Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Distinct palmitoylation of Foxp3 regulates the function of regulatory T cells via palmitoyltransferases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Saleh R, Elkord E. FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 2020;490:174–85.

    Article  CAS  PubMed  Google Scholar 

  2. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

    Article  CAS  PubMed  Google Scholar 

  3. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.

    Article  CAS  PubMed  Google Scholar 

  4. Fleskens V, Minutti CM, Wu X, Wei P, Pals C, McCrae J, et al. Nemo-like kinase drives Foxp3 stability and is critical for maintenance of immune tolerance by regulatory T cells. Cell Rep. 2019;26:3600–12.e3606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ni X, Kou W, Gu J, Wei P, Wu X, Peng H, et al. TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. EMBO J. 2019;38:e99766.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol. 2017;18:800–12.

    Article  CAS  PubMed  Google Scholar 

  7. Cabral J, Hanley SA, Gerlach JQ, O’Leary N, Cunningham S, Ritter T, et al. Distinctive surface glycosylation patterns associated with mouse and human CD4+ regulatory T cells and their suppressive function,. Front Immunol. 2017;8:987.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, et al. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 2020;21:e50308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yao H, Lan J, Li CS, Shi HB, Brosseau JP, Wang HB, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3:306–17.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL, et al. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci USA. 2013;110:9118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou B, Wang Y, Zhang L, Shi X, Kong H, Zhang M, et al. The palmitoylation of AEG-1 dynamically modulates the progression of hepatocellular carcinoma. Theranostics. 2022;12:6898–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan W, Lu LX, Rao MD, Huang Y, Liu CE, Liu S, et al. GFAP hyperpalmitoylation exacerbates astrogliosis and neurodegenerative pathology in PPT1-deficient mice. Proc Natl Acad Sci USA. 2021;118:e2022261118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korycka J, Łach A, Heger E, Bogusławska DM, Wolny M, Toporkiewicz M, et al. Human DHHC proteins: A spotlight on the hidden player of palmitoylation. Eur J Cell Biol 2012;91:107–17.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Barbi J, Bu S, Yang H-Y, Li Z, Gao Y, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013;39:272–85.

    Article  CAS  PubMed  Google Scholar 

  15. Noyes D, Bag A, Oseni S, Semidey-Hurtado J, Cen L, Sarnaik AA, et al. Tumor-associated Tregs obstruct antitumor immunity by promoting T cell dysfunction and restricting clonal diversity in tumor-infiltrating CD8+ T cells. J Immunother Cancer. 2022;10:e004605.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 32000491 to BHZ), projects 222300420015 and 2023DK2005 to YML, and a start-up fund from Xinxiang Medical University (505483, to BHZ).

Author information

Authors and Affiliations

Authors

Contributions

BZ, EK, and YL designed the experiments. BZ, MZ, HM, YW, JQ, and YL performed the experiments and collected the data. LL, TL, LZ, YG, and RH assisted in the experiments. BZ analyzed the data and wrote the original manuscript. YL revised the manuscript.

Corresponding authors

Correspondence to Binhui Zhou, Eryan Kong or Yinming Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zhang, M., Ma, H. et al. Distinct palmitoylation of Foxp3 regulates the function of regulatory T cells via palmitoyltransferases. Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-024-01166-6

Search

Quick links