
Several genetic disorders have been classified as seg-
mental aneusomy syndromes, which are disorders that
result from inappropriate dosage for crucial genes in a
genomic segment. This definition applies when the
dosage imbalance occurs by structural (deletion or
duplication) or functional mechanisms (by IMPRINTING

defects or UNIPARENTAL DISOMY). Recently, it is increasingly
clear that a significant proportion of segmental aneu-
somy arises from the genomic restructuring caused by
aberrant recombination that occurs at region- or chro-
mosome-specific low-copy repeats, also known as seg-
mental duplications1–4. The cytogenetic alterations
mediated by segmental duplications include deletions,
interstitial duplications, translocations, inversions and
the formation of small marker chromosomes. These
rearrangements can give rise to an altered copy number
of a gene(s) or, alternatively, might disrupt the integrity
of a single gene. Because a change at the genomic level is
involved, these disorders have been referred to as
genomic disorders2.

Segmental duplications represent a new class of repet-
itive DNA element that has recently been identified in the
human genome. Segmental duplications have resulted
from the duplication of large segments of genomic DNA
that range in size from 1 to 400 kb (REFS 4,5) and can be
divided into two classes — interchromosomal and intra-
chromosomal. The interchromosomal class is duplicated

on non-homologous chromosomes, and many members
of this class localize to the pericentromeric and sub-
telomeric regions of human chromosomes6–10. The intra-
chromosomal duplications, also referred to as region- or
chromosome-specific low-copy repeats, are typically
found on a single chromosome or in a single chromoso-
mal band1–3. Recent evidence has implicated many of
these intrachromosomal segmental duplications in the
aetiology of the chromosomal rearrangements associated
with genomic disorders1–3,11,12. There seems to be a signif-
icant bias for genomic rearrangements that are mediated
by intrachromosomal segmental duplications to be near
centromeres and telomeres (FIG. 1). This has led to the
suggestion that the pericentromeric and subtelomeric
regions of chromosomes are more permissive to the gen-
eration and expansion of segmental duplications3.
Furthermore, the processes responsible for the genera-
tion of segmental duplication and for disease-causing
genomic rearrangements have been proposed to be mol-
ecularly interrelated3. However, a direct connection
between these two processes has not yet been established.
Although they seem to localize near centromeres and
telomeres, intrachromosomal segmental duplications are
more distant from centromeres and telomeres than are
the pericentromeric and subtelomeric interchromoso-
mal segmental duplications3,6–10. Also, not all intrachro-
mosomal segmental duplications, or the genomic
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Misalignment, followed by recombination between
non-allelic segmental duplications on homologous
chromosomes, has been proposed to give rise to many
genomic disorders, some of which are listed in TABLE 1.
These disorders include Charcot–Marie–Tooth disease
type 1A (CMT1A)/hereditary neuropathy with liability

rearrangements they mediate, are near centromeres and
telomeres1–3. In this review, we describe the genomic
organization of several clinically relevant intrachromoso-
mal segmental duplications, the chromosomal abnor-
malities generated by them and the mechanisms by
which they arise.

STENOSIS

The blocking of a blood 
vessel that can be cleared 
by mechanical disruption.
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Figure 1 | Chromosomal rearrangements mediated by segmental duplications. Chromosomes involved in
rearrangements mediated by segmental duplications are depicted by ideograms. The chromosomal bands or regions involved
in rearrangement are indicated and expanded. Segmental duplications are shown as filled boxes: green boxes indicate those
involved in recurrent chromosomal rearrangements, whereas yellow boxes indicate other copies that are rarely, if ever, involved
in chromosomal rearrangements. a | On chromosome 22, recurrent deletions associated with DiGeorge and velocardiofacial
syndromes (DGS/VCFS) are shown with the frequency of a particular deletion25. The proximal and distal breakpoints (BPs) for
the marker chromosomes in cat eye syndrome (CES) and the t(11; 22) BP region are also indicated. b | On chromosome 17,
the region on 17p12 that is duplicated/deleted in Charcot–Marie–Tooth disease type 1A and hereditary neuropathy with
pressure palsies (CMT1A/HNPP) is shown with PMP22 (peripheral myelin protein 22), the gene involved in their aetiology. Also
on 17p11 is the region involved in the Smith–Magenis syndrome (SMS) deletions and the reciprocal duplication. On 17q11 is
the region involved in neurofibromatosis type 1 (NF1) deletions. c | Three rearrangements of chromosome X include the region
on Xp22 that contains the steroid sulfatase (STS) gene, which is deleted in X-linked ichthyosis; the region on Xq28 that
contains the factor VIII (F8) gene, which is inverted in haemophilia A; and the region on Xq28 that contains a polymorphic
inversion in the vicinity of the emerin (EMD) gene. EMD is involved in Emery–Dreifuss muscular dystrophy. d | The region on
chromosome 15q11–q13 that is deleted in Prader–Willi and Angelman syndromes (PWS/AS) is shown with its numerous
duplicated HERC2 (hect domain and RLD 2) gene segments. e | On 7q11, the deletion associated with Williams–Beuren
syndrome (WBS) is shown with elastin (ELN), the principal gene responsible for the supravalvular aortic STENOSIS of WBS.
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are 24 kb in size and share 98.7% nucleotide sequence
identity32. Recent reports indicate that there might be
other low-copy repeats near the CMT1A-REPs, but these
do not seem to be directly responsible for the rearrange-
ments that lead to CMT1A/HNPP34. Other simple seg-
mental duplications include the S232 elements that
mediate the deletions associated with X-linked
ICHTHYOSIS35–37, the two 11.3-kb inverted repeats on the X
chromosome that mediate the inversion in the emerin
gene (responsible for Emery–Dreifuss muscular dystro-
phy) gene and show >99% sequence identity38, and the
int22h (intron 22 homologous region) sequence, which
mediates the inversion in the factor VIII gene that leads
to haemophilia A (FIG. 1)39,40.

In contrast to these simple structures, segmental
duplications that are large and have a complex organi-
zation have been shown to mediate chromosomal
rearrangements in several genomic disorders. The
complex segmental duplications on 22q11 that mediate
constitutional rearrangements, including deletions,
interstitial duplications, supernumerary marker chro-
mosomes, inversions and translocations, have been
characterized extensively5,24,25. There are differences in
the size, content and organization of duplicated mod-
ules in each copy of the 22q11 segmental duplica-
tion25,26. These segmental duplications contain several
truncated gene segments or pseudogenes, which
include BCRL, HMPLPL (POM121L), GGTL, GGTrelL,
V7 rel, E2F6L, KIAA0649L and others23,25. A few of the
22q11 duplications also contain potentially recombino-
genic sequences, which include palindromic (A+T)-
rich repeats (PATRR) and variable-number tandem-
repeat sequences5,25. The PATRR present in one of the
duplication copies on 22q11 has been proposed to
cause genomic instability as it has been shown to be
directly involved in the constitutional t(11; 22), as well

to pressure palsies (HNPP) on chromosome 17p11.2
(REFS 13,14), neurofibromatosis type 1 (NF1) on 17q11.2
(REF. 15), Prader–Willi/Angelman syndromes (PWS/AS)
on 15q11–q13 (REFS 16,17), Williams–Beuren syndrome
(WBS) on 7q11.23 (REFS 18,19), Smith–Magenis syndrome
(SMS)/duplication 17p11.2 on 17p11.2 (REFS 20,21) and
several rearrangements associated with 22q11, including
DiGeorge and velocardiofacial syndromes (DGS/VCFS)
and cat eye syndrome (CES)22–25. The genomic instabili-
ty that is related to the structure of 22q11.2 was suspect-
ed to underlie the numerous nonrandom rearrange-
ments that take place in this region long before the
genomic sequence of chromosome 22 became avail-
able26. So far, a total of eight segmental duplications
have been identified on chromosome 22q11 (REFS 5,26)

(FIG. 1a). Four copies of the segmental duplications in
proximal 22q11 have been identified within and flank-
ing the DGS/VCFS region and at the end points of the
CES duplications22,23,25,27. Furthermore, the breakpoint
of the only recurrent, non-Robertsonian, CONSTITUTIONAL

TRANSLOCATION [t(11; 22)] takes place in one of these
duplications28–31, also implicating the segmental dupli-
cations in non-homologous interchromosomal recom-
bination events.

Structure of segmental duplications 
The segmental duplications that mediate the chromoso-
mal rearrangements seen in genomic disorders show
various organizational configurations. They can either
be simple in structure or contain a complex arrange-
ment of duplicated modules. The best-characterized
example of a simple segmental duplication is the
CMT1A-REP (REP, repeat) (FIG. 1b), which mediates the
interstitial duplication or deletion associated with
CMT1A or HNPP, respectively13,32,33. The two copies of
CMT1A-REP that flank the duplicated/deleted region

CONSTITUTIONAL

TRANSLOCATION

A rearrangement between 
two chromosomes that occurs
in the parental germ line or 
very early in embryonic
development, such that every
cell in the body contains the
translocated chromosomes.

ICHTHYOSIS

A genetic disorder that causes
the patient to have scaly skin.

Table 1 | Genomic disorders mediated by segmental duplications

Genomic disorder Chromosomal Chromosomal Rearrangement References
rearrangement location size (Mb)

Charcot–Marie–Tooth disease Interstitial 17p12 1.5 13,14
type 1A (CMT1A) duplication

Hereditary neuropathy with Deletion 17p12 1.5 13,14
pressure palsies (HNPP)

Smith–Magenis syndrome (SMS) Deletion 17p11.2 5 20

Duplication 17p11.2 Interstitial 17p11.2 5 21
duplication

Neurofibromatosis type1 (NF1) Deletion 17q11.2 1.5 15

Prader–Willi syndrome (PWS) Deletion 15q11–15q13 4 16,17

Angelman syndrome (AS) Deletion 15q11–15q13 4 16,17

Inverted duplication 15 Supernumerary 15q11–15q14 4 73–76
(inv dup (15)) marker chromosome

Williams–Beuren syndrome (WBS) Deletion 7q11.23 1.6 18,19

DiGeorge and velocardiofacial Deletion 22q11.2 3 23–25
syndromes (DGS/VCFS)

Cat eye syndrome (CES) Supernumerary 22q11.2 3 22
marker chromosome

X-linked ichthyosis Deletion Xp22 1.9 56–58

Haemophilia A Inversion Xq28 0.5 39,40
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have occurred relatively recently during primate evolu-
tion, ~1–25 million years (Myr) ago. This is based on the
observations that there are differences in the copy num-
ber and location of the duplications on the chromo-
somes of representative members of the higher
primates5–9,16,50. The duplications implicated in the
rearrangement that leads to CMT1A — the CMT1A-
REP — seem to be human and chimpanzee specif-
ic32,34,47,51. Similarly, the segmental duplications that
mediate the rearrangements leading to PWS/AS are esti-
mated to have originated ~15–20 Myr ago16,43.
Comparative mapping of the mouse genome in the
region of CONSERVED SYNTENY with human 22q11.2 has
shown no evidence for the presence of the segmental
duplications52–55. By contrast, duplicated sequences that
are orthologous to the 22q11 segmental duplications
have recently been identified in non-human primates,
including great apes, and Old World and New World
monkeys5,25. Furthermore, there seems to have been a
sequential increase in copy number of duplications dur-
ing primate evolution5. This indicates that the 22q11 seg-
mental duplications have originated relatively recently
during the evolution of the primate genome and, there-
fore, that segmental duplications might have been
important in the evolution of the primate genome by
rapidly generating genomic diversity between closely
related primate species. It is tempting to speculate that
the processes responsible for the generation and ‘expan-
sion’ of segmental duplications are continuing and are
therefore likely to have contributed to heteromorphism
in the normal human population.

Segmental-duplication-mediated rearrangements
Deletions. In most patients with X-linked ichthyosis, the
disorder is caused by a deletion of the steroid sulfatase
(STS) gene on Xp56–58. Patients with STS deletions and
X-linked ichthyosis have breakpoints that cluster in
highly homologous sequence elements that flank the
STS locus and are separated by 1.9 Mb on the short arm
of the X chromosome35 (FIG. 1c). The common repeat
units are small, and the recombination events seem to
involve repeats that are in the same orientation on the
chromosome35,36. So, segmental duplications can lead to
deletions through ‘slipped pairing’ (aberrant pairing
between mismatched copies of the segmental duplica-
tion) and unequal crossing over in meiosis.

Excessive homologous recombination with
unequal crossing over has been shown at the deletion
end points of several deletion syndromes. WBS is due
to a deletion of ~1.6 Mb in 7q11.23, which includes
the elastin (ELN) gene59 (FIG. 1e). It has been shown that
there is a high frequency of recombined HAPLOTYPES in
the segments that flank the de novo WBS deletions60–62.
There is evidence that the WBS deletions are related to
the presence of segmental duplications at the deletion
breakpoints63,64. The region of the duplication has
been characterized and shown to contain a transcribed
gene18. Furthermore, the recombination event seen in
several unrelated individuals seems to be similar,
resulting in a junctional fragment that deletes the
functional copy of this gene.

as in other translocations that involve chromosome 22
(REFS 30,31,41,42).

Other large and complex segmental duplications
include those on 17p11.2, which mediate the deletions
associated with SMS and its reciprocal interstitial
duplication product20. They contain at least four genes
or pseudogenes20,21. The segmental duplications on
15q11–q13 that mediate the PWS/AS-associated dele-
tions are also large and complex16,17. These are com-
posed to a large extent of duplications of the HERC2
(hect (homologous to the E6-AP carboxyl terminus)
domain and RLD 2) gene17,43. It has been proposed
that the HERC2-containing duplications have evolved
a complex configuration by a complicated pathway
that includes deletions and inversions44. Additional
complexity in the organization of segmental duplica-
tions on 15q has been reported recently. These newly
recognized duplications are found not only on
15q11–q13, but also on 15q24 and 15q26 (REF. 45). The
three segmental duplications that mediate the dele-
tions of 7q11.23 that are associated with WBS, also
contain several genes or pseudogenes arranged in
complex configurations46. Similarly, the segmental
duplications that mediate the NF1 deletions, NF1-
REPs, are 15–100 kb in size and contain at least four
ESTs (expressed sequence tags) and an expressed
SH3GL (SH3-domain GRB2-like) pseudogene15.

Although only a few of the rearrangements that are
mediated by segmental duplications have been analysed
at the nucleotide level, there is evidence for recombina-
tion hot spots in the segmental duplications. The
PATRR in one of the 22q11 segmental duplications dis-
cussed above has been shown to be a recurrent break-
point for the t(11; 22) translocation30,31,42. The t(11; 22)
breakpoints all localize in the PATRR, directly implicat-
ing them in the rearrangement mechanism30. In addi-
tion to the 22q11 PATRRs, recombination hot spots in
segmental duplications on other chromosomes have
also been described. The rearrangement breakpoints
associated with CMT1A/HNPP seem to localize to a hot
spot in the CMT1A-REP on 17p11.2 (REFS 47,48). The
breakpoints of 21 out of 23 unrelated HNPP patients
were mapped within a 557-bp region, further refining
the hot spot within the CMT1A-REP33. The presence of
a mariner transposon-like element very close to the
CMT1A/HNPP breakpoints had led to the suggestion
that the mariner-like element was somehow involved in
the recombination33,48. However, there is no direct evi-
dence to support the involvement of a mariner or any
other specific sequence in the rearrangements associat-
ed with CMT1A/HNPP. In 46% (n = 54) of unrelated
patients with the NF1 deletion, the breakpoints in the
NF1-REPs were localized within a 2-kb hot spot that
contains a χ-like sequence49. In Escherichia coli, χ-ele-
ments stimulate recombination in nearby sequences.
However, there is no direct evidence for the involvement
of any particular sequence, including the χ-like
sequences, in the NF1 deletion.

The segmental duplications that are known seem to
be limited to the genomes of primates. Phylogenetic
analyses have indicated that most of these duplications

CONSERVED SYNTENY

The occurrence of genomic
collinearity between
homologous genes in 
different organisms.

HAPLOTYPE

An experimentally 
determined profile of
genetic markers present 
on a single chromosome 
of any given individual.
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The most common rearrangements associated with
chromosome 22 are the deletions in 22q11.2 that are
associated with DGS/VCFS. A typically deleted region
(TDR) of ~3 Mb is observed in ~85–90% of patients
with the 22q11.2 deletion (FIGS 1 and 2). So, there seems
to be both a typical proximal and a typical distal deletion
end point (DEP)5,25. In addition, there are two recurrent,
variant distal DEPs. Furthermore, four out of the eight
regions that contain the 22q11 segmental duplications
coincide with the recurrent DEPs5,24,25. The direct
involvement of these 22q11 segmental duplications in
recombined deletion end-point junction fragments has
been recently shown by PULSED-FIELD GEL ELECTROPHORESIS25.
Hypotheses that would explain these findings have been
constructed on the basis of the organization and orienta-
tion of the blocks of repeats5,24.

Duplications/deletions. For several distinct clinical disor-
ders, for example CMT1A (duplication) and HNPP
(deletion), the existence of both reciprocal products of
unequal crossovers in 17p has been observed14. These
autosomal-dominant peripheral neuropathies result
from unequal exchange between misaligned CMT1A-
REP elements that are separated by 1.5 Mb on 17p12
(REFS 13,14,67) (FIG. 1b). This 1.5-Mb region contains the
PMP22 (peripheral myelin protein 22) gene, which
seems to be dosage sensitive and is involved in the aetiol-
ogy of the phenotype associated with CMT1A/HNPP68.
A similar model has been shown for the SMS deletion20

and the reciprocal interstitial duplication of the same
region of 17p11.2, leading to a phenotype that is distinct
from SMS21. This 17p11.2, deletion/duplication is ~5 Mb
in most patients but the gene(s) that contribute to SMS
and the reciprocal interstitial duplication are still
unknown20,21 (FIG. 1b).

Inversions. It has been shown that the local DNA-
sequence environment has an important function in
intragenic deletions or rearrangements69. A notable
example of this is the rearrangement ‘hot spot’ that has
been described for the factor VIII gene associated with
~45% of patients with haemophilia A. A functional
‘deletion’ that is caused by disruption of the factor VIII
gene results from the presence of small segmental dupli-
cations that share a high level of sequence identity.
These sequences, referred to as int22h, lie within intron
22 of the factor VIII gene; two additional copies are
located in the reverse orientation ~500 kb telomeric to
the factor VIII gene39,40. These sequence elements allow
the distal long arm of the X chromosome to bend back
on itself during meiosis, such that breakage and reunion
causes an inversion that disrupts the factor VIII gene70

(FIG. 1c). It is interesting that these inversions occur pri-
marily in the male germ line, indicating that X-chromo-
somal pairing during meiosis in females might inhibit
the distal long arm of the X chromosome from dou-
bling back on itself and self pairing71.

Another, perhaps more striking, example comes
from the analysis of the genomic region that surrounds
the emerin gene on Xq28, which is flanked by two large
inverted repeats (FIG. 1c). Characterization of an emerin

PWS and AS are most commonly associated with an
~4-Mb deletion of 15q11–q13 [del(15)(q11–q13)]16,17

(FIGS 1 and 2). There is evidence that both inter- and
intrachromosomal rearrangements take place65,66:
unequal crossovers during recombination, as well as
intrachromosomal recombinational exchanges, occur.
The chromosome 15 deletion breakpoints cluster in
consistent hot spots, and large segmental duplications
span the proximal and distal breakpoint regions17. NF1
has been reported to be due to a 1.5-Mb deletion that
includes the NF1 gene in a minority of patients
(2–13%) (FIG. 1). These deletions seem to be mediated
by segmental duplications that are referred to as 
NF1-REPs15.

PULSED-FIELD GEL

ELECTROPHORESIS

An electrophoretic technique
used to separate large
fragments of DNA (>20 kb and
up to 10 Mb) on an agarose gel
by periodically changing the
orientation of the electric field
applied to the gel.
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Other rearrangements. At the chromosomal level,
another class of frequently observed rearrangements
consists of translocations. Translocations can be divided
into Robertsonian and reciprocal translocations.
Robertsonian translocations involve exchanges between
the short arms of the ACROCENTRIC chromosomes and
seem to be mediated by satellite DNA repeats close to
the centromeres79. Reciprocal, non-Robertsonian con-
stitutional translocations are the result of crossover
between two non-homologous chromosomes and most
are known to be unique events. So, little is known about
the mechanisms or sequences involved in the formation
of most reciprocal translocations. The t(11; 22)(q23;
q11) is the only known recurrent, non-Robertsonian
constitutional translocation in humans. Balanced
translocation carriers have no clinical symptoms, and
clustered breakpoints have been reported in numerous
unrelated families28,29,31.

The t(11; 22) breakpoint on 22q11 localizes to one of
the segmental duplications on 22q11 (REFS 25,28,30,31).
Although chromosome 22 has been almost entirely
sequenced, the segmental duplication at which the t(11;
22) breakpoint resides still contains a gap5,25,26. It has
been shown that palindromic (A+T)-rich sequences
surround the breakpoints on chromosomes 11 and 22
(REFS 30,31,42). Computer analysis of the DNA sequence
that flanks the breakpoints predicts the formation of
hairpin or cruciform structures30. It is likely that these
unstable DNA structures in 22q11 and 11q23 facilitate
the recurrent t(11; 22) translocation. Also, the segmen-
tal duplication on 22q11 that contains the chromosome
22 breakpoint of the t(11; 22) seems to be a hot spot for
other reciprocal translocations. These include a bal-

deletion in a patient with Emery–Dreifuss muscular
dystrophy showed — in addition to the gene deletion
— a partial duplication of nearby sequences, recombi-
nation between the inverted repeats and an inversion of
this region in 33% of normal females38. So, in this
instance, the inversion represents a benign, population-
based variant that is mediated by the presence of dupli-
cated sequences.

Marker chromosomes. The second most common
rearrangement associated with chromosome 15, after the
deletions associated with PWS/AS, is the inverted dupli-
cation (inv dup (15)), which seems to be the most com-
mon marker chromosome in newborns72. There are sev-
eral types of inv dup (15) marker chromosome, based on
their size and rearrangement breakpoints73–76 (FIG. 2).
Most of the inv dup (15) chromosome breakpoints also
seem to cluster within the segmental duplications in
15q11–q1316,73,75,77. In CES, a BISATELLITED chromosome
that results from an inverted duplication of proximal
22q11 is present as a supernumerary chromosome22

(FIG. 2). The breakpoints of marker chromosomes in CES
patients seem to localize to copies of the segmental
duplications in 22q11. The more proximal, most com-
mon cat eye chromosome (CEC) breakpoint interval
corresponds with the proximal DGS/VCFS deletion end-
point interval. The more distal duplication breakpoint of
the CEC overlaps with the common distal DGS/VCFS
deletion. The resultant marker chromosomes have been
divided into three categories on the basis of their size and
location of the breakpoints22. Furthermore, recent
detailed sequence analysis has begun to examine the
genes that are duplicated in CES78.

BISATELLITED

A chromosome that contains
two copies of the satellited
acrocentric short arm, often 
as a result of an inverted
duplication. It is usually
present as a supernumerary
marker chromosome in a cell.

ACROCENTRIC

This refers to a chromosome
the centromere of which lies
very close to one end, such that
one arm of the chromosome is
much larger than the other.

a b
Centromere Centromere

Deletion

M1 M2 M3 M2

M1 M2 M3 M4

M1 M2 M3 M4 M1

M1 M4

M1 M4

M2 M3

M2 M3

M2 M3 M4

M3 M4

M1 M4

Duplication

+

x

+

Deletion Deleted fragment

×

Paracentric inversion

M1 M4

M3 M2

×

Figure 3 | Models for formation of deletions and duplications. Chromosomes are shown as lines. Black and red are used to
distinguish the two homologues. Segmental duplications are shown as yellow or green boxes. a | Interchromosomal
recombination between the two homologues of a particular chromosome leads to a reciprocal deletion and duplication. 
b | Intrachromosomal recombination between segmental duplications on the same chromosome leads to either a deletion or a
paracentric inversion. (Modified with permission from REF. 5.)
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between the duplicated modules forming the ‘stem’
would then lead to the deletion of intervening DNA pre-
sent in the ‘loop’ (FIG. 3b). This mechanism has been used
to explain the deletions associated with NF1 (REF. 15), a
few deletions associated with HNPP83 and some dele-
tions associated with DGS/VCFS5,23,25,62.Another possible
outcome of the intrachromosomal misalignment
between inverted segmental duplications is a paracentric
inversion (FIG. 3b). This mechanism might explain the
intrachromosomal inversions observed in the factor VIII
gene that lead to haemophilia A70, the polymorphic but
benign inversion found close to the emerin gene38 and
the inversions that disrupt the iduronate sulfatase (IDS)
gene in Hunter syndrome87.

Inter- and intrachromosomal recombination events
have been reported for the standard 3-Mb deletion
associated with DGS/VCFS23,62,86, as well as for the
genomic aberrations that occur in PWS/AS65,66 and
CMT1A/HNPP83–85. Furthermore, the existence of indi-
viduals that are mosaic for deletions of 22q11 indicates
that mitotic instability does occur88–90. Interestingly,
although the deletions associated with DGS/VCFS are
seen frequently, the reciprocal interstitial duplication
event is rarely observed24. This is presumed to be the
result of a mild and/or nonspecific phenotype.

Marker chromosomes. The formation of a bisatellited,
supernumerary marker chromosome that is mediated
by segmental duplications can be explained using one of
two possible models. In the first model, interchromoso-
mal misalignment occurs between the two homologues
of a particular chromosome by virtue of the segmental
duplications or modules within them that lie in oppo-
site orientation with respect to one another.
Recombination between these inverted sequences could

anced t(20; 22)80, three unbalanced [t(12; 22), t(4; 22),
t(17; 22)]81 and a balanced t(1; 22)82. So, it seems that
this copy of the 22q11 duplication might contain
sequences or secondary structures that are permissive to
translocation.

Mechanistic models for rearrangements
The sequence analysis of segmental duplications has
shown 96–99% sequence identity between duplicated
copies over their entire length4. On the basis of this high
level of sequence identity, several models can be pro-
posed to explain the chromosomal rearrangements that
are mediated by segmental duplications.

Deletions,duplications/deletions and inversions. Deletions
could be explained using one of two possible models (FIG.3).
In the first model, an interchromosomal misalignment
might occur during meiosis I between the two homo-
logues of a particular chromosome. This misalignment
might be mediated by the segmental duplications, or by
modules within them that lie in direct orientation with
respect to each other.Crossing over would lead to recipro-
cal deletion and duplication events (FIG. 3a). This mecha-
nism has been used to explain the deletions associated
with WBS60–62 and those associated with SMS, as well as
the reciprocal interstitial duplication20,21, some of the reci-
procal interstitial duplications/deletions associated with
CMT1A and HNPP14,83–85, and some of the deletions asso-
ciated with PWS/AS17,65,66 and DGS/VCFS5,23,25,62,86.

The formation of deletions can also be explained by
intrachromosomal recombination between segmental
duplications during mitosis or meiosis. In this model,
the segmental duplications, or modules within them,
that lie in inverse orientation with respect to one another
might form a ‘stem–loop’ intermediate. Recombination
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and other bisatellited marker chromosomes result
from one or a combination of the models proposed
for the CES marker chromosome formation.

Other rearrangements. The chromosome 22 breakpoint
of the recurrent, constitutional t(11; 22) has been local-
ized to one of the 22q11 segmental duplications30. Many
other balanced and unbalanced translocation break-
points also cluster in the same region of 22q11. This fur-
ther indicates that this region of 22q11 might contain
unstable sequences that predispose it to be involved in
translocations. The recent cloning and sequencing of
the recurrent, constitutional t(11; 22) breakpoint and
the identification of PATRRs at the site of the transloca-
tion strongly support this hypothesis30,42. Analysis of the
available sequence indicates the presence of large palin-
dromes that flank the t(11; 22) breakpoint regions on
both chromosomes. It has been proposed that these
palindromic sequences lead to the formation of hairpins
or cruciforms at physiological temperature30,31. The
translocation breakpoints localize to the tips of the hair-
pin/cruciform (B.S.E., unpublished data). Because the
tip of the hairpin is sensitive to nucleases, the initiating
step of the translocation might be a double-stranded
break mediated by this hairpin-nicking activity.
Recombination between the nicked chromosome 22
and any other chromosome with similar nicks could
lead to a translocation between the two chromosomes
(FIG. 5). Although the recurrent, constitutional t(11; 22)
seems to be mediated by such a mechanism, there could
be additional factors that facilitate this particular
recombination event30,42.

Conclusions and future directions
Based on the examples discussed above, it is clear that
segmental duplications can create genomic instability
by predisposing certain chromosomes or chromosomal
bands to rearrangements through misalignment and
unequal crossing over. The proposed inter- or intra-
chromosomal recombination between copies of the seg-
mental duplications might result in deletions, interstitial
duplications, inversions, translocations and marker
chromosomes. An analysis of the draft human genome
sequence indicated that up to 5% of the human genome
might be comprised of segmental duplications greater
than 10 kb in size4. As the human genome sequence
approaches completion, many more segmental duplica-
tions will probably be identified. So, in the future, more
instances of segmental duplications will, no doubt, be
shown to be responsible for various genomic disorders.
We expect these regions of genomic instability to be
principal contributors to the burden of cytogenetic
abnormalities seen in a clinical setting.

Several models, including those presented here,
have been proposed for the mechanisms that are
involved in chromosomal rearrangements that are
mediated by segmental duplications. It is unclear
whether there are precise sequences in the complex,
segmental duplications that are directly associated
with facilitating the rearrangements. Recombination-
promoting sequences have been identified in the

lead to the formation of a bisatellited chromosome and
an ACENTRIC fragment (FIG. 4a). This model can be used to
explain all three types of CEC that have been
identified22. Therefore, if the misalignment and recom-
bination occur between the proximal copies of the
22q11 segmental duplication on both homologues (as
shown in FIG. 4a), they would give rise to a type I CEC.
Alternatively, the symmetrical type II CEC would result
from a misalignment and recombination between the
distal copies of the 22q11 segmental duplication (green
boxes in FIG. 4a). Finally, misalignment and recombina-
tion between any one proximal (yellow box) and any
one distal (green box) copy of the segmental duplica-
tion would result in the formation of an asymmetrical
type II CEC.

In the second model, intrachromosomal recombi-
nation — facilitated by the segmental duplications
during mitosis or meiosis — could first lead to a 
PARACENTRIC INVERSION (FIG. 4b) in one of the homologues
of a particular chromosome. Subsequently, a single
crossover event between paired homologues within
the inversion loop could lead to the formation of the
duplication/deficiency CES marker chromosome and
an acentric fragment (FIG. 4b). This model might
explain the formation of some of the asymmetrical
CES chromosomes22. It is likely that the inv dup (15)
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genome have been identified and sequenced, very little
is known about their formation and amplification in the
genome. Furthermore, the extent that these segmental
duplications contribute to normal human variation is
not known. To better understand segmental duplica-
tions and their effect on human disease, future efforts
will need to be aimed at elucidating the mechanisms
that are involved in their formation and spread in the
human genome. It should also be interesting to deter-
mine whether segmental duplications have amplified
during recent human evolution, which might have
resulted in genomic variability in the human popula-
tion. Such a finding should help to assess the involve-
ment of segmental duplications in creating genetic vari-
ation that could lead to the genomic instability that is
associated with human genetic disorders.

22q11 segmental duplications5,25,30, CMT1A-REP47,48

and NF1-REP49. Based on the example of t(11; 22), it is
likely that the unstable, recombination-susceptible
sequences present at the breakpoints might lead to
double-stranded breaks, which in turn promote the
observed chromosomal rearrangements. Further
investigation of the precise breakpoints in several indi-
viduals with each type of genomic disorder will shed
additional light on the mechanism of such recombina-
tion and rearrangement events.

Genetic change, besides being a principal driving
force for evolution, is also a source of human disorders.
Segmental duplications represent an under-appreciated
source of genetic change owing to their ability to act as
substrates for aberrant genomic rearrangements.
Although many segmental duplications in the human
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Online links

DATABASES 
The following terms in this article are linked online to:
LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/
ELN | emerin | HERC2 | IDS | NF1 | PMP22 | STS
OMIM: http://www.ncbi.nlm.nih.gov/Omim/
Angelman syndrome | cat eye syndrome | Charcot–Marie–Tooth
disease type 1A | DiGeorge syndrome | Emery–Dreifuss
muscular dystrophy | haemophilia A | hereditary neuropathy with
liability to pressure palsies | Hunter syndrome |
neurofibromatosis type 1 | Prader–Willi syndrome |
Smith–Magenis syndrome | velocardiofacial syndrome |
Williams–Beuren syndrome
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