Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply

Abstract

The Late Ordovician (~459–444 million years ago) was characterized by global cooling, glaciation and severe mass extinction. These events may have been driven by increased delivery of the nutrient phosphorus (P) to the ocean and associated increases in marine productivity, but it is not clear why this occurred in the two pulses identified in the geological record. We link both cooling phases—and the extinction—to volcanic eruptions through marine deposition of nutrient-rich ash and the weathering of terrestrially emplaced ash and lava. We then reconstruct the influence of Late Ordovician volcanic P delivery on the marine system by coupling an estimate of bioavailable phosphate supply (derived from a depletion and weathering model) to a global biogeochemical model. Our model compares volcanic ash P content in marine sediments before and after alteration to determine depletion factors, and we find good agreement with observed carbon isotope and reconstructed temperature shifts. Hence, massive volcanism can drive substantial global cooling on million-year timescales due to P delivery associated with long-term weathering of volcanic deposits, offsetting the transient warming of greenhouse gas emission associated with volcanic eruptions. Such longer-term cooling and potential for marine eutrophication may be important for other volcanism-driven global events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compilation of Late Ordovician bentonite ages from North America and China.
Fig. 2: Palaeogeographic reconstruction for the Late Ordovician at ~450 Ma (Katian).
Fig. 3: P depletion, an indicator of the amount of P lost to the ocean, from ten present-day representative volcanic provinces.

Basemap from P. Wessel, University of Hawai’i, and W. H. F. Smith, NOAA Laboratory for Satellite Altimetry

Fig. 4: Monte Carlo simulations of P supply from volcanic weathering during the Late Ordovician with variable distributions defined by our ash-depletion and weathering model.
Fig. 5: Biogeochemical model outputs for impacts of volcanism during the GICE and HICE.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this article are available within the article, Supplementary Information and Extended Data. All data have also been uploaded to Figshare at: https://doi.org/10.6084/m9.figshare.14914893, https://doi.org/10.6084/m9.figshare.14914911, https://doi.org/10.6084/m9.figshare.14914896 and https://doi.org/10.6084/m9.figshare.14914890.

Code availability

COPSE model code can be downloaded at https://github.com/bjwmills.

References

  1. Harper, D. A. T., Hammarlund, E. U. & Rasmussen, C. M. Ø. End Ordovician extinctions: a coincidence of causes. Gondwana Res. 25, 1294–1307 (2014).

    Article  Google Scholar 

  2. Bambach, R. K., Knoll, A. H. & Wang, S. C. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–542 (2004).

    Article  Google Scholar 

  3. Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl Acad. Sci. USA 116, 7207–7213 (2019).

    Article  Google Scholar 

  4. Bergström, S. M., Schmitz, B., Saltzman, M. R. & Huff, W. D. The Upper Ordovician Guttenberg δ13C excursion (GICE) in North America and Baltoscandia: occurrence, chronostratigraphic significance, and paleoenvironmental relationships. Geol. Soc. Am. Spec. Pap. 466, 37–67 (2010).

    Google Scholar 

  5. Metzger, J. G., Ramezani, J., Bowring, S. A. & Fike, D. A. New age constraints on the duration and origin of the Late Ordovician Guttenberg δ13Ccarb excursion from high-precision U–Pb geochronology of K-bentonites. Geol. Soc. Am. Bull. https://doi.org/10.1130/B35688.1 (2020).

  6. Finnegan, S. et al. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science 331, 903–906 (2011).

    Article  Google Scholar 

  7. Ainsaar, L. et al. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeogr. Palaeoclimatol. Palaeoecol. 294, 189–201 (2010).

    Article  Google Scholar 

  8. Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).

    Article  Google Scholar 

  9. Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019).

    Article  Google Scholar 

  10. Shen, J. et al. Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation. Nat. Geosci. 11, 510–514 (2018).

    Article  Google Scholar 

  11. Swanson-Hysell, N. L. & Macdonald, F. A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology 45, 719–722 (2017).

    Google Scholar 

  12. Bartlett, R. et al. Abrupt global-ocean anoxia during the Late Ordovician–Early Silurian detected using uranium isotopes of marine carbonates. Proc. Natl Acad. Sci. USA 115, 5896–5901 (2018).

  13. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Article  Google Scholar 

  14. Buggisch, W. et al. Did intense volcanism trigger the first Late Ordovician icehouse? Geology 38, 327–330 (2010).

    Article  Google Scholar 

  15. Herrmann, A. D., Leslie, S. A. & MacLeod, K. G. Did intense volcanism trigger the first Late Ordovician icehouse?. Geology 39, e237–e237 (2011).

    Article  Google Scholar 

  16. Huff, W. D., Bergström, S. M. & Kolata, D. R. Ordovician explosive volcanism. Geol. Soc. Am. Spec. Pap. 466, 13–28 (2010).

    Google Scholar 

  17. Tao, H., Qiu, Z., Lu, B., Liu, Y. & Qiu, J. Volcanic activities triggered the first global cooling event in the Phanerozoic. J. Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2019.104074 (2019).

  18. Huff, W. D., Kolata, D. R., Bergström, S. M. & Zhang, Y. S. Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics. J. Volcanol. Geotherm. Res. 73, 285–301 (1996).

    Article  Google Scholar 

  19. Sell, B. K. et al. Stratigraphic correlations using trace elements in apatite from Late Ordovician (Sandbian-Katian) K-bentonites of eastern North America. Geol. Soc. Am. Bull. 127, 1259–1274 (2015).

    Article  Google Scholar 

  20. Ballo, E. G., Augland, L. E., Hammer, Ø. & Svensen, H. H. A new age model for the Ordovician (Sandbian) K-bentonites in Oslo, Norway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 520, 203–213 (2019).

    Article  Google Scholar 

  21. Liu, W. et al. K-bentonites in Ordovician-Silurian transition from South China: implications for tectonic evolution in the northern margin of Gondwana. J. Geol. Soc. 177, 1245–1260 (2020).

    Article  Google Scholar 

  22. Smolarek-Lach, J., Marynowski, L., Trela, W. & Wignall, P. B. Mercury spikes indicate a volcanic trigger for the Late Ordovician mass extinction event: an example from a deep shelf of the peri-Baltic region. Sci. Rep. 9, 3139 (2019).

    Article  Google Scholar 

  23. Jones, D. S., Martini, A. M., Fike, D. A. & Kaiho, K. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from South China and Laurentia. Geology 45, 631–634 (2017).

    Article  Google Scholar 

  24. Longman, J., Palmer, M. R., Gernon, T. M. & Manners, H. R. The role of tephra in enhancing organic carbon preservation in marine sediments. Earth Sci. Rev. 192, 480–490 (2019).

    Article  Google Scholar 

  25. Jones, M. T. & Gislason, S. R. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim. Cosmochim. Acta 72, 3661–3680 (2008).

    Article  Google Scholar 

  26. Sell, B., Ainsaar, L. & Leslie, S. Precise timing of the Late Ordovician (Sandbian) super-eruptions and associated environmental, biological, and climatological events. J. Geol. Soc. 170, 711–714 (2013).

    Article  Google Scholar 

  27. Tucker, R. D. & McKerrow, W. S. Early Paleozoic chronology: a review in light of new U–Pb zircon ages from Newfoundland and Britain. Can. J. Earth Sci. 32, 368–379 (1995).

    Article  Google Scholar 

  28. Ling, M. X. et al. An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation. Solid Earth 4, 190–198 (2019).

    Article  Google Scholar 

  29. Du, X. et al. Was volcanic activity during the Ordovician-Silurian transition in South China part of a global phenomenon? Constraints from zircon U–Pb dating of volcanic ash beds in black shales. Mar. Petrol. Geol. 114, 104209 (2020).

    Article  Google Scholar 

  30. Lee, C.-T. A. et al. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous. Sci. Rep. 8, 4197 (2018).

    Article  Google Scholar 

  31. Gudmundsson, M. T. et al. Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Sci. Rep. 2, 572 (2012).

    Article  Google Scholar 

  32. Laeger, K. et al. High-resolution geochemistry of volcanic ash highlights complex magma dynamics during the Eyjafjallajökull 2010 eruption. Am. Mineral. 102, 1173–1186 (2017).

    Article  Google Scholar 

  33. Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).

    Article  Google Scholar 

  34. Cao, W., Lee, C. T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).

    Article  Google Scholar 

  35. Mills, B. J. W., Scotese, C. R., Walding, N. G., Shields, G. A. & Lenton, T. M. Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic. Nat. Commun. 8, 1110 (2017).

    Article  Google Scholar 

  36. Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allègre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Article  Google Scholar 

  37. Dessert, C. et al. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett. 188, 459–474 (2001).

    Article  Google Scholar 

  38. Tostevin, R. & Mills, B. J. W. Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus 10, 20190137 (2020).

    Article  Google Scholar 

  39. Slomp, C. P. & Van Cappellen, P. The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosciences 4, 155–171 (2007).

    Article  Google Scholar 

  40. Hallam, A. Phanerozoic Sea-Level Changes (Columbia Univ. Press, 1992).

  41. Walker, L. J., Wilkinson, B. H. & Ivany, L. C. Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. J. Geol. 110, 75–87 (2002).

    Article  Google Scholar 

  42. Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).

    Article  Google Scholar 

  43. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    Article  Google Scholar 

  44. Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S. & Sinninghe Damsté, J. S. Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).

    Article  Google Scholar 

  45. Goldberg, S. L., Present, T. M., Finnegan, S. & Bergmann, K. D. A high-resolution record of early Paleozoic climate. Proc. Natl Acad. Sci. USA 118, e2013083118 (2021).

    Article  Google Scholar 

  46. Zou, C. et al. Organic-matter-rich shales of China. Earth Sci. Rev. 189, 51–78 (2019).

    Article  Google Scholar 

  47. Su, W. et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Res. 15, 111–130 (2009).

    Article  Google Scholar 

  48. LaPorte, D. F. et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 182–195 (2009).

    Article  Google Scholar 

  49. Saltzman, M. R. & Thomas, E. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) Ch. 11 (Elsevier, 2012).

  50. Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Article  Google Scholar 

  51. Black, B. A. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11, 949–954 (2018).

    Article  Google Scholar 

  52. Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. J. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–390 (2010).

    Article  Google Scholar 

  53. Fan, J. X. et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272–277 (2020).

    Article  Google Scholar 

  54. Vandenbroucke, T. R. A. et al. Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction. Nat. Commun. 6, 7966 (2015).

    Article  Google Scholar 

  55. Merdith, A. S. et al. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth Sci. Rev. 214, 103477 (2021).

    Article  Google Scholar 

  56. Cocks, L. R. M. & Torsvik, T. H. Ordovician palaeogeography and climate change. Gondwana Res. https://doi.org/10.1016/j.gr.2020.09.008 (2020).

  57. Bitschene, P. R., Mehl, K. W. & Schmincke, H.-U. Composition and origin of marine ash layers and epiclastic rocks from the Kerguelen Plateau, southern Indian Ocean (Legs 119 and 120). Proc. Ocean Drill. Prog. Sci. Results 120, 135–149 (1992).

    Google Scholar 

  58. Schindlbeck, J. C. et al. One Million Years tephra record at IODP Sites U1436 and U1437: insights into explosive volcanism from the Japan and Izu arcs. Isl. Arc 27, e12244 (2018).

    Article  Google Scholar 

  59. Rodehorst, U., Schmincke, H.-U. & Sumita, M. Geochemistry and petrology of Pleistocene ash layers erupted at Las Cañadas Edifice (Tenerife). Proc. Ocean Drill. Prog. Sci. Results 157, 315–328 (1998).

    Google Scholar 

  60. Salisbury, M. J. et al. Deep-sea ash layers reveal evidence for large, late Pleistocene and Holocene explosive activity from Sumatra, Indonesia. J. Volcanol. Geotherm. Res. 231–232, 61–71 (2012).

    Article  Google Scholar 

  61. Derkachev, A. N. et al. Tephra layers of in the Quaternary deposits of the Sea of Okhotsk: distribution, composition, age and volcanic sources. Quat. Int. 425, 248–272 (2016).

    Article  Google Scholar 

  62. Schindlbeck, J. C. et al. Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 1. tephra ages and provenance. Geochem. Geophys. Geosystems 17, 4641–4668 (2016).

    Article  Google Scholar 

  63. Allan, A. S. R., Baker, J. A., Carter, L. & Wysoczanksi, R. J. Reconstructing the Quaternary evolution of the world’s most active silicic volcanic system: insights from an 1.65 Ma deep ocean tephra record sourced from Taupo Volcanic Zone, New Zealand. Quat. Sci. Rev. 27, 2341–2360 (2008).

    Article  Google Scholar 

  64. Yang, S. et al. Duration, evolution, and implications of volcanic activity across the Ordovician–Silurian transition in the Lower Yangtze region, South China. Earth Planet. Sci. Lett. 518, 13–25 (2019).

    Article  Google Scholar 

  65. Tucker, R. D. U–Pb dating of Plinian-eruption ashfalls by the isotopic dilution method: a reliable and precise tool for time-scale calibration and biostratigraphic correlation. Geol. Soc. Am. Abs. Prog. 24, A192 (1992).

    Google Scholar 

  66. Oruche, N. E., Dix, G. R. & Kamo, S. L. Lithostratigraphy of the Upper Turinian–Lower Chatfieldian (Upper Ordovician) foreland succession, and a U–Pb ID–TIMS date for the Millbrig volcanic ash bed in the Ottawa embayment. Can. J. Earth Sci. 55, 1079–1102 (2018).

    Article  Google Scholar 

  67. Min, K., Renne, P. R. & Huff, W. D. Ar/Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth Planet. Sci. Lett. 185, 121–134 (2001).

    Article  Google Scholar 

  68. Samson, S. D., Patchett, P. J., Roddick, J. C. & Parrish, R. R. Origin and tectonic setting of Ordovician bentonites in North America: isotopic and age constraints. Geol. Soc. Am. Bull. 101, 1175–1181 (1989).

    Article  Google Scholar 

  69. Svensen, H. H., Hammer, Ø. & Corfu, F. Astronomically forced cyclicity in the Upper Ordovician and U–Pb ages of interlayered tephra, Oslo region, Norway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 418, 150–159 (2015).

    Article  Google Scholar 

  70. Bauert, H. et al. New U–Pb zircon ages of the Sandbian (Upper Ordovician) ‘Big K-bentonite’ in Baltoscandia (Estonia and Sweden) by LA-ICPMS. GFF 136, 30–33 (2014).

    Article  Google Scholar 

  71. Compston, W. & Williams, I. S. in Global Perspectives on Ordovician Geology (eds Webby, B. D. & Laurie, J. R.) 59–67 (A.A. Balkema, 1992).

  72. Li, Y., Zhang, T., Shao, D. & Shen, B. New U–Pb zircon age and carbon isotope records from the Lower Silurian Longmaxi Formation on the Yangtze Platform, South China: implications for stratigraphic correlation and environmental change. Chem. Geol. 509, 249–260 (2019).

    Article  Google Scholar 

  73. Hu, Y. H., Zhou, J. Bin, Song, B., Li, W. & Sun, W. D. SHRIMP zircon U–Pb dating from K-bentonite in the top of Ordovician of Wangjiawan section, Yichang, Hubei, China. Sci. China Earth Sci. 51, 493–498 (2008).

    Article  Google Scholar 

  74. Xie, S., Wang, Z., Wang, J. & Zhuo, J. LA-ICP-MS zircon U–Pb dating of the bentonites from the uppermost part of the Ordovician Wufeng Formation in the Haoping section, Taoyuan, Hunan. Sediment. Geol. Tethyan Geol. 4, 65–69 (2012).

    Google Scholar 

  75. Yang, S. et al. Constraints on the accumulation of organic matter in Upper Ordovician-Lower Silurian black shales from the Lower Yangtze region, South China. Mar. Pet. Geol. 120, 104544 (2020).

    Article  Google Scholar 

  76. Ge, X. et al. Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance. Geol. J. 54, 514–528 (2019).

    Article  Google Scholar 

  77. Zheng, B. et al. Nature of the Late Ordovician–Early Silurian Xiaohe section, Hunan–Hubei area, South China: implications for the Kwangsian Orogeny. Int. Geol. Rev. 62, 1262–1272 (2020).

    Article  Google Scholar 

  78. Kunk, M. J., Sutter, J., Obradovich, J. D. & Lanphere, M. A. Age of biostratigraphic horizons within the Ordovician and Silurian systems. Geol. Soc. Mem. 10, 89–92 (1985).

    Article  Google Scholar 

  79. Tucker, R. D., Krogh, T. E., Ross, R. J. & Williams, S. H. Time-scale calibration by high-precision UPb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain. Earth Planet. Sci. Lett. 100, 51–58 (1990).

    Article  Google Scholar 

  80. Lefebvre, V., Servais, T., François, L. & Averbuch, O. Did a Katian large igneous province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 310–319 (2010).

    Article  Google Scholar 

  81. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated p-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NERC grant NE/K00543X/1, 'The role of marine diagenesis of tephra in the carbon cycle'. B.J.W.M. acknowledges support from NERC grant NE/S009663/1. T.M.G. acknowledges support of NERC grant NE/R004978/1 and funding from the Alan Turing Institute (EP/N510129/1). We thank C. Rasmussen and S. Leslie for comments, which helped to improve the manuscript. We are grateful to staff of the IODP Gulf Coast Repository and IODP Kochi Core Repository for their assistance during sampling of cores U1396C and U1339D, respectively.

Author information

Authors and Affiliations

Authors

Contributions

J.L., T.M.G. and M.R.P. conceived this research. J.L. and H.R.M. completed the laboratory analyses. B.J.W.M. completed the modelling, and J.L. compiled and analysed the data. J.L. and B.J.W.M. created the figures. J.L. and B.J.W.M. wrote the manuscript with input from T.M.G., H.R.M. and M.R.P.

Corresponding author

Correspondence to Jack Longman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Stephen Leslie and Christian Rasmussen for their contribution to the peer review of this work. Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Plots of P/Zr versus Ti/Zr for Aleutian Arc, Kyushu-Ryukyu Arc, Central American Volcanic Arc, Sunda Arc, Kerguelen Plateau and Taupo Arc.

In blue are GEOROC-derived protolith compositions, from which the linear relationships indicated the lower right of each panels are defined. Red circles indicate measured altered ash deposit analyses, plotted against the expected trend for unaltered material. Percentage depletion is indicated by the dashed lines.

Extended Data Fig. 2 Plots of P/Zr versus Ti/Zr for Kamchatka-Kurile Arc, Izu-Bonin Arc, Lesser Antilles and Canary Islands.

In blue are GEOROC-derived protolith compositions, from which the linear relationships indicated the lower right of each panels are defined. Red circles indicate measured altered ash deposit analyses, plotted against the expected trend for unaltered material. Percentage depletion is indicated by the dashed lines.

Extended Data Fig. 3 Comparison of the total marine P concentration in the COPSE model versus a model which incorporates marginal settings.

Both models are subject to increases in riverine P input. Note that because of the single global ocean in COPSE and the nullification of marginal P recycling, it requires approximately five times the P input to drive the same increase in seawater P. Both models are initialized from a present-day steady state.

Supplementary information

Supplementary Information

Supplementary Tables 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longman, J., Mills, B.J.W., Manners, H.R. et al. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 14, 924–929 (2021). https://doi.org/10.1038/s41561-021-00855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00855-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing