Saccades articles within Nature Communications

Featured

  • Article
    | Open Access

    It has been unclear whether human FEF and early visual cortex play a role in the perceptual modulations preceding saccades. Here, the authors show that V1/2 TMS reduces sensitivity at the contralateral target just before saccade onset, and rFEF+TMS enhances sensitivity where presaccadic perception is poor.

    • Nina M. Hanning
    • , Antonio Fernández
    •  & Marisa Carrasco
  • Article
    | Open Access

    Moving precisely in natural environments requires adapting to multiple demands arising dynamically. Here, the authors show that the cerebellum’s capacity for multidimensional computations allows it to flexibly control multiple movement parameters guaranteeing movement precision.

    • Akshay Markanday
    • , Sungho Hong
    •  & Peter Thier
  • Article
    | Open Access

    Microsaccades are small-amplitude, fixational eye movements that are largely thought to be involuntary. Here, the authors demonstrate that monkeys (and humans) can be easily trained to respond to a remembered target location with a volitional microsaccade, and that a population of superior colliculus neurons is selectively associated with them.

    • Konstantin F. Willeke
    • , Xiaoguang Tian
    •  & Ziad M. Hafed
  • Article
    | Open Access

    Blindsight refers to visual behaviours that are spared following lesions to the primary visual cortex and is thought to involve pulvinar circuits. Here, the authors report that selective inactivation of the ventral pulvinar or the superior colliculus leads to impairment in visually guided saccades in blindsight.

    • Masaharu Kinoshita
    • , Rikako Kato
    •  & Tadashi Isa
  • Article
    | Open Access

    Saccades have been extensively used to report choices in perceptual decision making studies yet little is known about the influence of covert decision-related processes on saccade metrics. Here, the authors demonstrate that saccade kinematics is a reliable tell about the degree of decision certainty.

    • Joshua A. Seideman
    • , Terrence R. Stanford
    •  & Emilio Salinas
  • Article
    | Open Access

    In primates, the superior colliculus (SC) contributes to rapid visual exploration with saccades. Here the authors show that the superior colliculus preferentially represents low spatial frequencies, which are the most prevalent in natural scenes.

    • Chih-Yang Chen
    • , Lukas Sonnenberg
    •  & Ziad M. Hafed
  • Article
    | Open Access

    Saccades result in remapping the neural representation of a target object as well as its attentional modulation. Here the authors show that the trans-saccadic attentional shift is precisely synchronized with the saccade resulting in optimal maintenance of the locus of spatial attention.

    • Tao Yao
    • , Stefan Treue
    •  & B. Suresh Krishna
  • Article
    | Open Access

    Basal ganglia can both facilitate or inhibit movement through excitatory and inhibitory pathways; however whether these opposing signals are dynamically regulated during behavior is not known. Here the authors use multinucleus LFP recordings and electrical microstimulation in monkeys performing saccade based tasks to show task specific changes in the tonic weighting of these pathways.

    • Jay J. Jantz
    • , Masayuki Watanabe
    •  & Douglas P. Munoz
  • Article
    | Open Access

    Macaque higher visual areas MST and VIP encode heading direction based on self-motion stimuli. Here the authors show that, while making saccades, the heading direction decoded from the neural responses is compressed toward straight-ahead, and independently demonstrate a perceptual illusion in humans based on this perisaccadic decoding error.

    • Frank Bremmer
    • , Jan Churan
    •  & Markus Lappe
  • Article
    | Open Access

    Active locomotion requires closed-loop sensorimotor co ordination between perception and action. Here the authors show using behavioural, imaging and modelling approaches that gaze orientation during phototaxis behaviour in larval zebrafish is related to oscillatory dynamics of a neuronal population in the hindbrain.

    • Sébastien Wolf
    • , Alexis M. Dubreuil
    •  & Georges Debrégeas
  • Article
    | Open Access

    Primates acquire visual information through rapid saccadic eye movements, although little is known about their effects on neural processing of visual inputs. Here the authors demonstrate that saccades produce modulations of visual cortical processing that likely originate in the thalamus.

    • James M. McFarland
    • , Adrian G. Bondy
    •  & Daniel A. Butts
  • Article
    | Open Access

    A key question in neuroscience is understanding how the brain distinguishes self-generated motion from motion in the external world. Here the authors demonstrate that the response of primary visual cortical neurons to a moving stimulus depends on whether the motion was self- or externally generated.

    • Xoana G. Troncoso
    • , Michael B. McCamy
    •  & Susana Martinez-Conde