articles # Nucleotide sequence of bacteriophage $\Phi X174 DNA$ F. Sanger, G. M. Air*, B. G. Barrell, N. L. Brown[†], A. R. Coulson, J. C. Fiddes, C. A. Hutchison III[‡], P. M. Slocombe[§] & M. Smith[†] MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK A DNA sequence for the genome of bacteriophage $\Phi X174$ of approximately 5,375 nucleotides has been determined using the rapid and simple 'plus and minus' method. The sequence identifies many of the features responsible for the production of the proteins of the nine known genes of the organism, including initiation and termination sites for the proteins and RNAs. Two pairs of genes are coded by the same region of DNA using different reading frames. The genome of bacteriophage Φ X174 is a single-stranded, circular DNA of approximately 5,400 nucleotides coding for nine known proteins. The order of these genes, as determined by genetic techniques²⁻⁴, is A-B-C-D-E-J-F-G-H. Genes F, G and H code for structural proteins of the virus capsid, and gene J (as defined by sequence work) codes for a small basic protein that is also part of the virion. Gene A is required for double-stranded DNA replication and single-strand synthesis. Genes B, C and D are involved in the production of viral single-stranded DNA: however, the exact function of these gene products is not clear as they may either be involved directly in DNA synthesis or be required for DNA packaging, which is coupled with single-strand production. Gene E is responsible for lysis of the host. The first nucleotide sequences established in ΦX were pyrimidine tracts⁵⁻⁷ obtained by the Burton and Petersen⁸ depurination procedure. The longer tracts could be obtained pure and sequences of up to 10 nucleotides were obtained. More recently Chadwell⁹ has improved the hydrazinolysis method to obtain the longer purine tracts. These results are included in the sequence given in Fig. 1. More extensive ΦX sequences were obtained using partial degradation techniques, particularly with endonuclease IV (refs 10 and 11). Ziff *et al.*^{12.13} used this enzyme in conditions of partial hydrolysis to obtain fragments 50–200 nucleotides long which were purified as ³²P-labelled material by electrophoresis on polyacrylamide gels. The fragments came from the same region of the genome and the sequence of a 48-nucleotide long fragment (band 6, positions 1,047–1,094) was determined using mainly further degradation with endonuclease IV and partial exonuclease digestions. Another 50-nucleotide long fragment was obtained by Robertson *et al.*¹⁴ as a ribosome binding site. The viral (or plus) Present addresses: *John Curtin School of Medical Research, Microbiology Department, Canberra City ACT 2601, Australia, †Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK, ‡Department of Bacteriology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27514, \$Max-Planck-Institut für Molekulare Genetik, 1 Berlin 33, FRG, ¶Department of Biochemistry, University of British Columbia, Vancouver BC, Canada V6T 1W5. strand DNA of ΦX has the same sequence as the mRNA and, in certain conditions, will bind ribosomes so that a protected fragment can be isolated and sequenced. Only one major site was found. By comparison with the amino acid sequence data it was found that this ribosome binding site sequence coded for the initiation of the gene G protein¹⁵ (positions 2,362–2,413). At this stage sequencing techniques using primed synthesis with DNA polymerase were being developed¹⁶ and Schott¹⁷ synthesised a decanucleotide with a sequence complementary to part of the ribosome binding site. This was used to prime into the intercistronic region between the F and G genes, using DNA polymerase and ³²P-labelled triphosphates¹⁸. The ribo-substitution technique¹⁶ facilitated the sequence determination of the labelled DNA produced. This decanucleotide-primed system was also used to develop the plus and minus method¹. Suitable synthetic primers are, however, difficult to prepare and as DNA fragments generated by restriction enzymes are more readily available these have been used for most of the work reported here. Another approach to DNA sequencing is to make an RNA copy using RNA polymerase with α-32P-labelled ribotriphosphates and then to determine the RNA sequence by more established methods. Blackburn^{19,20} used this approach on intact single-stranded ΦX and on fragments obtained by digestion with endonuclease IV or with restriction enzymes. Sedat et al.21 were extending their studies on the larger endonuclease IV fragments and their results, taken in conjunction with the transcription of the DNA fragments20, amino acid sequence of the F protein²², and the plus and minus method results, made it possible to deduce a sequence of 281 nucleotides (positions 1,016-1,296, Fig. 1) within the F gene²³. Transcription of HindII fragment 10, amino acid sequence data in the G gene, and the plus and minus method using HindII fragments 2 and 10 as primers, gave a sequence of 195 nucleotides (positions 2,387-2,582, Fig. 1) at the N terminus of gene G (ref. 24). #### The 'plus and minus' method Further work on the ΦX sequence has been done using chiefly the plus and minus method primed with restriction fragments. Figure 2 shows the various restriction enzymes used and the fragment maps for each (refs 25–30 and C.A.H., submitted for publication, and N.L.B., C.A.H. and M.S., submitted for publication). Figure 1 shows the combined results of the sequence work to date. The sequence is numbered from the single cleavage site of the restriction enzyme *Pst*1. As with other methods of sequencing nucleic acids, the plus and minus technique used by itself cannot be regarded as a completely reliable system and occasional errors may occur. Such errors and uncertainties can only ``` \frac{\text{FGCTTAATA}}{250} \quad \frac{\text{TGCTTGGCAC}}{260} \quad \frac{\text{GTTCGTCAAG}}{270} \quad \frac{\text{GACTGGTTTA}}{280} \quad \frac{\text{F13/17}}{280} \quad \frac{\text{F13/17}}{290} \quad \frac{\text{F17/16a}}{300} \quad \frac{\text{R7b/6c}}{310} \quad \frac{\text{R7b/6c}}{270} \quad \frac{\text{R7b/6c}}{320} \quad \frac{\text{F16a/16b}}{3300} \quad \frac{\text{F16a/16b}}{320} \quad \frac{\text{F16a/16b}}{3300} \quad \frac{\text{F16a/16b}}{3300} \quad \frac{\text{F16a/16b}}{3200} \frac{\text{F16a/16b \frac{\text{CCTGTTCAAC}}{370} \quad \frac{\text{CACTAATAGG}}{380} \quad \frac{\text{TAAGAAATCA}}{390} \quad \frac{\text{F16b/1}}{400} \quad \frac{\text{TACTGAACAA}}{410} \quad \frac{\text{TCGGTACGTT}}{420} \quad \frac{\text{TCAGACCGC}}{430} \quad \frac{\text{TTTGGCTCT}}{400} \quad \frac{\text{TTAAGCTCA}}{450} \quad \frac{\text{TCAGGCTTT}}{400} \frac{\text{TCAGGCTT}}{400} \frac{\text{ \frac{M1/7}{AAGATGATTT} \frac{T4/5}{CGATTTTCTG} \frac{ACGAGTAACA}{500} \frac{AAGTTTGGAT}{520} \frac{TGCTACTGAC}{530} \frac{CGCTCTCGTG}{540} \frac{CTCGTCGCTG}{550} \frac{CGTTGAGGCT}{560} \frac{TGCGTTTATG}{570} \frac{GTACGCTGGA}{580} \frac{CTTTGTAGGA}{590} \frac{TACCCTCGCT}{600} \frac{CGCTCTCGTG}{570} \frac{CGCTTTATG}{570} \frac{CTCGTGGAGGCT}{570} \frac{CGCTTTATG}{570} \frac{CTCGTGGAGGCT}{570} \frac{CTTGTAGGA}{570} \frac{CTTGT \frac{\text{TCCTGCTCC}}{610} \quad \frac{\text{TGTTGAGTTT}}{620} \quad \frac{\text{ATTGCTGCCG}}{630} \quad \frac{\text{TCATTGCTTA}}{640} \quad \frac{\text{TTATGTTCAT}}{650} \quad \frac{\text{R6c}/\text{7a}}{660} \quad \frac{\text{Z7}/\text{5}}{1\text{TCAAACGGC}} \quad \frac{\text{H4}/\text{1}}{\text{CTGTTCATC}} \quad \frac{\text{H4}/\text{1}}{1\text{TGAAGGGC}} \quad \frac{\text{TGAATTTAC}}{1\text{TGAATTTAC}} \quad \frac{\text{GGAAACATT}}{1\text{TGAATGGCC}} \quad \frac{\text{ATTGAATGGCC}}{1\text{TGAATTTAC}} \quad \frac{\text{TTAATGGCC}}{1\text{TGAATTTAC}} \frac{\text{TTAATGGCC}}{1\text{TGAATTTA TGATGTAATG TCTAAAGGTA AAAAACGTTC TGGCGCCCC CCTGGTCGTC CGCAGCCGTT GCGAGGTACT AAAGGCAAGC GTAAAGGCGC TCGTCTTTCG TATGTAGGTG GTCAACAATT 850 860 870 880 890 900 910 920 930 940 950 960 TTAATTGCAG GGGCTTCGGC CCCTTACTIG AGGATAAATT ATGTCTAATA TTCAAACTGG CGCCGAGCGT ATGCCGCATG ACCTTTCCCA TCTTGGCTTC CTTGCTGGTC AGATTGCTCG \frac{Y^3/2}{1090} - \frac{Y^3/2}{1100} - \frac{F1/14b}{1100} - \frac{T3/1}{1110} - \frac{H10/7}{1120} - \frac{Z8/4}{1100} - \frac{F1/4b/2}{1120} \frac{F1/ \frac{\text{TTTTACTITT}}{1210} \quad \frac{\text{ATGTCCCTC}}{1220} \quad \frac{\text{ATGGTCAGGT}}{1230} \quad \frac{\text{TTAGGTGAA}}{1240} \quad \frac{\text{CAGTGGATTA}}{1250} \quad \frac{\text{AGTGCATGAA}}{1250} \quad \frac{\text{GGATGGTGTT}}{1260} \quad \frac{\text{AGTGCAGTC}}{1270} \quad \frac{\text{CTCTCCGGAC}}{1280} \quad \frac{\text{TGTTAACCAA}}{1290} \quad \frac{\text{ACTACTGGTT}}{1300} \quad \frac{\text{ATATTGACCAA}}{1310} \quad \frac{\text{ACTACTGGTT}}{1320} \frac{\text{ACTACTGGTT}}{1320 1400 1410 GGCTAACCCT AATGAGCTTA ATCAAGATGA TGCTCGTTAT GGTTTCCGTT GCTGCCATCT CAAAAACATT TGGACTGCTC CGCTTCCTC TGAGACTGAG CTTTCTCGCC AAATGACGAC 1450 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 TTCTACCACA TCTATTGACA TTATGGGTCT GCAAGCTGCT TATGCTAATT TGCATACTGA CCAAGAACGT GATTACTTCA TGCAGCGTTA CCATGA-GTT ATTCTTCAT TTGGAGGTAA 1570 1580 1590 1600 1610 1620 1630 1640 1650 1650 1660 1670 1680 AACCTCATAT GACGCTGACA ACCGTCCTTT ACTTGTCATG CGCTCTAATC TCTGGGCATC TGGCTATGAT GTTGATGGAA CTGACCAAAC GTCGTTAGGC CAGTTTTCTG GTCGTGTTCA 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 ACAGACCTAT AAACATTCTG TGCCGCGTTT CTTTGTTCCT GAGCATGGCA CTATGTTTAC TCTTGCGCTG GTTCGTTTTC CGCCTACTGC GACTAAAGAG ATTCAGTACC TTAACGGTAA 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 Q3c/6 F11/7 AGGTGCTTTG ACTTATACCC ATATTGCTGG CGACCCTGTT TTGTATGGCA ACTTGCCGCC GCGTGAAATT TCTATGAAGG ATGTTTTCCG TTCTGGTGAT TCGTCTAAGA AGTTTAAGA1 H8a/6 TGCTGAGGGT CAGTGGTATC GTTATGCGCC TTCGTATGTT TCTCCTGCTT ATCACCTTCT TGAAGGCTTC CCATTCATTC AGGAACCGCC TTCTGGTGAT TTGCAAGAAC GCCTACTTAT 2040 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 TEGGAACCAT GATTATGACC AGTGTTTCAG TCGTTCAGTT GTTGCAGTGG
ATAGTCTTAC CTCATGTGAC GTTTATCGCA ATCTGCCGAC CACTCGCGAT TCAATCATGA CTTCGTGATA 2170 2180 2190 2200 2210 2220 2230 2240 2250 2250 2260 2270 1 2280 Fig. 1 For full description see p. 690. ``` | AAAGATTGAG ′ | TGTGAGGTTA | A_TAACCGAAG | 4 1977
C GGT AAAAAT | TTAATTTT | G CCGCTGAGGC | R1/9
GTTGACCAAC | H6/3
CGAAGCGCGC | TAGGTTTTC | T GCTTAGGAG | T TTAATCATG | 689
T TTCAGACTTT | |--------------------|---------------------------------|--------------|-----------------------------------|----------------------|----------------------|----------------------|---------------------|--|-----------------------|----------------------|--------------------------------| | 2290 | 2300 | 231 | .0 2320 | 2330 | 0 2340 | 2350 | 2360 | 237 | 0 238 | 0 239
G start↑ | 90 2400 | | ATTTCTCCC (| CACAATTCA | A ACTITTIT | A2/1 | 6
CTTCTCACT | A: | 16/15a M4/10 |) | T. T. C. | .15 (2) | | ST_TATATTTTGA | | 2410 | 2420 | 0 243 | 30 2440 | 2450 | 0 2460 | AGCTTCTTCC
247(| C GCACCTGTT
2480 | TACAGACAC
249 | C TAAAGCTAC
O 250 | A TOGTCAACG
0 251 | | | ACTION OF CO. | DOM A 100 | | M10/9 | | | R10/2 | | | | | | | 2530 | 254c | G GTAATGGTG | G TTTTCTTCAT | T TGCATTCAGA
2570 | A TGGATACATO
2580 | TGTCAACGCC | GCTAATCAGO
2600 | TTGTTTCAG
261 | T_TGGTGCTGAT
0 262 | ATTGCTTTT
0 263 | G ATGCCGACCC
30 2640 | | | | F | 55b/8 M9/2 | | | | | | | | | | AATTTTTT (
2650 | CCTGTTTGC
2660 | TTCGCTTTG | A GTCTTCTTCC | GTTCCGACTA
2690 | CCCTCCCGAC
2700 | TGCCTATGAT 2710 | GTTTATCCTT | TGGATGGTC | G CCATGATGG | GGTTATTAT | A CCGTCAAGGA O 2760 | | | | | Y2/5 | | | | | | | | | | GTGTGACT A | ATTGACGTCC
2780 | TTCCCCGTA | C GCCCGGCAAT | AACGTCTACC | TIGGTTICAL
2820 | GGTTTGGTCT
2830 | AACTTTACCC | CTACTAAAT | G CCGCGGATTO | GGTTTCGCTG | F8/4
A ATCAGGTTAT
O 2880 | | | | | | | | | | | | 207 | 2000 | | AGAGATT A | TTTGTCTCC | AGCCACTTA. | Q3b/4
A GTGAGGTGAT
D A 2920 | TTATGTTTGG | TGCTATTGCT | GGCGG TATTG | CTTCTGCTCT | TGCTGGTGGC | | | G_AGGCGGTCAA | | | | | G H Star | | 2740 | 2,30 | 2700 | 2970 | , 2,400 | 2990 | 3000 | | SCCGCCT_C | <u>5/4</u>
CGGTGGCAT
3020 | TCAAGGTGA | T GTGCTTGCTA | CCGATAACAA | TACTGTAGGC | ATGGGTGATG | CTGGTATTAA | | | | A CCCTGATGAG | | 3010 | 3020 | 3030 | 3040 | 3050 | 3060 | 3070 | 3080 | 3090 | 3100 | 3110 | 3120 | | CCCCTA G | TTTTGTTT <u>C</u> | GTGTGCTATT | A3/9
GCTAAAGCTG | GTAAAGGACT | TCTTGAAGGT | ACGTTGCAGG | CTGGCACTTC | TGCCGTTTCT | | TTGATTTCCT | TGGACTTGGT | | 3130 | 3140 | 3150 | 3160 | 3170 | 3180 | 3190 | 3200 | 3210 | 3220 | 3230 | 3240 | | AAGTCTG C | CGCTGATAA | AGGAAAGGA1 | ACT <u>CGTGATT</u> | ATCTTGCTGC | TGCATTTCCT | A9/12d
GAGCTTAATG | CTTGGGAGCG | TGCTGGTGCT | GATGCTTCCT | CTGCTGGTAT | R2/6a | | 3250 | 3260 | | | | | | 3320 | 3330 | | | | | F4/1 | | 2d/7c | A ATGCAACTGG | ACAATCACAA | AC AC AT TOCC | CACATCCAAA | F14a/12 | AAAACACATT | COTTOCATE | AGTGGGGGAG | TTOLOGOAG | | 3370 | 3380 | 3390 | 3400 | | | | | 3450 | | | | | COAAAC A | CC 4 CCT 4 TA | TOOACAAAAA | CACATOOTTO | COTTATE AO | F12/1 | | TROCOT OTHER | m.m.o.o.i.i.i.o | 100.440.0777 | | | | 3490 | 3500 | | GAGATGCTTG
3520 | 3530 | 3540 | 3550 | | | | | | | н2/9 | <u>b</u> | <u>A</u> 7c, | <u>/</u> 8 | | | | <u>Flo/1</u> 5 | | R6a/ | 4 | | | TATGC G | CCAAATGCT
3620 | | CAAACGGCTG
3640 | GTCAGTATTT
3650 | TACCAATGAC
3660 | CAAATCAAAG
3670 | AAATGACTCG
3680 | CAAGGTTAGT
3690 | | | | | <u>5/5</u> e | | 2/5 | <u>H</u> 9b/1 | | | | | | | | A8/14 | | ATCAGC GO
3730 | GTATGGCTC
3740 | | GGCGCTACTG
3760 | | | | CTGCTTCTGG
3800 | TCTCGTTGAT
381o | | | | | | | | A14/7b | | | | | | | | | | ACTTGGA A
3850 | CAATTTCTC
3860 | | AAAGCTGATC | GTATTGGCTC
3890 | TAATTTGTCT
3900 | 3910 | CGTCAGGATT
3920 | GACACCCTCC
3930 | | TTTTCATGCC 3950 | TCCAAATCTT
↑ 3960 | | | | | | | | End H | T1/6 | | | m,RNA stä | art | | 3970 | TATGGTTCG
3980 | | CCTTCTGAAT 4000 | | | | | TAAACCTGCT
4050 | AT TGAGGC TT
4060 | GTGGCATTTC
4070 | TACTCTTTCT
4080 | | A start | : } | | | . 71 /7 | . NE 10 T | 25 /2 | | | mc 10 | | 0.4.10 - 50.44 | | TCCCCAA I | GCTTGGCTT
4100 | | ATGGATAACC
4120 | | CTTGGAAGAG | ATTCTGTCTT | | GCGCGTTGAG
4170 | | GTGATATGTA | | | | | | | | | | | | | | | | CAAGGCTG C | TTCTGACGT
4220 | | TTTGTATCTG | | | GAATTGGCAC
4270 | | TGIGCTCCCC | CAACTTGATA
4300 | TTAATAACAC
4310 | | | 4210 | 4220 | 42.70 | , 424() | 42 30 | 4200 | 5270 | 4200 | 4270 | 4 300 | 4510 | 4,520 | | | | | A GAGAACGAGA | | | | | | | | | | 4330 | 4340 | 4350 | 4360 | 4370 | 4380 | 4390 | 4400 | 4410 | 4420 | 4430 | 4440 | | | | | Z6b/6a
CTGGAGGCCT | | | | | | | | | | 4450 | 4460 | 4470 |) 4480 | 4490 | 4500 | 4510 | 4520 | 4530 | 4540 | 4550 | 4560 | | GTTTTTG A | .CACTCTCAC | GTTGGCTGAG | GACCGATTAG | AGGCGTTTTA | TGATAATCCC | AATGCTTTGC | GTGACTATTT | TCGTCATATT | GGTCCTA T GG | TTCTTGCTGC | CGAUGGTCGC | | | | | ,- | . 2. | 1/20 | ure Publishir | 4640 | 4650 | 4660 | 4670 | 4680 | Fig. 1 A provisional nucleotide sequence for the DNA of bacteriophage ΦΧ174 am3 cs70. Solid underlining indicates sequences that are fully confirmed; sequences with no underlining probably do not contain more than one mistake per 50 residues. Broken underlining indicates more uncertain sequences. Restriction enzyme recognition sites are indicated (for key to single letter enzyme code see legend to Fig. 2), as are mRNA starts and protein initiation and termination sites. Nucleotides 4,127 to 4,201 have been independently sequenced by van Mansfield et al.⁵⁸. The am3 codon is at position 587. be eliminated by more laborious experiments and, although much of the sequence has been so confirmed, it would probably be a long time before the complete sequence could be established. We are not certain that there is any scientific justification for establishing every detail and, as it is felt that the results may be useful to other workers, it has been decided to publish the sequence in its present form. As template we have used both the viral (plus) and complementary (minus) strands of ΦX . Usually it is possible to determine a sequence with a single primer starting at about 15–100 nucleotides from the appropriate restriction enzyme site. In a particularly good experiment the sequence can be read out to 150–200 nucleotides but the results may become less reliable. Most sequences have been derived by priming on both strands; this allows more confidence than when only one strand could be used. A useful method for confirming runs of the same nucleotide is depurination of 32 P-labelled small restriction enzyme fragments or of products of the DNA polymerase priming experiments (ref. 31 and N.L.B. and M.S., in preparation). The most satisfactory way of confirming the DNA sequences is through amino acid sequence data. As the methods used are entirely unrelated, the results of the two approaches complement each other very well and therefore complete sequences can usually be deduced from incomplete data obtained by each method. The complete sequence of genes G (ref. 32), D (ref. 33), J (ref. 33 and Freymeyer, unpublished) and most of F have been obtained in this way. Many of the sequences in Fig. 1 have been amply confirmed and are regarded as established: these are indicated in the figure by underlining. Some sequences are considered to be reasonably accurate and probably contain no more than one mistake in every 50 nucleotides. Sequences that are particularly uncertain—either because of lack of data or conflicting results—are also indicated in Fig. 1. In considering the sequence of Φ X174 as a functional unit it is convenient to begin in the region between the H and A genes and to continue around the DNA in the direction of transcription and translation. #### A promoter and terminator Sinsheimer et al.34,35 and Axelrod36 have determined the sequences of the 5' end of three ΦX in vitro mRNA species and have located them on the restriction map. These sequences have been identified on the DNA sequence and one of them (AAATCTTGG) is found only at position 3,954 at which an in vivo unstable mRNA start has been located 37. The sequence to the left of this has some characteristics of typical E. coli promoters³⁸ in that five out of the 'ideal' TATPuATPu residues are present. Nearby, to the right of this mRNA initiation, however, is the sequence TTTTTTA which is similar to sequences found at the 3' ends of a number of mRNAs (see ref. 39) and seems a likely signal for mRNA termination. The presence of a rho-independent termination site in this approximate position has been suggested 36,37, but the relative positions of the initiating and putative termination signals is rather surprising since the terminator for one mRNA would be expected to precede the initiator for the next. One possibility is that the T₆A might be acting as an 'attenuator' involved in the control of mRNA production in a similar manner to that suggested for the tryptophan operon by Bertrand et al.40. If indeed it were acting as a transcription terminator one would expect a small RNA of 20 nucleotides to be produced, but no such product has yet been detected. Recent work, however, (Rosenberg, unpublished and ref. 41) indicates that termination may require the presence of a base-paired loop structure before the termination site. From the DNA sequence such a loop is probably present before the T₆A sequence, but in mRNA starting from the initiation site at position 3,954 this loop is not formed (Fig. 3). Therefore mRNA that had started at an earlier promoter and extended through the H gene would be expected to terminate here, whereas mRNA newly initiated at position 3,954 would not. This could be a way in which the phage has economised on the use of DNA -by having the ends of the two mRNAs overlapping. #### The A protein Where the amino acid sequence is available there is no problem in relating the DNA sequence to its coding
properties, but it is Fig. 2 Fragment maps of restriction enzymes used in the sequence analysis of ΦX174 am3 RFI DNA. Fragment maps of ΦX174 have been prepared for HindII (R), HaeIII (Z) and HpaI+II by Lee and Sinsheimer²⁵, HinHI and HapII (Y) by Hayashi and Hayashi²⁶, and for Alul (A) by Vereijken et al.²⁷ and for Pst1 (P) by Brown and Smith³⁰. B.G.B., G.M.A., C.A.H. and D. Jaffe prepared the HinfI (F) map, C.A.H. the HphI (Q) map, and Jeppesen et al.²⁸ the HhaI (H), Alul, HaeII and HapII maps by using a rapid method depending on priming with DNA polymerase. A rapid two-dimensional hybridisation technique has been developed by C.A.H. (submitted for publication) and recently used for mapping MboII (M) (N.L.B., C.A.H., and M.S., submitted for publication) and TaqI (T)²⁹. HhaI and HinfI maps have also been prepared by Baas et al.⁵². more difficult to do so in the absence of such data, as is the case for the A protein. One way of identifying the reading phase of the DNA is from the distribution of nonsense codons. Over a sufficiently long sequence that is known to be coding for a single protein there is usually one phase that contains no nonsense codons, and this is identified as the reading phase. This requires completely accurate determination of the DNA sequences however: omission of a single nucleotide may give completely erroneous results. Another approach is possible in the case of ΦX . The results with the F and G genes^{23,24,32} showed an unexpectedly high frequency of codons ending in T. Therefore in a coding region there is a tendency for every third nucleotide to be a T and it is then possible to define the reading phase. Figure 4 illustrates how this characteristic was used to help determine the reading phase for the A protein and to identify its initiation codon at position 3,973. In a similar way the distribution of Ts may be used to identify errors in the DNA sequence, provided that such errors occur only infrequently. A different approach to identifying the initiation site and reading phase in a coding sequence is by looking for a characteristic 'initiation sequence'. Shine and Dalgarno have shown that a common feature of ribosome binding sites is a number of nucleotides (at least three) preceding the ATG that are capable of forming base pairs with a sequence at the 3' end of 16S rRNA^{42,43}. All of the known initiation sites in ΦX174 that have been identified by direct amino acid sequencing (for the F, G, H, J and D proteins) satisfy this criterion (see Table 2) and the fact that the sequence preceding the ATG in position 3,973 also has this characteristic supports its identification as the initiation site for the A protein. If, as has been suggested³⁷, some mRNA from the previous promoter does extend beyond the hairpin structure, initiation of A protein synthesis may be controlled by the inclusion of the region complementary to the 16S rRNA in the hairpin loop. This could explain the presence of two types of mRNA covering the A cistron, as suggested by Hayashi et al.³⁷—one unstable and active and the other stable but inactive. The former would be intiated at the A promoter, the latter at an earlier promoter and result from 'read-through' at the terminator. The postu- lated reading frame for the A protein was confirmed by sequencing amber mutants mapping in the N-terminal region of gene A. am86 proved to be a C \rightarrow T change at position 4,108 and am33 a C \rightarrow T change at position 4,372. These both result in formation of an amber codon (TAG) in the same reading frame as the proposed initiating ATG and the sequence continues to the termination codon at position 133. The A protein, which is the largest coded by Φ X174, is thus 512 amino acids long with a molecular weight of 56,000, in good agreement with SDS gel estimations (see refs 4 and 44). The A* protein, with a molecular weight of about 35,000, is believed to result from an internal translational start in the A gene, in the same reading phase⁴⁵. From consideration of possible ribosome binding sequences^{42,43} the ATG in position 4,657 seems to be the most likely initiation site for the A* protein. #### The origin of replication The origin of ΦX viral strand DNA synthesis has been located in gene A, in restriction fragment Z6b (ref. 46). This origin, while Fig. 3 Potential secondary structure at the A mRNA start. Fig. 4 Identification of the initiation | | position | | | |---|----------|-----|-----| | 3,910 | (1) | (2) | (3) | | CCG.TCA.GGA.TTG.ACA.CCC.TCC.CAA.TTG.TAT. | 5 | 2 | 1 | | 3,940 | 3 | 4 | 3* | | GTT.TTC.ATG.CCT.CCA.AAT.CTT.GCA.GGC.TTT. | 2 | 5 | 5 | | 3,970 | 3 | 5 | 7** | | ТТТ. <u>АТС</u> . СТТ. ССТ. ТСТ. ТАТ. ТАС. ССТ. ТСТ. САА . | 5 | 3 | 7 | | 4,000 | 5 | 0 | 7* | | TGT.CAC.GCT.GAT.TAT.TTT.GAC.TTT.GAG.CGT. | 4 | 2 | 7 | ^{*}These figures refer to the last five codons of the previous line and the first five of the next line. codon for the A protein. Sequences of 30 nucleotides in the region in which the initiation was expected were written down and arbitrarily marked off in triplets. The number of T residues in the first position in each triplet was then counted and listed, and similarly the number of Ts in the second and third positions. The marked preference for Ts in position 3 in the last two lines, as compared with the first two lines, suggests that they are coding for protein and that the triplets are correctly marked off. The most likely initiation codon for the A protein is the ATG in position 3,973. coding for part of the A protein, probably corresponds to the position of the plus strand nick made by the same protein⁴⁴. Gaps in this region that are found in replicating double-stranded (RF) DNAs are probably related to the position of the nick. Eisenberg *et al.*⁴⁷ have investigated such gaps by depurination analysis and identified, in particular, the product C₆T. The sequence CTC₅ is found in position 4,285 (Fig. 1) and the location of the origin in this region agrees precisely with the results of Baas *et al.*⁴⁶. It is not possible at present to identify the actual position of the origin nick. The region shows no apparent secondary structure or symmetrical sequences, although there is an AT-rich region (4,298–4,307) between two GC-rich regions which might be of significance. Such a region is found near the origin of replication of SV40 DNA (ref. 48). #### **B** promoter The second of the mRNA 5' sequences (AUCGC)³⁴ has been mapped in restriction fragment R8 (Fig. 2), which starts about 300 nucleotides on from the proposed A* initiation. The sequence ATCGC is found at positions 4,832 and 4,888 in Fig. 1. The only way we can choose between them at the moment is that the second is preceded by the sequence TACAGTA (position 4,877), which is more akin to sequences found in known promoters³⁸ than are sequences preceding the other possible mRNA start. Irrespective of which of these sequences is used, the mRNA has a long 'leader' sequence (232) | Table 1 ΦX174 coding capacity | | | | | | | | | |-------------------------------|---|--------------------------------------|---|--|--|--|--|--| | Gene | Protein
molecular weight
from SDS gels* | Number of
nucleotides
(Fig. 1) | Protein
molecular weight
from sequence
information | | | | | | | $A \atop (A^*)$ | 55,000-67,000
35,000 | 1,536 | 56,000 | | | | | | | B | 19,000–25,000
7,000 | (360)† | 13,845‡ | | | | | | | C
D
E
J | 14,500
10,000–17,500 | 456
(273)† | 16,811‡
9.940 | | | | | | | J
E | 5,000
48,000 | 114
1,275 | 4,097‡
46,400 | | | | | | | F
G
H | 19,000
37,000 | 525
984 | 19,053‡
35,800 | | | | | | | Non-
coding | 37,000 | 707 | 22,000 | | | | | | | and C
Total | | 485
5,375 | | | | | | | ^{*}See ref. 4. Protein molecular weight $$=\frac{\text{No. of nucleotides}}{3 \times 0.00915}$$ or 176 nucleotides) before the next proposed initiation codon (gene B). Ts in codon #### The B protein From a study of the ribonuclease T, digestion products of the ribosome binding sites of ΦX mRNAs⁴⁹, it was possible to identify an initiating ATG in position 5,064. From the genetic map 2,3 , this would be expected to be gene B but, as discussed above, the A protein coding sequence extends right through this region, past the *Pst* site at residue 1 in Fig. 1, and terminates at residue 133. The initiating codon contained in the ribosomeprotected sequence is, however, out of phase with the A protein reading frame. The proposed B protein coding sequence is one nucleotide to the left of the A protein phase, and continues until a termination codon occurs at position 49. Therefore the B protein coding sequence is totally contained within the A gene. These reading frames have been confirmed by sequencing mutants in genes A and B (am16, N.L.B. and M.S., in preparation; am18, am35, ts116 (ref. 50). Since the B protein has not been purified no protein sequence data is available. The complete amino acid sequence can be predicted from the DNA sequence however. The protein is 120 amino acids long with a molecular weight of 13,845 (including the N-terminal Met). The molecular weight estimates of the B protein obtained by SDS-gel electrophoresis are mostly greater than this (see review, ref. 4), but the electrophoretic mobility varied with gel concentration and cross linker. Such anomalous behaviour suggests that there may be, for instance, carbohydrate attached to the B protein. #### The C protein The next known gene product, protein C, maps between genes B and D. Examination of the DNA sequence in this region indicates that the most probable initiating ATG overlaps the termination codon, TGA, of gene A in the sequence ATGA at position 134. A possible termination codon for gene C could then be at position 391, although
the sequence and phasing is not yet confirmed through this region. There is another possible protein initiation codon (position 51, overlapping the B protein termination codon) which would result in a slightly shorter gene product terminating at nucleotide 219. For the C protein, however, we favour the 'A terminator' start, since only this reading frame contains a CAA sequence, which by a C >T alteration could give the ochre 6 mutant. Ochre 6 is a gene C mutant produced by the decay of 3H-cytosine51 and has been mapped in fragments A6 and F9 (ref. 52); that is, between nucleotides 170 and 205 (Fig. 1). #### Sequence following the D promoter The mRNA 5' sequence which maps before the D gene (GAUGC)³⁴ is found at position 358 in Fig. 1. The sequence preceding the messenger start has only four of the TATPuATPu nucleotides³⁸. Thirty-two nucleotides after the mRNA initiation is the ATG (position 390) that initiates D protein synthesis. The amino acid sequence of the D protein has been determined [†]Values in parenthesis are overlapping sequences and therefore not included in the addition to obtain the total length of DNA. [‡]These values are calculated from the amino acid sequence (in the case of B deduced from the nucleotide sequence). The others are derived using the formula | Table 2 Initiation sequences of ΦX174 coded proteins | | | | | | | | | | |--|---|--|--|--|--|--|--|--|--| | D | C-C-A-C-T-A-A-T-A-G-G-T-A-A-G-A-A-T-C- <u>A-T-G</u> -A-G-T-C-A-A-G-T-T-A-C-T Ser Gln Val Thr | | | | | | | | | | E | C-T-G-C-G-T-T-G-A-G-G-C-T-T-G-C-G-T-T-T-A-T-G-G-T-A-C-G-C-T-G-G-A-C-T | | | | | | | | | | J | C-G-T-G-C-G-G-A-A-G-G-A-G-T-G-T-A-A-A-G-G-T-A-A-A-G-G-T-A-A-A-A | | | | | | | | | | F | C-C-C-T-T-A-C-T-T-G-A-G-G-A-T-A-A-T-T- <u>A-T-G</u> -T-C-T-A-A-T-A-T-T-C-A-A Ser Asn Ile Gln | | | | | | | | | | G | T-T-C-T-G-C-T-T-A-G-A-G-T-T-T-A-A-T-C-A-T-G-T-T-T-C-A-G-A-C-T-T-T-T Met Phe Gln Thr Phe | | | | | | | | | | Н | C-C-A-C-T-T-A-A-G-T-G-A-G-G-T-G-A-T-T-T-A-T-G-T-T-T-G-G-T-G-C-T-A-T-T Met Pho G1y A1a I1c | | | | | | | | | | A | C-A-A-A-T-C-T-T-G-G-A-G-G-C-T-T-T-T-T-T- <u>A-T-G</u> -G-T-T-C-G-T-T-C-T-T-A-T | | | | | | | | | | В | A-A-A-G-G-T-C-T-A-G-G-A-G-C-T-A-A-G-A-A-G-A-A-C-A-A-C-A-A-C-T-C-A-C-T | | | | | | | | | | 165 RN
3' end | | | | | | | | | | Where the protein start has been independently confirmed by protein sequencing data the amino acid sequences are indicated. The other initiation regions were identified as described in the text. Sequences complementary to the 3' end of 16S rRNA (refs 42, 43) are boxed; broken lines indicate further complementarity if some nucleotides are looped out or not matched. Ribosome binding to mRNA has been demonstrated in these regions for genes J, F, G and B (ref. 49). almost completely, and nucleotide and amino acid sequences can be correlated to the termination codon at position 846 (ref. 33). The D protein, which is involved in capsid assembly, is 151 amino acids in length, with a molecular weight of 16,811. The D termination codon overlaps the initiation codon for gene J in the sequence $\overline{\text{TAATG}}$. A similar structure has also been found by Platt and $\overline{\text{Yanofsky}}^{53}$ in the tryptophan operon. The DNA sequence following this initiation codon matches the amino acid sequence of the small basic protein (37 amino acids) of the virion determined by D. Freymeyer, P. R. Shank, T. Vanaman, C.A.H. and M. H. Edgell (personal communication). Benbow $et al.^{2\cdot3}$ suggested that the mutation am6 was located in a gene J, coding for the small protein of the virion, and mapping immediately before gene F. Although marker rescue experiments indicate that am6 is not in this region⁵⁴, the DNA sequence shows that there is a gene coding for the virion protein and we | | Table 3 Promoter sequences in ΦX174 | |-------------|--| | A promoter | A-G-G-A-T-T-G-A-C-A-C-C-C-T-C-C-A-A-T-T-G-T-A-T-G-T-T-T-T-C-A-T-G-C-C-T-C-C-A-A-T-C-T 18 nucleotides to A protein start | | D promoter | R7b/R6c G_T_T_G_A_C_A_T_T_T_A_A_A_A_G_A_G_C_G_T_G_G_A_T_T_A_C_T_A_T_C_T_G_A_G_T_C_C_G_A_T_G_C_T 358 358 32 nucleotides to D protein start | | B promoter? | C_A_G_G_T_A_G_C_G_T_T_G_A_C_C_C_T_A_A_T_T_T_T_G_G_T_C_G_T_C_G_G_G_T_A_C_G_C_A_A_T_C_G_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C | | B promoter? | A-G-C-T-T-G-C-A-A-A-A-T-A-C-G-T-G-G-C-C-T-T-A-T-G-G-T-T-A-C-A-G-T-A-T-G-C-C-G-A-T-C-G-C-A 176 reclectives to 8 protein start | mRNA initiation sequences $^{34-36}$ are underlined. Boxed regions indicate sequences that may correspond to the TATPuATPu sequence found in other promoters 38 , taking into account the distance from the mRNA starts. have defined this as gene J (ref. 33). Since the J initiation codon overlaps the D termination codon we had to look elsewhere for gene E, which genetic mapping^{2,3} had placed between them. Amber mutants in gene E (am3, am27, am34 and amN11) were located by the marker rescue technique and sequenced. All were found to be within the D coding sequence, with the mutant amber codons one nucleotide to the right of the D reading frame³³. Thus the E coding sequence is completely contained within the D coding region but in a different reading frame. The proposed initiation and termination codons for the E protein are at nucleotides 568 and 840, respectively³³, giving a protein 91 amino acids in length with a molecular weight of about 9,900 (including the N-terminal methionine). #### The F protein Following the J gene is an intercistronic region of 39 nucleotides before initiation of the F protein. There is no known function of this apparently untranslated sequence, although the presence of a hairpin structure (positions 969–984) suggests that it could be the site of the *in vivo* messenger termination signal ³⁷ mapped in this region. The F protein is initiated by the ATG at position 1,001. This is the capsid component of the virion, and almost all the amino acid sequence is known^{22,24}. There are regions in this gene where the DNA sequence is not completely established, but the protein is about 424 amino acids in length, giving a molecular weight of \simeq 46,300. #### The G protein region The termination signal for the F protein (position 2,276) is followed by an unusually long untranslated sequence of 111 nucleotides until the G protein initiation codon³¹. This region contains a looped structure which was postulated to have some functional role, as yet unknown, in the single-stranded DNA or the mRNA. Initiation of the G protein at position 2,387 is followed by a sequence of 425 nucleotides until termination at position 2,912, giving a spike protein of molecular weight 19,053. The nucleotide and amino acid sequences of this gene and product are known^{24,32}. #### The H protein The initiation codon for the H protein (position 2,923) was identified first on the basis of the distribution of T nucleotides between the three reading phases, and later confirmed by amino acid sequence analysis. Amino acid sequence data on the H protein is minimal but the five peptide sequences known do correspond to the amino acid sequence, deduced from the DNA sequence by using the high frequency of third position T to help in assigning a reading frame to any given region. The DNA sequence is not entirely confirmed but it is possible to write a reasonably accurate amino acid sequence for the H protein. The protein terminates at nucleotide 3,907, in agreement with carboxypeptidase results, giving a spike protein of molecular weight $\simeq 35,600$ (326 amino acids). The amino acid sequence at the N terminus seems to be particularly rich in hydrophobic residues, which is consistent with its suggested function as the 'pilot' protein that reacts with the bacterial membrane ^{55,56}. After H protein termination there are 66 nucleotides before initiation of the A protein at position 3,973. #### Coding capacity of the ϕ X174 genome The most striking feature of the ΦX DNA sequence is the way in which the various functions of the genome are compressed within the 5,375 nucleotides. Since the identification of ΦX gene products^{2,4} it has been clear that proteins of the accepted molecular weights could not be separately coded on the available length of DNA. However, with the presence of two pairs of overlapping genes (B within A (ref. 50), E within D (ref. 33)) the genome has more coding capacity than had been originally supposed on the assumption that each gene was physically separate. Table 1 summarises the molecular weights of the known ΦX -coded proteins. There are other potential initiation sites for polypeptide synthesis (for example, in genes A, F, G and H) and further genetic work may clarify whether there are in fact other ΦX genes as yet unidentified. #### Initiation of protein synthesis Table 2 lists the protein initiation sequences for genes A, B, D, E, J, F, G and H. It can be noted that there are no extra precursor sequences in proteins D, J, F, G or H at either the N or C terminus. There seems to be no relationship between the degree of complementarity to the 16S rRNA and the amount of protein synthesised, and we see no other features in the sequence that could explain different efficiencies of translation except where genes overlap. #### Transcription of $\Phi X174$ The sequences preceding known mRNA starts³⁴⁻³⁶ are shown in Table 3. Other studies on promoter sequences³⁸ have suggested certain features that they may have in common. Although some of these features are present in the sequences preceding the ΦX transcription initiations others are not, and at present it is difficult to suggest what signal on the DNA determines a promoter site or the efficiency with which it initiates
RNA synthesis. It is interesting to note that a polymerase binding site found by Chen *et al.*⁵⁷, but not associated with any *in vitro* or *in vivo* mRNA starts, mapped near the region where there is the sequence TATGATG characteristic of promoters³⁸ (positions 2,705-2,711). | | | | | Ta | ble 4 (| Codons used in ΦX17 | 4 | | | | | |------------|--------------------------|----------------------|-----|--------------------------|----------------------|---------------------|--------------------------|----------------------|-------------------|--------------------------|---------------------| | Phe
Leu | TTT
TTC
TTA
TTG | 39
26
19
26 | Ser | TCT
TCC
TCA
TCG | 35
9
16
14 | Tyr
Ter | TAT
TAC
TAA
TAG | 36
15
3
0 | Cys
Ter
Trp | TGT
TGC
TGA
TGG | 12
10
5
16 | | Leu | CTT
CTC
CTA
CTG | 36
15
3
24 | Pro | CCT
CCC
CCA
CCG | 34
6
6
21 | His
Gln | CAT
CAC
CAA
CAG | 16
7
27
34 | Arg | CGT
CGC
CGA
CGG | 40
29
4
8 | | Ile
Met | ATT
ATC
ATA
ATG | 45
12
2
42 | Thr | ACT
ACC
ACA
ACG | 40
18
13
19 | Asn
Lys | AAT
AAC
AAA
AAG | 37
25
47
31 | Ser
Arg | AGT
AGC
AGA
AGG | 9
5
6
1 | | Val | GTT
GTC
GTA
GTG | 53
14
10
11 | Ala | GCT
GCC
GCA
GCG | 64
17
12
12 | Asp
Glu | GAT
GAC
GAA
GAG | 44
35
27
34 | Gly | GGT
GGC
GGA
GGG | 38
28
13
3 | The totals are derived from sequences in Fig. 1 which are fully confirmed, that is, 377 codons in gene A, 120 in gene B, 152 in gene D, 91 in gene E, 38 in gene D, 344 in gene D, 75 in gene D, 36 in gene D, 344 in gene D, 345 in gene D, 37.1 (non-overlapping region 47.1; overlapping region 15.8); D, 34.2; D, 42.1; D, 47.4; D, 47.4; D, 52.0; D, 54.3; D, 49.0. The initiating ATG is included in all cases, #### The use of codons in Φ X174 Table 4 shows the codons used in regions where the nucleotide sequence is fully confirmed. It is clear that the pattern established by early observations on non-random use of codons 23,24 is continued now that more information is available. In particular, the preference for T at the third position of the codon is marked throughout the genome, as shown in Table 4. In regions of overlapping genes, one of the pair tends to continue the 'third T' trend (D and B), thus excluding the other (E and A). This may give some indication of the order in which overlapping genes evolved 33.50. Another interesting feature is the very low occurrence of codons starting AG, particularly in non-overlapping regions. The base composition of the sequence of $\Phi X174$ DNA shown in Fig. 1 is: A, 23.9%; C, 21.5%; G, 23.3% and T, 31.2%. This is in good agreement with previously determined values (see ref. 4). We thank D. McCallum and R. Staden for carrying out the computer data storage and analysis of the sequence. Note added in proof: J. E. Sims and D. Dressler (personal communication) have independently determined the sequence in positions 263-375 and 4,801-4,940. Their results agree with those given in Fig. 1. They have also identified the 'B' mRNA start as being at position 4,888. Received November 30; accepted December 24, 1976. - Sanger, F. & Coulson, A. R. J. molec. Biol. 94, 441-448 (1975). Benbow, R. M., Hutchison, C. A. III, Fabricant, J. D. & Sinsheimer, R. L. J. Virol. 7, 549-558 (1971). Benbow, R. M., Zuccarelli, A. J., Davis, G. C. & Sinshiemer, R. L. J. Virol. 13, 898-907 (1974). Denhardt, D. T. CRC Crit. Rev. Microbiol. 4, 161-222 (1975). Hall, J. B. & Sinsheimer, R. L. J. molec. Biol. 6, 115-127 (1963). Ling, V. Proc. natn. Acad. Sci. U.S.A. 69, 742-746 (1972). Harbers, B., Delancy, A. D., Harbers, K. & Spencer, J. H. Biochemistry 15, 407-414 (1976). Burton, K. & Petersen, G. B. Biochem. J. 75, 17-27 (1960). Chadwell, H. A. Thesis, University of Cambridge (1974). Sadowski, P. D. & Bakyta, I. J. biol. Chem. 247, 405-412 (1972). Ling, V. FEBS Lett. 19, 50-54 (1971). Ziff, E. B., Sedat, J. W. & Galibert, F. Nature new Biol. 241, 34-37 (1973). Galibert, F., Sedat, J. W. & Ziff, E. B. J. molec. Biol. 87, 377-407 (1974). - 14 Robertson, H. D., Barrell, B. G., Weith, H. L. & Donelson, J. E. Nature new Biol. 241, 38-40 (1973). 15 Air, G. M. & Bridgen, J. Nature new Biol. 241, 40-41 (1973). 16 Sanger, F., Donelson, J. E., Coulson, A. R., Kössel, H. & Fischer, D. Proc. natn. Acad. Sci. U.S.A. 70, 1209-1213 (1973). 17 Schott, H. Makromolek. Chem. 175, 1683-1693 (1974). 18 Donelson, J. E., Barrell, B. G., Weith, H. L., Kössel, H. & Schott, H. Eur. J. Biochem. 58, 383-395 (1975). 19 Blackburn, E. H. J. molec. Biol. 93, 367-374 (1975). 20 Blackburn, E. H. J. molec. Biol. 107, 417-432 (1976). 21 Sedat, J. W., Ziff, E. B. & Galibert, F. J. molec. Biol. 107, 391-416 (1976). 22 Air, G. M. J. molec. Biol. 107, 435-444 (1976). 23 Air, G. M. et al. J. molec. Biol. 107, 445-458 (1976). 24 Air, G. M., Blackburn, E. H., Sanger, F. & Coulson, A. R. J. molec. Biol. 96, 703-719 (1975). 25 Lee, A. S. & Sinsheimer, R. L. Proc. natn. Acad. Sci. U.S.A. 71, 2882-2886 (1974). 26 Hayashi, M. N. & Hayashi, M. J. Virol. 14, 1142-1152 (1974). 27 Vereijken, J. M., van Mansfeld, A. D. M., Baas, P. D. & Jansz, H. S. Virology 68, 221-233 (1975). 28 Jeppesen, P. G. N., Sanders, L. & Slocombe, P. M. Nucl. Acids Res. 3, 1323-1339 (1976). 29 Sato, S., Hutchison, C. A. III & Harris, J. I. Proc. natn. Acad. Sci. U.S.A. - (1976). 29 Sato, S., Hutchison, C. A. III & Harris, J. I. Proc. natn. Acad. Sci. U.S.A. (in the press). 30 Brown, N. L. & Smith, M. FEBS Lett. 65, 284-287 (1976). 31 Fiddes, J. C. J. molec. Biol. 107, 1-24 (1976). 32 Air, G. M., Sanger, F. & Coulson, A. R. J. molec. Biol. 108, 519-533 (1976). 33 Barrell, B. G., Air, G. M. & Hutchison, C. A. III Nature 264, 34-41 (1976). 34 Smith, L. H. & Sinsheimer, R. L. J. molec. Biol. 103, 699-735 (1976). 35 Grohmann, K., Smith, L. H. & Sinsheimer, R. L. Biochemistry 14, 1951-1955 (1975). - Saffell, B. G., All, C. M. & Sinsheimer, R. L. J. molec. Biol. 103, 699-735 (1976). Smith, L. H. & Sinsheimer, R. L. Biochemistry 14, 1951-1955 (1975). Axelrod, N. J. molec. Biol. 108, 753-779 (1976). Hayashi, M., Fujimura, F. K. & Hayashi, M. Proc. natn. Acad. Sci. U.S.A. 73, 3519-3523 (1976). Pribnow, D. Proc. natn. Acad. Sci. U.S.A. 72, 784-788 (1975). Rosenberg, M., de Crombrugghe, B. & Musso, R. Proc. natn. Acad. Sci. U.S.A. 73, 717-721 (1976). Bertrand, K. et al. Science 189, 22-26 (1975). Sugimoto, K., Sugisaki, H., Okamoto, T. & Takanami, M. J. molec. Biol. (in the press). Shine, J. & Dalgarno, L. Proc. natn. Acad. Sci. U.S.A. 71, 1342-1346 (1974). Steitz, J. A. & Jakes, K. Proc. natn. Acad. Sci. U.S.A. 71, 1549-1553 (1974). Linney, E. & Hayashi, M. Nature 249, 345-348 (1974). Linney, E. & Hayashi, M. Nature 249, 345-348 (1974). Baas, P. D., Jansz, H. S. & Sinsheimer, R. L. J. molec. Biol. 102, 633-656 (1976). Eisenberg, S., Harbers, B., Hours, C. & Denhardt, D. T. J. molec. Biol. 99, 107-123 (1975). Subramanian, K. N., Dhar, R. & Weissman, S. M. J. biol. Chem. (in the press). Ravetch, J. V., Model, P. & Robertson, H. D. Nature 265, 698-702 (1977). Smith, M. et al. (submitted to Nature). Funk, F. & Sinsheimer, R. L. J. Virol. 6, 12-19 (1970). Baas, P. D., van Heusden, G. P. H., Vereijken, J. M., Weisbeek, P. J. & Jansz H. S. Nucl. Acids Res. 3, 1947-1960 (1976). Platt, T. & Yanofsky, C. Proc. natn. Acad. Sci. U.S.A. 72, 2399-2403 (1975). Weisbeek, P. J., Vereijken, J. M., Baas, P. D., Jansz, H. S. & Van Arkel, G. A. Virology 72, 61-71 (1976). Jazwinski, S. M., Lindberg, A. A. & Kornberg, A. Virology 66, 283-293 (1975). Kornberg, A. DNA Synthesis (W. H. Freeman, San Francisco, 1974). Chen, C. Y., H ### DNA sequence of a region of the Φ X174 genome coding for a ribosome binding site Nigel L. Brown* & Michael Smith† MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK The DNA region corresponding to a newly identified ribosome binding site in $\Phi X174$ DNA is sequenced and mapped in relation to the physical map of $\Phi X174$. Assignments of the binding site to a specific gene are discussed, and the possibility of a second case of overlapping genes in $\Phi X174$ is considered. RECENT studies on the DNA of bacteriophage ФX174 have defined sequences corresponding to the ribosome binding sites of genes D, J, F and G (refs 1-3 and B. G. Barrell, personal communication). A ribosome binding site that does not correspond to any of the above sequences has now been defined by studies on a ribosome-protected fragment of a transcript in vitro of ΦX174 RF DNA (ref. 4). Inspection of preliminary DNA sequence data obtained from Φ X174 (F. Sanger, et al., unpublished) for potential ribosome binding sites, and comparison of the sequence data with T₁-oligonucleotides from the unassigned RNA fragment4, allowed identification of the Present addresses: *Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK. †Department of Biochemistry, University of British Columbia, Vancouver BC, Canada V6T 1W5. DNA sequence corresponding to this RNA fragment. We report here the complete DNA sequence of a region of ΦX174 am3 RF DNA that corresponds to this new ribosome binding site. Because the DNA sequence contains accurately mapped cleavage sites for restriction endonucleases, the ribosome binding site can be located precisely on the physical map of the ΦX genome⁵, and therefore located on the genetic map⁶ #### **Determination of the DNA sequence** The ribosome binding site lies in that portion of HindII fragment 5 that overlaps HinfI fragment 5a (nucleotides 5,000-5,100 approx, Fig. 1). The DNA sequence of this region was determined using the 'plus-minus' technique of Sanger and Coulson⁹ (Fig. 2). It was quantitatively confirmed by characterisation of the pyrimidine oligonucleotides obtained by primed synthesis in vitro of DNA labelled with α
-32P-dATP or α -32PdGTP using viral or complementary strand as template10,11 (Fig. 3, Table 1). The sequence between the HindII 8/5 cleavage site and the Hinf1 5a/6 cleavage site contains 111 nucleotides. It also contains the AluI cleavage sites between fragments 12b, 15b, 17 and 12a (Fig. 1). The sequence determination allowed the