Amyotrophic lateral sclerosis articles within Nature

Featured

  • Article
    | Open Access

    A neural stem cell culture system derived from induced pluripotent stem cells forms a network of synaptically connected and electrophysiologically active neurons that were used as a model system to identify a mechanism of TDP-43-induced neurodegeneration.

    • Marian Hruska-Plochan
    • , Vera I. Wiersma
    •  & Magdalini Polymenidou
  • Article |

    Cryo-electron microscopy of aggregated TDP-43 from postmortem brain tissue of individuals who had ALS with FTLD reveals a filament structure with distinct features to other neuropathological protein filaments, such as those of tau and α-synuclein.

    • Diana Arseni
    • , Masato Hasegawa
    •  & Benjamin Ryskeldi-Falcon
  • Article |

    Studies of mice and humans suggest a role for loss of the C9orf72 protein in some neurodegenerative disorders: with reduced C9orf72 levels, there is more inflammation mediated by the STING protein in immune and brain cells.

    • Madelyn E. McCauley
    • , Jacqueline Gire O’Rourke
    •  & Robert H. Baloh
  • Article |

    Reduced abundance of immune-stimulating gut bacteria ameliorated the inflammatory and autoimmune phenotypes of mice with mutations in C9orf72, which in the human orthologue are linked to amyotrophic lateral sclerosis and frontotemporal dementia.

    • Aaron Burberry
    • , Michael F. Wells
    •  & Kevin Eggan
  • Article |

    Cytoplasmic, amyloid-like oligomeric assemblies that contain TDP-43 are increased in damaged tissues with elevated regeneration, thereby enhancing the possibility of amyloid fibre formation and/or aggregation of TDP-43 in disease.

    • Thomas O. Vogler
    • , Joshua R. Wheeler
    •  & Roy Parker
  • Article |

    A candidate-based genetic screen in Drosophila expressing 30 G4C2-repeat-containing RNAs finds that RanGAP, a key regulator of nucleocytoplasmic transport, is a potent suppressor of neurodegeneration; the defects caused by the G4C2 repeat expansions can be rescued with antisense oligonucleotides or small molecules targeting the G-quadruplexes.

    • Ke Zhang
    • , Christopher J. Donnelly
    •  & Jeffrey D. Rothstein
  • Letter |

    Mutations in the profilin 1 (PFN1) gene, which is crucial for the conversion of monomeric to filamentous actin, can cause familial amyotrophic lateral sclerosis, suggesting that alterations in cytoskeletal pathways contribute to disease pathogenesis.

    • Chi-Hong Wu
    • , Claudia Fallini
    •  & John E. Landers
  • Article |

    The causes of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) are poorly understood, although the protein TDP-43 seems to be involved. These authors show that the polyglutamine-containing protein ataxin 2 interacts with TDP-43 and is a potent modifier of TDP-43 toxicity. Moreover, intermediate-length polyglutamine expansions in the ataxin 2 gene significantly associate with ALS. These data establish the ataxin 2 gene as a new and relatively common ALS disease susceptibility gene.

    • Andrew C. Elden
    • , Hyung-Jun Kim
    •  & Aaron D. Gitler
  • News & Views |

    Aggregates and mutations of the proteins ataxin-2 and TDP-43 have been implicated in distinct neurodegenerative disorders. An interplay between these proteins is now reported for amyotrophic lateral sclerosis.

    • Clotilde Lagier-Tourenne
    •  & Don W. Cleveland
  • Letter |

    Amyotrophic lateral sclerosis (ALS) is a disorder characterized by the degeneration of motor neurons. About 10% of cases are familial, but the mutations identified in these families account for only 20–30% of such cases. Here a new set of mutations in familial ALS is found — in the gene encoding optineurin. Given the effect of optineurin mutations on the NF-κB protein, it is suggested that inhibiting NF-κB might be useful in treating ALS.

    • Hirofumi Maruyama
    • , Hiroyuki Morino
    •  & Hideshi Kawakami