Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid-state plastic deformation in the dynamic interior of a differentiated asteroid

Abstract

Diogenite meteorites are thought to represent mantle rocks that formed as cumulates in magma chambers on 4 Vesta or a similar differentiated asteroid1,2. Northwest Africa 5480 is a harzburgitic diogenite3,4, composed mainly of heterogeneously distributed olivine and orthopyroxene. Here we present a microstructural analysis of olivine grains from Northwest Africa 5480, using electron backscatter diffraction techniques to quantify any preferred orientation of crystallographic lattice. We find that the preferred orientation in the olivine-dominated zones can be explained neither by cumulate formation nor by impact reprocessing near the asteroid’s surface. Rather, they represent high-temperature solid-state plastic deformation by the pencil-glide5 slip system. The detected type of preferred orientation is well known from dry ultramafic rocks on Earth, where it is typically formed by mantle shear5,6,7 at temperatures between 1,273 and 1,523 K. Numerical modelling indicates that our observations can be explained by large-scale downwelling inside the asteroid’s mantle, within the first 50 million years after formation of calcium–aluminium-rich inclusions. The discovery of solid-state plastic deformation in an asteroidal ultramafic rock represents compelling evidence of dynamic planet-like processes in asteroids. We conclude that long-lasting enhanced mass exchange occurred in the dynamic interior of a differentiated asteroid such as Vesta, and enabled accelerated chemical, structural and thermal equilibration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stitched back-scattered electron image of NWA 5480 showing two distinct zones.
Figure 2: Stereographic projections of EBSD data for NWA 5480.
Figure 3: Sketches summarizing LPO patterns found in olivine crystals.
Figure 4: Comparison of experimental constraints and numerical results.

Similar content being viewed by others

References

  1. McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., Mayne, R. G. & McCoy, T. J. HED Meteorites and their relationship to the Geology of Vesta and the Dawn Mission. Space Sci. Rev. 163, 141–174 (2011).

    Article  Google Scholar 

  2. Irving, A. J., Bunch, T. E., Kuehner, S. M., Wittke, J. H. & Rumble, D. Peridotites related to 4 Vesta: Deep crustal igneous cumulates and mantle samples. Lunar Planet. Sci. 40, 2466 (2009).

    Google Scholar 

  3. Beck, A. & McSween, H. Y. Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteorit. Planet. Sci. 45, 850–872 (2010).

    Article  Google Scholar 

  4. Wittke, J. H., Irving, A. J., Bunch, T. E. & Kuehner, S. M. A nomenclature system for diogenites consistent with the IUGS system for naming terrestrial ultramafic rocks. Meteoritics Planet. Sci. 46 (Meteoritical Society LXXIV), Abstr. 5223 (2011).

    Google Scholar 

  5. Carter, N. L. & Avé Lallement, H. G. High temperature flow of dunite and peridotite. Geol. Soc. Am. Bull. 81, 2181–2202 (1970).

    Article  Google Scholar 

  6. Guegen, Y. & Nicolas, A. Deformation of mantle rocks. Annu. Rev. Earth Planet. Sci. 8, 119–144 (1980).

    Article  Google Scholar 

  7. Tommasi, A., Mainprice, D., Canova, G. & Chasatel, Y. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. J. Geophys. Res. 105, 7893–7908 (2000).

    Article  Google Scholar 

  8. Prior, D. J. et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am. Mineral. 84, 1741–1759 (1999).

    Article  Google Scholar 

  9. Warren, J. M., Hirth, G. & Kelemen, P. B. Evolution of olivine lattice preferred orientation during simple shear in the mantle. Earth Planet. Sci. Lett. 272, 501–512 (2008).

    Article  Google Scholar 

  10. Ismaïl, W. B. & Mainprice, D. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–157 (1998).

    Article  Google Scholar 

  11. Bystricky, M., Kunze, K., Burlini, L. & Burg, J-P. High shear strain of olivine aggregates: Rheological and seismic consequences. Science 290, 1564–1566 (2000).

    Article  Google Scholar 

  12. Boudier, F. Olivine xenocrysts in picritic magmas. Contrib. Mineral. Petrol. 109, 114–123 (1991).

    Article  Google Scholar 

  13. Frese, K., Trommsdorff, V. & Kunze, K. Olivine [100] normal to foliation: Lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Cagnone (Central Alps). Contrib. Mineral. Petrol. 145, 75–86 (2003).

    Article  Google Scholar 

  14. Jung, H., Katayama, I., Jiang, Z., Hiraga, T. & Karato, S. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421, 1–22 (2006).

    Article  Google Scholar 

  15. Warren, P. H., Kallemeyn, G. W., Huber, H., Ulff-Møller, F. & Choe, W. Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias. Geochim. Cosmochim. Acta 73, 5918–5943 (2009).

    Article  Google Scholar 

  16. Day, J. M. D., Walker, R. J., Qin, L. & Rumble, D. Late accretion as a natural consequence of planetary growth. Nature Geosci. 5, 614–617 (2012).

    Article  Google Scholar 

  17. Holtzman, B. K. et al. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science 301, 1227–1230 (2003).

    Article  Google Scholar 

  18. Gerya, T. V. & Yuen, D. A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Int. 163, 83–105 (2007).

    Article  Google Scholar 

  19. Ramberg, H. Fluid dynamics of layered systems in the field of gravity, a theoretical basis for certain global structures and isostatic adjustment. Phys. Earth Planet. Int. 1, 63–87 (1968).

    Article  Google Scholar 

  20. Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  21. Thomas, P. C. et al. Impact excavation on asteroid 4 Vesta: Hubble space telescope results. Science 277, 1492–1495 (1997).

    Article  Google Scholar 

  22. Jutzi, M. & Asphaug, E. Mega-ejecta on asteroid Vesta. Geophys. Res. Lett. 38, L01102 (2011).

    Article  Google Scholar 

  23. Righter, K. & Drake, M. J. Core formation in Earth’s Moon, Mars and Vesta. Icarus 124, 513–529 (1996).

    Article  Google Scholar 

  24. Righter, K. & Drake, M. J. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997).

    Article  Google Scholar 

  25. Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).

    Article  Google Scholar 

  26. Ghosh, A. & McSween, H. Y. A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 134, 187–206 (1998).

    Article  Google Scholar 

  27. Gupta, G. & Sahijpal, S. Differentiation of Vesta and the parent bodies of other achondrites. J. Geophys. Res. 115, E08001 (2010).

    Article  Google Scholar 

  28. Schiller, M. et al. Rapid timescales for magma ocean crystallization on the Howardite-Eucrite-diogenite parent body. Astrophys. J. Lett. 740, L22 (2011).

    Article  Google Scholar 

  29. Misawa, K., Yamaguchi, A. & Kaiden, H. U–Pb and 207Pb–206Pb ages of zircons from basaltic eucrites: Implications for early basaltic volcanism on the eucrite parent body. Geochim. Cosmochim. Acta 69, 5847–5861 (2005).

    Article  Google Scholar 

  30. Fowler, G. W., Shearer, C.K., Papike, J. J. & Layne, G. D. Diogenites as asteroidal cumulates: Insights from orthopyroxene trace element chemistry. Geochim. Cosmochim. Acta 59, 3071–3084 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. V. Gerya for providing the code 12MART. Funding to G.J.G. was provided by SNF grant PBEZP2-134461.

Author information

Authors and Affiliations

Authors

Contributions

B.J.T. and F.E.B. conceived this project. B.J.T. carried out the EBSD measurements on the sample. B.J.T. and F.E.B. analysed and discussed the results of the EBSD measurements. G.J.G. designed and implemented the numerical model. B.J.T., G.J.G. and F.E.B. analysed and discussed the results. B.J.T. prepared the manuscript, which was then jointly edited by B.J.T., G.J.G. and F.E.B.

Corresponding author

Correspondence to B. J. Tkalcec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1107 kb)

Supplementary Information

Supplementary Information (MOV 2881 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkalcec, B., Golabek, G. & Brenker, F. Solid-state plastic deformation in the dynamic interior of a differentiated asteroid. Nature Geosci 6, 93–97 (2013). https://doi.org/10.1038/ngeo1710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1710

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing