Optical tweezers articles within Nature Communications

Featured

  • Article
    | Open Access

    In anaphase, any unresolved DNA entanglements between the segregating sister chromatids can give rise to chromatin bridges. Here, the authors present an in vitro single-molecule assay that mimics chromatin under tension, to show that PICH is a tension- and ATP-dependent nucleosome remodeler.

    • Dian Spakman
    • , Tinka V. M. Clement
    •  & Gijs J. L. Wuite
  • Article
    | Open Access

    RecBCD is a remarkably fast DNA helicase. Using a battery of biophysical methods, Zananiri et. al reveal additional, non-catalytic ATP binding sites that increase the ATP flux to the catalytic sites that allows fast unwinding when ATP is scarce.

    • Rani Zananiri
    • , Sivasubramanyan Mangapuram Venkata
    •  & Arnon Henn
  • Article
    | Open Access

    Here the authors probe the cleavage and gate opening of single-stranded DNA by the human topoisomerase TRR using a unique single-molecule strategy to reveal structural plasticity in response to both double-stranded DNA and the helicase BLM.

    • Julia A. M. Bakx
    • , Andreas S. Biebricher
    •  & Erwin J. G. Peterman
  • Article
    | Open Access

    UvrD is a model helicase from the non-hexameric Superfamily 1. Here, the authors use optical tweezers to measure directly the stepwise translocation of UvrD along a DNA hairpin, and propose a mechanism in which UvrD moves one base pair at a time, but sequesters the nascent single strands, releasing them after a variable number of ATP hydrolysis cycles.

    • Sean P. Carney
    • , Wen Ma
    •  & Yann R. Chemla
  • Article
    | Open Access

    Light-driven micromotors can convert energy to motion in sub-millimeter dimensions. Here, the authors extend this concept and introduce reconfigurable micromachines with multiple components, driven by optoelectronic tweezers, and demonstrate new functionalities.

    • Shuailong Zhang
    • , Mohamed Elsayed
    •  & Aaron R. Wheeler
  • Article
    | Open Access

    Existing tools to study hearing are limited. Here the authors report Bio-OptoAcoustic (BOA) stimulation wherein they use optical forces to generate localised sound and activate the auditory system of zebrafish larvae.

    • Itia A. Favre-Bulle
    • , Michael A. Taylor
    •  & Ethan K. Scott
  • Article
    | Open Access

    The endoplasmic reticulum (ER) is an intracellular network characterized by highly dynamic behavior whose control mechanisms are unclear. Here, the authors show that the ER-membrane protein Reticulon (Rtnl1) can constrict ER bilayers and lead to ER fission.

    • Javier Espadas
    • , Diana Pendin
    •  & Andrea Daga
  • Article
    | Open Access

    Myosin-5B is an actin-based motor important for endosome recycling, but the molecular mechanism underlying its motility remains unknown. Here authors use single molecule imaging and high-speed laser tweezers to dissect the mechanoenzymatic properties of myosin-5B, which shows processive motility with peculiar mechanosensitivity.

    • Lucia Gardini
    • , Sarah M. Heissler
    •  & Marco Capitanio
  • Article
    | Open Access

    The neural circuits of the vestibular system, which detects gravity and motion, remain incompletely characterised. Here the authors use an optical trap to manipulate otoliths (ear stones) in zebrafish larvae, and elicit corrective tail movements and eye rolling, thus establishing a method for mapping vestibular processing.

    • Itia A. Favre-Bulle
    • , Alexander B. Stilgoe
    •  & Ethan K. Scott
  • Article
    | Open Access

    Precise assembly of undecorated colloids demands a clever approach. Here, the authors draw unlikely inspiration from vector graphics to direct colloids into 2D structures, pinning the ends and corners of assembled patterns with optical tweezers and manipulating the segments like vectors.

    • Lingxiang Jiang
    • , Shenyu Yang
    •  & Steve Granick
  • Article
    | Open Access

    Nanoscopy of non-adherent cells is currently not possible, due to their movement in solution. Here the authors immobilize and manipulate fixedE. coli by multiple optical traps; their holographic optical tweezers enable dSTORM imaging of orthogonal planes via 3D realignment of the sample.

    • Robin Diekmann
    • , Deanna L. Wolfson
    •  & Thomas Huser
  • Article |

    Particle tracking with ultra-high resolution in optical and magnetic tweezers has so far relied on laser detection through photodiodes. Here, Huhle et al. demonstrate three-dimensional particle tracking with Ångström accuracy and real-time GPU-accelerated data processing at kHz rates using camera-based imaging.

    • Alexander Huhle
    • , Daniel Klaue
    •  & Ralf Seidel
  • Article |

    Optical tweezers based on focused laser beams are widely used for biophysical measurements of single molecules in vitro. Here Zhong et al. use infrared optical tweezers to trap and manipulate red blood cells within subdermal capillaries in living mice.

    • Min-Cheng Zhong
    • , Xun-Bin Wei
    •  & Yin-Mei Li