Physical sciences articles within Nature Communications

Featured

  • Article |

    Brillouin interactions between sound and light can excite mechanical resonances in photonic microsystems, with potential for sensing and frequency reference applications. The authors demonstrate experimental excitation of mechanical resonances ranging from 49 to 1,400 MHz using forward Brillouin scattering.

    • Gaurav Bahl
    • , John Zehnpfennig
    •  & Tal Carmon
  • Article
    | Open Access

    Flux-closure patterns are rarely observed in ferroelectric materials and almost exclusively form at the nanoscale. McQuaidet al. report mesoscopic dipole closure patterns formed in free-standing single-crystal lamellae of BaTiO3, thought to result from an unusual set of experimental conditions.

    • R.G.P. McQuaid
    • , L.J. McGilly
    •  & J.M. Gregg
  • Article |

    Single-molecule magnets could be useful for the development of spintronic devices. Here single-molecule magnets are encapsulated in carbon nanotubes without affecting the properties of the guest molecules, which may be useful in the development of spintronic or high-density magnetic storage devices.

    • Maria del Carmen Giménez-López
    • , Fabrizio Moro
    •  & Andrei N. Khlobystov
  • Article
    | Open Access

    In some iron-based materials, unconventional superconductivity can emerge near a quantum phase transition where long-range magnetic order vanishes. Giovannettiet al.show that the magnetic quantum phase transition in an iron pnictide superconductor is very close to the quantum tricritical point.

    • Gianluca Giovannetti
    • , Carmine Ortix
    •  & José Lorenzana
  • Article |

    Pagerank is widely used to rank web content; however, it is unknown how network topology affects its performance. The authors demonstrate that, in random networks, pagerank is sensitive to perturbations in topology, whereas scale-free networks contain a few super-stable nodes whose ranking is exceptionally stable.

    • Gourab Ghoshal
    •  & Albert-László Barabási
  • Article
    | Open Access

    Interacting electrons in one dimension are predicted to have independent spin and charge excitations. Wakehamet al. show evidence of this behaviour in a bulk conductor by measuring a ratio of thermal to electrical conductivity orders of magnitude larger than in conventional three-dimensional metals.

    • Nicholas Wakeham
    • , Alimamy F. Bangura
    •  & Nigel E. Hussey
  • Article |

    Covalent reactions on carbon nanotube surfaces typically occur at random positions on the hexagonal lattice. Denget al. show that Billups–Birch reductive alkylation takes place at, and propagates from, sp3defect sites, leading to confinement of the reaction fronts in the tubular direction.

    • Shunliu Deng
    • , Yin Zhang
    •  & YuHuang Wang
  • Article
    | Open Access

    The fractional quantum Hall effect occurs when electrons move in Landau levels. In this study, using a theoretical flat-band lattice model, the fractional quantum Hall effect is observed in the presence of repulsive interactions when the band is one third full and in the absence of Landau levels.

    • D.N. Sheng
    • , Zheng-Cheng Gu
    •  & L. Sheng
  • Article
    | Open Access

    Optical computing, involving on-chip integrated logic units, could provide improved performance over semiconductor-based computing. Here, a binary NOR gate is developed from cascaded OR and NOT gates in four-terminal plasmonic nanowire networks; the work could lead to new optical computing technologies.

    • Hong Wei
    • , Zhuoxian Wang
    •  & Hongxing Xu
  • Article
    | Open Access

    Two-qubit operation is an essential part of quantum computation, but implementation has been difficult. Gotoet al.introduce optically controllable internuclear coupling in semiconductors providing a simple way of switching inter-qubit couplings in semiconductor-based quantum computers.

    • Atsushi Goto
    • , Shinobu Ohki
    •  & Tadashi Shimizu
  • Article |

    A quantum simulator can follow the evolution of a prescribed model, whose behaviour may be difficult to determine. Here, the emergence of magnetism is simulated by implementing a quantum Ising model, providing a benchmark for simulations in larger systems.

    • R. Islam
    • , E.E. Edwards
    •  & C. Monroe
  • Article |

    Interactions between charge, orbital and lattice degrees of freedom in correlated electron systems have resulted in predictions of new electronic phases of matter. Carlson and Dahmen propose two protocols for detecting disordered electron nematics in condensed matter systems using non-equilibrium methods.

    • E.W. Carlson
    •  & K.A. Dahmen
  • Article |

    The unoccupied electronic levels of graphene are modified by corrugation, doping and presence of impurities. Here, the authors map discrete electronic domains within a single graphene sheet using scanning transmission X-ray microscopy and provide insight into the modification of unoccupied levels.

    • Brian J. Schultz
    • , Christopher J. Patridge
    •  & Sarbajit Banerjee
  • Article |

    Waveplates are used in optoelectronics to alter the polarization of light, but they do not typically perform achromatically, which is important for applications such as three-dimensional displays. Here, biologically inspired periodically multilayered structures are produced, which function as achromatic visible-light waveplates.

    • Yi-Jun Jen
    • , Akhlesh Lakhtakia
    •  & Jyun-Rong Lai
  • Article
    | Open Access

    A bubble at an air–liquid interface can form a liquid jet upon bursting, spraying aerosol droplets into the air. Leeet al. show that jetting is analogous to pinching-off in liquid coalescence, which may be useful in applications that prevent jet formation and in the improved incorporation of aerosols in climate models.

    • Ji San Lee
    • , Byung Mook Weon
    •  & Wah-Keat Lee
  • Article
    | Open Access

    Light–matter interactions can be used to manipulate magnetization in solids, but light-controlled magnetization vector motion has not been demonstrated. Here, two-dimensional magnetic oscillations in NiO are manipulated with optical pulses leading to vectorial control of magnetization by light.

    • Natsuki Kanda
    • , Takuya Higuchi
    •  & Makoto Kuwata-Gonokami
  • Article |

    Optoelectronic devices such as conventional semiconductor lasers are used to study the chaotic behaviour of nonlinear systems. Here chaos is observed for quantum-dot microlasers operating close to the quantum limit with potential for new directions in the study of chaos in quantum systems.

    • Ferdinand Albert
    • , Caspar Hopfmann
    •  & Ido Kanter
  • Article |

    Anyons are particles with fractional statistics that interpolate between bosons and fermions, and are thought to exist in low-dimensional systems. Keilmannet al. propose an experimental system to create anyons in one-dimensional optical lattices using assisted Raman tunnelling.

    • Tassilo Keilmann
    • , Simon Lanzmich
    •  & Marco Roncaglia
  • Article |

    Single nanoparticles are known to emit light intermittently, or 'blink', but the mechanisms describing this phenomenon are not fully understood. This study demonstrates that, for small clusters of blinking nanoparticles, the number of particles within a cluster dramatically influences blinking time.

    • Siying Wang
    • , Claudia Querner
    •  & Marija Drndic
  • Article
    | Open Access

    Negative thermal expansion—contraction upon heating—is an unusual process that may be exploited to produce materials with zero or other controlled thermal expansion values. Azumaet al. observe negative thermal expansion in BiNiO3which is a result of Bi/Ni charge-transfer transitions.

    • Masaki Azuma
    • , Wei-tin Chen
    •  & J. Paul Attfield
  • Article |

    A quantum key distribution system allows two remote parties to communicate in secret by a shared key code. This work demonstrates a complete and undetected eavesdropping attack on a quantum key distribution connection, highlighting the need for further security updates on secure communication systems.

    • Ilja Gerhardt
    • , Qin Liu
    •  & Vadim Makarov
  • Article
    | Open Access

    Understanding how the high-energy physics of Mott-like excitations affects condensate formation is a key challenge in high-temperature superconductivity. Giannettiet al. clarify the relationship of many-body CuO2excitations and the onset of superconductivity using a new optical pump supercontinuum-probe technique.

    • Claudio Giannetti
    • , Federico Cilento
    •  & Fulvio Parmigiani
  • Article |

    SiO2 glass and helium are important in various fields of science and engineering. Sato et al. show SiO2glass to be less compressible in helium under high pressure, which may be relevant for the interpretation of high-pressure experiments and in the design of new materials.

    • Tomoko Sato
    • , Nobumasa Funamori
    •  & Takehiko Yagi
  • Review Article |

    Type Ia supernovae are thought to result from the explosion of white dwarf stars but a full understanding of their formation is lacking. In this review, Howell describes how large surveys are generating sufficient data to challenge and refine existing theories.

    • D. Andrew Howell
  • Article
    | Open Access

    Nanoparticles continue to find research and industrial applications, but no single technique exists to characterise their physical properties. Now, an analytical ultracentrifugation method is described which allows the simulataneous determination of nanoparticle size, density and molecular weight distribution.

    • Randy P. Carney
    • , Jin Young Kim
    •  & Osman M. Bakr
  • Article |

    Hydro-responsive plant movements have provided inspiration for the design of adaptive materials. Harringtonet al. investigate the hydration-dependent unfolding of ice plant seed capsules and find an origami-like folding pattern, which could aid the development of biomimetic folding structures.

    • Matthew J. Harrington
    • , Khashayar Razghandi
    •  & Ingo Burgert
  • Article |

    Encapsulating molecules within supramolecular frameworks for potential biological application is challenging. Bhatiaet al. incorporate a fluorescent polymer within an icosahedral DNA nanocapsule, and show that it can be used to target specific cells in vivoand map pH spatially and temporally.

    • Dhiraj Bhatia
    • , Sunaina Surana
    •  & Yamuna Krishnan
  • Article |

    Metal-based nanostructures offer a solution to scale down photonics to the nanoscale. Sorgeret al. directly demonstrate waveguiding of ultra-small propagating waves at visible and near-infrared frequencies using NSOM imaging, with the potential for nanoscale photonic applications such as bio-sensing.

    • Volker J. Sorger
    • , Ziliang Ye
    •  & Xiang Zhang
  • Article
    | Open Access

    Bose–Einstein condensation of excitons in thermal equilibrium is a predicted quantum statistical phenomenon that has been difficult to observe. Yoshiokaet al. cool trapped excitons to sub-Kelvin temperatures and show that condensation manifests itself as a relaxation explosion as has been observed for atomic hydrogen.

    • Kosuke Yoshioka
    • , Eunmi Chae
    •  & Makoto Kuwata-Gonokami
  • Article
    | Open Access

    Optical nanoantennas can be used for spectroscopic investigations at previously unattainable dimensions. Schumacheret al.describe time-resolved antenna-enhanced ultrafast nonlinear optical spectroscopy and determine the transient absorption signal of a single gold nanoparticle.

    • Thorsten Schumacher
    • , Kai Kratzer
    •  & Markus Lippitz
  • Article |

    Lithium–sulphur batteries may achieve higher energy densities than conventional lithium-ion cells, but the dissolution of sulphur intermediates is a continuing challenge. Here this problem is overcome using a cathode with a mesoporous structure that is able to accommodate intermediate polysulphide anions.

    • Xiulei Ji
    • , Scott Evers
    •  & Linda F. Nazar
  • Article
    | Open Access

    Two-dimensional fluid interfaces are ubiquitous, but studying their surface dynamic properties is difficult because of coupling between the film and bulk fluid. Choiet al.combine active microrheology with fluorescence microscopy to image fluid interfaces under applied stress.

    • S.Q. Choi
    • , S. Steltenkamp
    •  & T.M. Squires
  • Article
    | Open Access

    The conductance of single-molecule junctions is affected by the structure of the molecule and how it is bound to the electrodes, which may be examined using Raman spectroscopy. Liuet al. have developed 'fishing-mode' tip-enhanced Raman spectroscopy, which allows the simultaneous determination of conductance and Raman spectra.

    • Zheng Liu
    • , Song-Yuan Ding
    •  & Zhong-Qun Tian
  • Article |

    The detailed interactions of membrane proteins with their lipid environment are poorly understood. Sonntaget al. use low-resolution X-ray crystallographic data and molecular dynamics simulations to study the manner in which the sarcoendoplasmic reticulum Ca2+–ATPase adapts to different membrane environments.

    • Yonathan Sonntag
    • , Maria Musgaard
    •  & Lea Thøgersen
  • Article |

    Sintering is the basis for the production of many metallic and composite materials. Gruppet al. use a new technique to measure the rotation of microscopic copper particles during sintering and find intrinsic rotations to be the dominant movement.

    • R. Grupp
    • , M. Nöthe
    •  & J. Banhart
  • Article
    | Open Access

    Wave mixing in optical resonators suffers from strong bandwidth constraints, hindering practical implementation. Morichettiet al. report travelling-wave four-wavemixing in coupled ring resonators, which combines the efficiency enhancement of resonant propagation with a wide-band conversion process.

    • Francesco Morichetti
    • , Antonio Canciamilla
    •  & Andrea Melloni
  • Article |

    Little is known about the effects of molecular crowding and confinement on biomolecule function. Castronovoet al. investigate the reactions of restriction enzymes with DNA confined in bushy matrices and find that the enzymes enter at the side of the matrix before diffusing two-dimensionally.

    • Matteo Castronovo
    • , Agnese Lucesoli
    •  & Giacinto Scoles
  • Article |

    Solid gold is most stable as a face-centred cubic structure, and stable colloidal gold with hexagonal close packing has not been produced. Huanget al.prepare square gold sheets with hexagonal close packing that are stable under ambient conditions.

    • Xiao Huang
    • , Shaozhou Li
    •  & Hua Zhang