Polaritons articles within Nature

Featured

  • Article |

    In the layered magnetic semiconductor CrSBr, emergent light–matter hybrids (polaritons) increase the spectral bandwidth of correlations between the magnetic, electronic and optical properties, enabling largely tunable optical responses to applied magnetic fields and magnons.

    • Florian Dirnberger
    • , Jiamin Quan
    •  & Vinod M. Menon
  • Article |

    Experiments show that the dynamics of phase fluctuations  in a one-dimensional polariton condensate falls in the Kardar–Parisi–Zhang universality class, and theoretical analysis supports this finding revealing the key signatures of this universality class.

    • Quentin Fontaine
    • , Davide Squizzato
    •  & Jacqueline Bloch
  • Article
    | Open Access

    Shear phenomena in the infrared dielectric response of a monoclinic crystal are shown to unveil a new polariton class termed hyperbolic shear polariton that can emerge in any low-symmetry monoclinic or triclinic system.

    • Nikolai C. Passler
    • , Xiang Ni
    •  & Alexander Paarmann
  • Article |

    Direct infrared nano-imaging of plasmonic waves in graphene carrying high current density reveals the Fizeau drag of plasmon polaritons by fast-moving quasi-relativistic electrons.

    • Y. Dong
    • , L. Xiong
    •  & D. N. Basov
  • Article |

    Pairs of photons in the Laughlin state are created by mimicking a fractional quantum Hall system using the synthetic magnetic field induced by a twisted optical cavity and Rydberg-mediated polariton interactions.

    • Logan W. Clark
    • , Nathan Schine
    •  & Jonathan Simon
  • Letter |

    Frequency modulation is used to create ‘Floquet polaritons’—strongly interacting quasi-particles that exist in a customizable set of modes.

    • Logan W. Clark
    • , Ningyuan Jia
    •  & Jonathan Simon
  • Letter |

    A part-light, part-matter exciton-polariton topological insulator is created in an array of semiconductor microcavities.

    • S. Klembt
    • , T. H. Harder
    •  & S. Höfling
  • Letter |

    In non-Hermitian systems, spectral degeneracies can arise that can cause unusual, counter-intuitive effects; here exciton-polaritons—hybrid light–matter particles—within a semiconductor microcavity are found to display non-trivial topological modal structure exclusive to such systems.

    • T. Gao
    • , E. Estrecho
    •  & E. A. Ostrovskaya
  • Letter |

    Multiple-quantum-well semiconductors can provide one of the largest known nonlinear material responses, which is, however, geometrically limited to light beams polarized perpendicular to the semiconductor layers; by coupling a plasmonic metasurface to the semiconductor heterostructure, this limitation can be lifted, opening a new path towards ultrathin planarized components with large nonlinear response.

    • Jongwon Lee
    • , Mykhailo Tymchenko
    •  & Mikhail A. Belkin