Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion

Abstract

RAPL, a protein that binds the small GTPase Rap1, is required for efficient immune cell trafficking. Here we have identified the kinase Mst1 as a critical effector of RAPL. RAPL regulated the localization and kinase activity of Mst1. 'Knockdown' of the gene encoding Mst1 demonstrated its requirement for the induction of both a polarized morphology and integrin LFA-1 clustering and adhesion triggered by chemokines and T cell receptor ligation. RAPL and Mst1 localized to vesicular compartments and dynamically translocated with LFA-1 to the leading edge upon Rap1 activation, suggesting a regulatory function for the RAPL-Mst1 complex in intracellular transport of LFA-1. Our study demonstrates a previously unknown function for Mst1 of relaying the Rap1-RAPL signal to induce cell polarity and adhesion of lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of RAPL and MST1.
Figure 2: Mst1 activation by RAPL and Rap1.
Figure 3: MST1 induces cell adhesion to ICAM-1.
Figure 4: Mst1 'knockdown' abrogates cell polarization and adhesion.
Figure 5: Mst1 'knockdown' abrogates TCR-mediated adhesion and immunological synapse formation.
Figure 6: Mst1 'knockdown' in mouse T lymphocytes abrogates the cell adhesion triggered by CCL21 stimulation and TCR ligation.
Figure 7: Subcellular distribution of Mst1 and RAPL.
Figure 8: Rapid intracellular translocation of MST1, RAPL and LFA-1.

Similar content being viewed by others

References

  1. Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Carman, C.V. & Springer, T.A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. van Kooyk, Y. & Figdor, C.G. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr. Opin. Cell Biol. 12, 542–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Dustin, M.L., Bivona, T.G. & Philips, M.R. Membranes as messengers in T cell adhesion signaling. Nat. Immunol. 5, 363–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Pribila, J.T., Quale, A.C., Mueller, K.L. & Shimizu, Y. Integrins and T cell-mediated immunity. Annu. Rev. Immunol. 22, 157–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez-Madrid, F. & del Pozo, M.A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Horton, A.C. & Ehlers, M.D. Neuronal polarity and trafficking. Neuron 40, 277–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lawson, M.A. & Maxfield, R.R. Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Bretscher, M.S. Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell 87, 601–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Ng, T. et al. PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J. 18, 3909–3923 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bos, J.L., de Rooij, J. & Reedquist, K.A. Rap1 signaling: Adhering to new models. Nat. Rev. Mol. Cell Biol. 2, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Katagiri, K., Hattori, M., Minato, N. & Kinashi, T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol. Cell. Biol. 22, 1001–1015 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kinashi, T. et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 103, 1033–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Zemojtel, T., Penzkofer, T., Duchniewicz, M. & Zwartkruis, F.J. hRap1B-retro: a novel human processed Rap1B gene blurs the picture? Leukemia (2005).

  20. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4, 741–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Tommasi, S. et al. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21, 2713–2720 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Katagiri, K. et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat. Immunol. 5, 1045–1051 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Edgar, B. From cell structure to transcription: Hippo forges a new path. Cell 124, 267–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. de Souza, P.M. & Lindsay, M.A. Mammalian sterile20-like kinase 1 and the regulation of apoptosis. Biochem. Soc. Trans. 32, 485–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Sells, M.A., Pfaff, A. & Chernoff, J. Temporal and spatial distribution of activated Pak1 in fibroblasts. J. Cell Biol. 151, 1449–1458 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glantschnig, H., Rodan, G.A. & Reszka, A.A. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J. Biol. Chem. 277, 42987–42996 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Creasy, C.L., Ambrose, D.M. & Chernoff, J. The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J. Biol. Chem. 271, 21049–21053 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell. Biol. 20, 1956–1969 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Creasy, C.L. & Chernoff, J. Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene 167, 303–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor, L.K., Wang, H.C. & Erikson, R.L. Newly identified stress-responsive protein kinases, Krs-1 and Krs-2. Proc. Natl. Acad. Sci. USA 93, 10099–10104 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gulli, M.P. & Peter, M. Temporal and spatial regulation of Rho-type guanine-nucleotide exchange factors: the yeast perspective. Genes Dev. 15, 365–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Dan, I., Watanabe, N.M. & Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11, 220–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Hofmann, C., Shepelev, M. & Chernoff, J. The genetics of Pak. J. Cell Sci. 117, 4343–4354 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Graves, J.D. et al. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 17, 2224–2234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, K.K. et al. Proteolytic activation of MST/Krs, STE20-related protein kinase, by caspase during apoptosis. Oncogene 16, 3029–3037 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Kakeya, H., Onose, R. & Osada, H. Caspase-mediated activation of a 36-kDa myelin basic protein kinase during anticancer drug-induced apoptosis. Cancer Res. 58, 4888–4894 (1998).

    CAS  PubMed  Google Scholar 

  37. Cheung, W.L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Khokhlatchev, A. et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 12, 253–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Li, Z. et al. Directional sensing requires G βγ-mediated PAK1 and PIX α-dependent activation of Cdc42. Cell 114, 215–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Praskova, M., Khoklatchev, A., Ortiz-Vega, S. & Avruch, J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J. 381, 453–462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parrini, M.C., Lei, M., Harrison, S.C. & Mayer, B.J. Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol. Cell 9, 73–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, K.K., Ohyama, T., Yajima, N., Tsubuki, S. & Yonehara, S. MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J. Biol. Chem. 276, 19276–19285 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Quinn, M.T., Mullen, M.L., Jesaitis, A.J. & Linner, J.G. Subcellular distribution of the Rap1A protein in human neutrophils: colocalization and cotranslocation with cytochrome b559. Blood 79, 1563–1573 (1992).

    CAS  PubMed  Google Scholar 

  44. Maridonneau-Parini, I. & de Gunzburg, J. Association of Rap1 and Rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J. Biol. Chem. 267, 6396–6402 (1992).

    CAS  PubMed  Google Scholar 

  45. Pizon, V., Desjardins, M., Bucci, C., Parton, R.G. & Zerial, M. Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J. Cell Sci. 107, 1661–1670 (1994).

    CAS  PubMed  Google Scholar 

  46. Berger, G. et al. Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes. Br. J. Haematol. 88, 372–382 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Bivona, T.G. et al. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J. Cell Biol. 164, 461–470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujita, H. et al. Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J. Biol. Chem. 280, 5022–5031 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Song, M.S. et al. The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat. Cell Biol. 6, 129–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Fagerholm, S.C., Hilden, T.J., Nurmi, S.M. & Gahmberg, C.G. Specific integrin alpha and beta chain phosphorylations regulate LFA-1 activation through affinity-dependent and -independent mechanisms. J. Cell Biol. 171, 705–715 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyoshi, H., Smith, K.A., Mosier, D.E., Verma, I.M. & Torbett, B.E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Katayama, K. et al. RNA interfering approach for clarifying the PPAR γ pathway using lentiviral vector expressing short hairpin RNA. FEBS Lett. 560, 178–182 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Shimomura, C. Tanaka and R. Hamaguchi for technical assistance. Supported by a grant-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan; Uehara Memorial Foundation; and Toray Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and T.K. contributed to discussions of experimental design, data analysis and manuscript preparation and did all experimental studies unless otherwise indicated; M.I. did immunoelectron microscopy.

Corresponding author

Correspondence to Tatsuo Kinashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Localization with Mst1 in T cells. (PDF 452 kb)

Supplementary Fig. 2

Pseudo-color image of LFA-1 intensities of Z-stack confocal images of the cell (asterisk) indicated in Fig. 3(d). (PDF 353 kb)

Supplementary Fig. 3

Affinity regulation by Mst1. (PDF 692 kb)

Supplementary Fig. 4

Co-localization analysis. (PDF 337 kb)

Supplementary Fig. 5

Localization of Mst1 in immunological synapse. (PDF 372 kb)

Supplementary Fig. 6

Immunoelectron microscopy of RAPL in 3A9 T cells. (PDF 1735 kb)

Supplementary Fig. 7

Relocation of MST-mRFP toward the leading edge. (PDF 471 kb)

Supplementary Fig. 8

Immunostaining for tubulin. (PDF 377 kb)

Supplementary Fig. 9

Distribution of β2-mRFP. (PDF 423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katagiri, K., Imamura, M. & Kinashi, T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 7, 919–928 (2006). https://doi.org/10.1038/ni1374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing