Differentiation articles within Nature

Featured

  • Letter |

    Gain-of-function mutations in isocitrate dehydrogenase (IDH) are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly cancer of the liver bile ducts; now mutant IDH is shown to block liver cell differentiation through the suppression of HNF-4α, a master regulator of hepatocyte identity and quiescence, leading to expansion of liver progenitor cells primed for progression to IHCC.

    • Supriya K. Saha
    • , Christine A. Parachoniak
    •  & Nabeel Bardeesy
  • Letter |

    A study investigating the mechanisms underlying lateral inhibition and lineage plasticity in the mouse small intestine crypts in vivo finds that crypt cells maintain a permissive chromatin state upon which a transcription factor acts to determine lineage specification, and this is the basis of lateral inhibition.

    • Tae-Hee Kim
    • , Fugen Li
    •  & Ramesh A. Shivdasani
  • News & Views Forum |

    A technique called somatic-cell nuclear transfer has been applied to human oocytes, resulting in the generation of personalized stem cells, albeit genetically abnormal ones. Two experts discuss the biomedical significance of this work and the ethical issues surrounding the use of human oocytes in research. See Article p.70

    • George Q. Daley
    •  & Jan Helge Solbakk
  • Article |

    The identity of the cells that form the haematopoietic stem cell (HSC) niche in bone marrow has been unclear. These authors identify nestin-expressing mesenchymal stem cells as niche-forming cells. These nestin-expressing cells show a close physical association with HSCs and express high levels of genes involved in HSC maintenance, and their depletion reduces bone marrow homing of haematopoietic progenitors.

    • Simón Méndez-Ferrer
    • , Tatyana V. Michurina
    •  & Paul S. Frenette
  • Letter |

    Chronic myelogenous leukaemia (CML) can progress from a chronic to an acute phase. These authors show in mouse models that leukaemia progression is controlled by the cell-fate regulator Musashi2, which in turn regulates Numb, Notch and p53 to block cellular differentiation. Musashi2 expression can be increased by aberrant transcription factors found in leukaemia, is observed during cancer progression in human CML patients and is associated with poorer prognosis.

    • Takahiro Ito
    • , Hyog Young Kwon
    •  & Tannishtha Reya
  • Letter |

    An understanding of how fat cells (adipocytes) develop will contribute to our understanding of obesity. The differentiation of committed preadipocytes into adipocytes is known to be controlled by PPARγ and several other transcription factors. But what turns a cell into a preadipocyte? Here, the zinc-finger protein Zfp423 is identified as a transcriptional regulator of preadipocyte determination.

    • Rana K. Gupta
    • , Zoltan Arany
    •  & Bruce M. Spiegelman
  • Article |

    Pancreatic β-cells release insulin, which controls energy homeostasis in vertebrates, and its lack causes diabetes mellitus. The transcription factor neurogenin 3 (Neurog3) initiates differentiation of β-cells and other islet cell types from pancreatic endoderm; here, the transcription factor Rfx6 is shown to direct islet cell differentiation downstream of Neurog3 in mice and humans. This may be useful in efforts to generate β-cells for patients with diabetes.

    • Stuart B. Smith
    • , Hui-Qi Qu
    •  & Michael S. German
  • Editorial |

    • Deepa Nath
    • , Ritu Dhand
    •  & Angela K. Eggleston
  • Letter |

    Progenitor cells sustain the capacity of self-renewing tissues for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation is one potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through cell divisions. The DNA methyltransferase 1 and other regulators of DNA methylation are now shown to be essential for epidermal progenitor cell function.

    • George L. Sen
    • , Jason A. Reuter
    •  & Paul A. Khavari
  • Letter |

    Immune homeostasis relies on tight control over the size of a population of regulatory T cells (Treg) that can suppress over-exuberant immune responses. Cells commit to the Treg lineage by upregulating the transcription factor Foxp3. Conserved non-coding DNA sequence elements at the Foxp3 locus are now shown to control the composition, size and maintenance of the Treg cell population.

    • Ye Zheng
    • , Steven Josefowicz
    •  & Alexander Y. Rudensky
  • Article |

    The differentiation of an embryonic stem cell (ESC) requires both suppression of the self-renewal process and activation of the specific differentiation pathway. The let-7 family of microRNAs (miRNAs) are now shown to suppress the self-renewal program in cells that are normally unable to silence this program, whereas introduction of ESC cell cycle regulating miRNAs blocks the action of let-7. Thus, the interplay between these two groups of miRNAs dictates cell fate.

    • Collin Melton
    • , Robert L. Judson
    •  & Robert Blelloch