. Rev. 68, 173–196 (2005).

    ADS  Google Scholar 

  53. Cao, K. et al. Southwestward growth of plateau surfaces in eastern Tibet. Earth-Sci. Rev. 232, 104160 (2022).

    Google Scholar 

  54. Aoki, I. & Takahashi, E. Density of MORB eclogite in the upper mantle. Phys. Earth Planet. Inter. 143–144, 129–143 (2004).

    ADS  Google Scholar 

  55. Ghosh, A. & Holt, W. E. Plate motions and stresses from global dynamic models. Science 335, 838–843 (2012).

    ADS  CAS  PubMed  Google Scholar 

  56. Fan, E. et al. Seismic anisotropy and mantle flow constrained by shear wave splitting in central Myanmar. J. Geophys. Res. Solid Earth 126, e2021JB022144 (2021).

    ADS  Google Scholar 

  57. USGS EROS Archive - Digital Elevation - Global 30 Arc-Second Elevation (GTOPO30) (EROS Center, USGS, 2018); https://doi.org/10.5066/F7DF6PQS

  58. An, M. & Shi, Y. Lithospheric thickness of the Chinese continent. Phys. Earth Planet. Int. 159, 257–266 (2006).

    ADS  Google Scholar 

  59. Tian, S. H. et al. Zircon U–Pb ages, Hf isotopic compositions and geological significance: a case study of carbonatite and nordmarkite from the Dalucao REE deposit, Sichuan province. Acta Petrol. Sin. 24, 544–554 (2008).

    CAS  Google Scholar 

  60. Liu, Y. et al. Zircon U–Pb ages of the Mianning–Dechang syenites, Sichuan province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting. Ore Geol. Rev. 64, 554–568 (2015).

    Google Scholar 

  61. Zhang, H. & Thurber, C. H. Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am. 93, 1875–1889 (2003).

    Google Scholar 

  62. Zhang, H. & Thurber, C. Development and applications of double-difference seismic tomography. Pure Appl. Geophys. 163, 373–403 (2006).

    ADS  Google Scholar 

  63. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    ADS  Google Scholar 

  64. Simmons, N. A., Myers, S. C., Johannesson, G. & Matzel, E. LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction. J. Geophys. Res. Solid Earth 117, B10302 (2012).

  65. Tao, K., Grand, S. P. & Niu, F. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography. Geochem. Geophys. Geosyst. 19, 2732–2763 (2018).

    ADS  CAS  Google Scholar 

  66. Obayashi, M. et al. Finite frequency whole mantle P wave tomography: improvement of subducted slab images. Geophys. Res. Lett. 40, 5652–5657 (2013).

    ADS  Google Scholar 

  67. Lu, C., Grand, S. P., Lai, H. & Garnero, E. J. TX2019slab: a new P and S tomography model incorporating subducting slabs. J. Geophys. Res. Solid Earth 124, 11549–11567 (2019).

  68. Li, C., van der Hilst, R. D., Engdahl, E. R. & Burdick, S. A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst. 9, Q05018 (2008).

  69. Liu, Y., Yao, H., Zhang, H. & Fang, H. The community velocity model V.1.0 of southwest China, constructed from joint body‐ and surface‐wave travel‐time tomography. Seismol. Res. Lett. 92, 2972–2987 (2021).

    Google Scholar 

  70. He, R., Shang, X., Yu, C., Zhang, H. & Van der Hilst, R. D. A unified map of Moho depth and Vp/Vs ratio of continental China by receiver function analysis. Geophys. J. Int. 199, 1910–1918 (2014).

    ADS  Google Scholar 

  71. Shapiro, N. M. & Ritzwoller, M. H. Thermodynamic constraints on seismic inversions. Geophys. J. Int. 157, 1175–1188 (2004).

    ADS  Google Scholar 

  72. Goes, S., Govers, R. & Vacher, P. Shallow mantle temperatures under Europe from P and S wave tomography. J. Geophys. Res. Solid Earth 105, 11153–11169 (2000).

    Google Scholar 

  73. Goes, S. & van der Lee, S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res. Solid Earth 107, 2056–2066 (2002).

    ADS  Google Scholar 

  74. Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008).

    ADS  Google Scholar 

  75. Hu, J. S., Liu, L. J. & Zhou, Q. Reproducing past subduction and mantle flow using high-resolution global convection models. Earth Planet. Phys. 2, 189–207 (2018).

    ADS  Google Scholar 

  76. Cheng, S. et al. Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis. Geophys. J. Int. 228, 1731–1749 (2022).

    ADS  Google Scholar 

  77. Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    ADS  CAS  Google Scholar 

  78. Lei, H. et al. Identifying deep recycled carbonates through Miocene basalts in the Maguan area, SE Tibetan Plateau. Lithos 400–401, 106356 (2021).

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key R&D Project of China (2022YFF0800903) to Z.H., R.W., T.Y., N.Y. and Q.W., the National Natural Science Foundation of China (42230101 to H.Z., 42222304 and 42073038 to B.X., and 92355302 to L.L.), the 111 project (B18048) to R.W., and the Fundamental Research Funds for the Central Universities (WK2080000) to H.Z. We are grateful to L. Chang for the help on assembling the SKS data and M. An for the help on estimating the mantle temperature.

Author information

Authors and Affiliations

Authors

Contributions

Z.H. designed and initiated the research, interpreted the data and wrote the first draft of the paper. L.L. and H.Z. conducted respective geodynamic and seismic tomography analysis, interpreted the data and rewrote most of the paper. B.X. synthesized and analysed geochemical data. Y.L. performed the geodynamic modelling. All of the authors contributed to the lithospheric imaging, tectonic and geochemical analysis.

Corresponding authors

Correspondence to Zengqian Hou, Lijun Liu or Haijiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Alexander Koptev, Xiaohui Yuan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alireza Bahadori, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The distribution of earthquakes used in this study.

The color legends represent event depths. (a) Distribution of seismic events used for the CDSN catalog. (b) Distribution of seismic events used for the ISC-EHB catalog. Plate boundaries are marked by the blue solid lines with triangles and black solid lines depict the boundaries between major tectonic blocks. Abbreviations: OB: Ordos basin, NCB: North China Block, QL-DB: Qinling Dabie fold system, SCB: Sichuan basin, JGB: Junggar basin, TSFS: Tienshan fold system, QDB: Qaidam basin, SPGZ: Songpan Ganzi block. Background topography (GTOPO30) from ref. 57.

Extended Data Fig. 2 The distribution of stations, event depths and travel times used in this study.

(a) The distribution of stations. The blue triangles are ISC-EHB stations (http://www.isc.ac.uk/isc-ehb/) and the light blue triangles are CDSN stations (http://data.earthquake.cn). (b) The histogram of the event depths. (c) Travel time curves.

Extended Data Fig. 3 Recovered checkerboard patterns for Vp at different depths.

(a) 80 km, (b) 160 km, (c) 260 km, (d) 360 km, (e) 460 km, (f) 560 km, (g) 660 km, (h) 760 km, (i) 900 km.

Extended Data Fig. 4 Recovered checkerboard patterns for Vp along different latitudes.

(a) Latitude 22°, (b) latitude 24°, (c) latitude 26°, (d) latitude 28°, (e) latitude 30°, (f) latitude 32°, (g) latitude 34°, (h) latitude 36°.

Extended Data Fig. 5 Recovered checkerboard Vp/Vs models along different profiles.

(a) AA’, (b) BB’, (c) CC’ and (d) DD’ used from joint inversion.

Extended Data Fig. 6 Vp/Vs images of the lithosphere in the eastern TP.

ad show variation in Vp/Vs and possible magma sources along the four profiles shown in Fig. 1a. Bounded by around 26°N, the northern crust is thick (60km) and hot with a lower-crustal partial melting zone (a), while the southern crust is thin (35km) and relatively cool with limited local melting, but the underlying lithospheric mantle is hot, likely with partial melting (b). Both profile B and D show variable crustal thickness and hot lithosphere with focused melting at the lower crust and the uppermost mantle. Black line in each profile denotes the Moho interface76.

Extended Data Fig. 7 Total alkalis vs. SiO2 diagram for the Cenozoic magmatic rocks.

(a) Discrimination diagram of intrusive rocks. (b) Discrimination diagram of volcanic rocks.

Extended Data Fig. 8 Geochemical data of the Cenozoic magmatic rocks.

(a) εNd vs. 87Sr/86Sr diagram. εNd = ([143Nd/144Ndsample] / [143Nd/144NdCHUR] – 1) × 10000. MORB and EM fields are after ref. 77, and Maguan lava are from ref. 78 and references therein. (c, e) Variations of Nb/U and Th/La of magmatic rocks against latitude. (b, d, f, g) Variations of Cr, Nb/U, Th/La, and Mg# of magmatic rocks against longitude. Data set can be found in Supplementary Table 1.

Extended Data Fig. 9 Three additional tomographic profiles through eastern TP.

(a) Topography and profile locations. (b) Profile I, (c) profile II, and (d) profile III. These vertical cross sections cover the region from north to south of the 26°N magmatic field, with seismicity overplotted on the seismic image. The dashed magenta lines outline the subducting slabs that still connect with the surface plate. IML – Indian mantle lithosphere, GY – Greater India.

Extended Data Fig. 10 Calculated lateral mantle flow at 500 km depth.

The results are from a recent high-resolution geodynamic model that simulates subduction since 200 Ma using data assimilation48. The colored arrows represent horizontal mantle velocity at 30, 20, and 10 Ma, respectively. The flow that affected the southern IML slab is that within the dotted black box where the westward flow component strengthened after 30 Ma.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Supplementary Table 1

Whole-rock major and trace element and Sr–Nd isotopic compositions of Cenozoic igneous rocks in the eastern TP.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Liu, L., Zhang, H. et al. Cenozoic eastward growth of the Tibetan Plateau controlled by tearing of the Indian slab. Nat. Geosci. 17, 255–263 (2024). https://doi.org/10.1038/s41561-024-01382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01382-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing