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Genetics of gene expression and its effect
on disease
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Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative
biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common
human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and
adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In
contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and
obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to
gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping
between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human
adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core
network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune
response and has been found to be causally associated to obesity-related traits.

The comprehensive assessment of molecular quantities in biological
samples using high-throughput technologies has already led to the
identification of disease subtypes1,2, novel genes and gene struc-
tures3,4, and biomarkers for disease5, as well as the elucidation of
transcriptional networks associated with disease traits6–8. The ana-
lysis of genotypes and gene expression data in animal models and
human cell lines has proven useful for identifying genetic determi-
nants of expression traits1,9–13 and for mapping genes in regions
linked to complex traits6,10,11,14. In general, such studies provide the
means to examine the overall genetic complexity of gene expression
traits, including a characterization of the relative effect of cis versus
trans control15,16.

Associating patterns of gene expression with DNA and complex
trait variation is necessarily limited to those changes that are reflected
in the transcriptional network. Although a number of studies have
highlighted the importance of post-transcriptional alterations in
gene activity that induce changes in biological processes17, variation
in protein structure and state may be reflected in the transcriptional
network because such variation often induces a change in transcript
stability, rates of transcription, transport of RNA from the nucleus,
alternative splicing events, and other processes that affect expression
levels1. Importantly, given the context specificity of many critical
biological processes18 and the fact that most common diseases are
thought to be the outcome of a complex interaction between many
genetic loci and the environment, it follows that there are obvious
advantages to studying the genetics of gene expression in cells that
represent the in vivo state.

Towards this end, we collected blood and subcutaneous adipose
tissues in a population-based sampling of hundreds of Icelandic sub-
jects ranging in age from 18 to 85 years old. These cohorts are referred
to as the Icelandic Family Blood (IFB) cohort (N 5 1,002) and the
Icelandic Family Adipose (IFA) cohort (N 5 673) (see Supplemen-
tary Table 1 for cohort description). A number of clinical traits
including differential blood cell count as well as biometric traits such
as body mass index (BMI), percentage body fat (PBF, measured by
bioimpedance) and waist-to-hip ratio (WHR) were collected for all
subjects of the IFB and the IFA cohorts (Supplementary Table 1). The
relatively large sample size used in this study design provided the
means to assess the relationship between sequence variants and gene
expression with more statistical power than previous studies12,13,16.

Gene–clinical trait correlations

Expression profiles produced for this study contained measurements
of relative abundances of 23,720 transcripts, representing 84% of
the 24,060 protein-coding genes annotated in the Ensembl database
(v.33)19. Given that probes overlapping single nucleotide poly-
morphisms (SNPs) may give rise to artificial signals, we sequenced
a number of probes implicated as strong expression quantitative trait
loci (eQTL) in 470 subjects from the IFB (see Supplementary Results
and Supplementary Table 2). In short, we found that probes over-
lapping SNPs is not a concern in the present study.

The distribution of biometric traits such as BMI in our cohorts is
not unlike the distribution that one would encounter in the general
Western population, with BMI ranging from 16 to 70 and a median of
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28.8 (Supplementary Fig. 2a). Given the known associations of bio-
metric traits with age and sex, and the fact that gene expression traits
in blood have been found to be correlated with these covariates as
well as with white blood cell counts20, we adjusted for these covariates
using multiple linear regression (Methods) in all analyses of correla-
tion between gene expression and clinical traits, as well as in the
analyses of the genetic component of gene expression (see below).
In blood, fixing the false discovery rate (FDR)21 at 5%, we found
2,172 (9.2%) gene expression traits to be correlated with BMI,
1,098 (4.6%) with PBF, and 711 (3.0%) with WHR in the IFB cohort
(Supplementary Table 3). In adipose tissue, at a 5% FDR, the expres-
sion levels of 17,080 (72.0%) genes were correlated with BMI, 16,977
(71.6%) with PBF, and 14,901 (62.8%) with WHR (Supplementary
Table 3). Thus, there is at least an order of magnitude more expres-
sion traits that are significantly correlated with these biometric traits
in adipose tissue than in blood. Furthermore, 2,784 of the gene
expression traits in adipose tissue explained more than 10% of the
BMI variation in the IFA (R2 $ 0.1, P # 10215; see Supplementary
Fig. 2b), whereas none of the expression traits in blood achieved this
level of correlation. To ensure equivalent statistical power for making
these detections between the tissues, we compared these associations
in the 553 subjects represented in both the IFB and IFA cohorts.
Using these paired samples, we found an even more marked differ-
ence between the two tissues (Supplementary Table 3). For example,
there was a notable 34.6-fold enrichment of expression traits corre-
lated with BMI in adipose tissue compared with blood using the 553
subjects (FDR # 0.01), whereas this enrichment was 13.9-fold in the
full data sets.

Overall, our results suggest that a substantial fraction of the tran-
scriptional network in adipose tissue, together with infiltrated
macrophages22–24, is associated with the obesity of subjects. There
are several reasons why this strong relationship between gene
expression levels in adipose tissue and obesity should not come as
a surprise. First, obesity is a disorder of excessive body fat. Second, the
physiology and morphology of the adipocyte is known to be drasti-
cally altered in obese subjects25. Third, the number of macrophages is
markedly increased in the adipose tissue of obese subjects, and they
have been shown to have an important role in obesity and related
metabolic disorders22–24.

Heritability of gene expression traits

The subjects in the IFB and IFA cohorts were clustered into multi-
generational families (for details, see Methods). In the case of the IFB
cohort, it was possible to cluster 938 out of the 1,002 subjects into 209
families, whereas for the IFA cohort, 570 out of the 673 subjects
clustered into 124 families. Using this family structure, we estimated
the heritability of each of the 23,720 gene expression traits, both with
and without adjusting for sex, age, cell count (IFB only) and BMI
(IFA only). The number of traits with statistically significant herit-
ability is summarized in Table 1. With no adjustment, the number of
significantly heritable traits at a 5% FDR was 13,910 in IFB and

16,825 in IFA, or 58.6% and 70.9% of all assessed transcripts,
respectively. For those significantly heritable expression traits in
the IFA and IFB cohorts, the genetic variance component on average
explained nearly 30% of the variation observed (Supplementary
Fig. 2c). After adjustment, the number of heritable traits fell by as
much as 26% (Table 1). When combined with the high heritability
estimated for the expression traits, these results indicate that a
significant proportion of the heritability mediated by BMI or differ-
ential cell count is also reflected by a large number of gene expression
traits. The heritability values (percentage) of all expression traits for
the different types of adjustments and in both cohorts are listed in
Supplementary Tables 4 and 5.

Detection of cis and trans eQTL

All subjects in the two tissue cohorts were genotyped using a frame-
work set of 1,732 microsatellites and were used for genome-wide
linkage analysis. Because one of the main aims of this analysis was
to detect eQTL signals that are proximal to the physical locations of
genes corresponding to the expression traits (referred to here as cis-
acting eQTL signals), this analysis was restricted to the 20,877
expression traits that had well-defined map positions (NCBI Build
34). For comparison, the eQTL analysis was performed both with and
without adjusting the trait values for sex, age, differential cell-count
(IFB only) and BMI (IFA only).

We defined a cis-acting eQTL signal for a given expression trait as
the logarithm of the odds (eLOD) score at the nearest microsatellite
to the location of the corresponding probe. The number of traits with
significant cis eQTL is summarized in Table 1. For instance, at a 5%
FDR and without any adjustment, we observed significant cis eQTL
for 1,970 (9.4%) traits in blood and 1,215 (5.8%) traits in the adipose
tissues. After adjusting for sex, age and blood cell counts in IFB, the
number of cis eQTL signals increased to 2,529. In adipose tissue, this
number was 1,307 after adjusting for age and sex and was 1,489 after
also adjusting for BMI (Table 1). Out of the 1,489 significant cis-
acting eQTL in adipose tissue, 762 (51.2%) were also observed in
blood. Furthermore, expression traits with high heritability in both
blood and adipose tissue showed greater reproducibility between the
tissues (Fig. 1a). Here, 70% of all expression traits within the upper
25th percentile for heritability in blood that had a significant cis-
acting eQTL in adipose tissue, also had a significant cis eQTL in blood
(Fig. 1a). In fact, the proportion of significant cis eQTL signals in
both tissues was notably higher for traits with greater levels of differ-
ential expression or heritability (Fig. 1b). The cis-acting eQTL LOD
scores for each of the expression traits in the different cohorts are
listed in Supplementary Tables 4 and 5.

Our finding of a strong genetic effect associated with cis signals in
these tissues is consistent with results from previous studies1,11–13. The
results on the detection of eQTL signals that were distal to the phy-
sical locations of the genes corresponding to the expression traits
(referred to here as trans-acting linkage signals) are shown in the
Supplementary Results and in Supplementary Table 6. We note that

Table 1 | Heritability, cis eQTL and cis eSNP detection

IFB* IFA{

Variable FDR or g{ No adjustment Age, sex and cell-count adjusted No adjustment Age and sex adjusted Age, sex and BMI adjusted

Heritability 0.05 13,910 10,364 16,825 16,714 15,727

0.01 10,829 8,047 12,309 12,392 11,251

g 0.68 0.55 0.78 0.77 0.75

cis eQTL 0.05 1,970 2,529 1,215 1,307 1,489

0.01 1,256 1,567 737 773 820

g 0.40 0.44 0.33 0.32 0.37

cis eSNPs 0.05 2,417 2,714 3,048 3,149 3,364

0.01 1,827 2,026 2,271 2,323 2,506

g 0.33 0.32 0.37 0.35 0.36

The number of cis eQTL and cis eSNPs were as determined for a unique set of gene expression traits, for example the single most significant cis eSNP for any given trait.
*Multiple regression analysis in blood, adjusting for sex and age as (age 3 sex) or for age, sex and differential cell-count as (age 1 neutrophil 1 monocyte 1 lymphocyte) 3 sex.
{Multiple regression analysis in adipose, adjusting for sex and age as (age 3 sex) or for age, sex and BMI as (age 1 log(BMI)) 3 sex.
{The proportion of significant tests, g, was estimated as g 5 1 2 p0 (see Methods for details).
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the number of traits with significant trans eQTL in blood and adipose
tissue are 50 times fewer than the number of expression traits with
significant cis eQTL, consistent with what has been found in other
studies1,9,12,14. Finally, although others have reported hotspots of
localized linkage activity in a number of species1,6,9–11,13,14, we failed
to detect such activity beyond what was expected by chance (Supple-
mentary Results).

Identification of cis and trans eSNPs

For the identification of sequence variants that have cis and trans
regulatory effects on expression traits, we selected a subset of 150
unrelated (excluding all first-degree relatives) subjects who donated
both blood and adipose tissue, and performed a whole-genome geno-
typing of these samples employing 317,503 SNPs using the Illumina
platform26. The strongest cis effect for a given expression trait was
then mapped by testing all SNPs located within a 2 megabase (Mb)
window centred at the location of the probe corresponding to the
expression trait, again restricting the analysis to the 20,877 genes with
well defined positions in the genome. For each expression trait,
because multiple correlated SNPs were tested for cis association,
simulation was used to adjust the P value of the most significant
expression (e)SNPs (see Methods). The effect of testing multiple
expression traits was, as before, taken into account by means of the
FDR approach21. The number of significant cis-acting eSNPs is sum-
marized in Table 1. Assuming an FDR of 5%, we detected cis eSNPs
for 2,417 (11.5%) expression traits in blood and 3,048 (14.6%) traits

in adipose without any adjustment (Table 1). After adjusting for sex,
age and cell count in blood, the number of cis eSNPs increased to
2,714 (Table 1). After adjusting for sex, age and BMI in the adipose
tissue, the number of cis eSNPs increased to 3,364 (Table 1). Thus, we
detected 650 more gene expression traits with significant cis eSNPs in
the adipose tissue than in blood. This difference may reflect a more
homogenous cell population in adipose tissue compared to blood,
granting greater power to detect the cis effect in adipose. Further-
more, the number of significant cis eSNPs observed in both blood
and adipose tissue increased as the heritability increased (Fig. 2a).
For example, at an FDR of 1%, at least 50% of all SNPs that were cis-
acting in blood and within the upper 25th percentile for heritability or
differential expression were also cis-acting in adipose tissue (Fig. 2a).

Figure 2b summarizes the number of significant cis associations
plotted as a function of heritability and differential expression. As
observed in our analysis of cis-acting eQTL signals, the number of
significant cis eSNPs increases with greater heritability scores or
greater differential expression (Fig. 2b). A direct comparison of the
results obtained from the genome-wide linkage and association ana-
lyses of cis-acting signals revealed a marked agreement between these
two approaches (Supplementary Results and Supplementary Fig. 3).
The significance of the trans association effect was assessed using
the FDR approach21, and the number of significant trans eSNPs
summarized in Supplementary Table 6, again showing significantly
fewer effects in trans than in cis, as described and discussed in
Supplementary Results.
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Figure 2 | Genome-wide association screens for eSNPs. A subset of 150
unrelated subjects who donated both blood and adipose tissue were
genotyped at 317,503 tag SNPs (ILMN). The cis eSNP effects were assessed
using linear regression on 20,877 standardized gene expression traits (see
Methods for details). As described in Fig. 1, all traits were binned into
quartiles at varying strengths of differential expression or heritability.
a, Shown is the fraction of traits at varying degrees of differential expression
or heritability with significant cis eSNPs in adipose tissue that reproduced in
blood at 1% FDR. b, Shown is the number of significant cis associations in
both tissues plotted as a function of heritability and differential expression.
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Figure 1 | eQTL mapping in human blood and adipose tissue. Individuals
from large multi-generational families were genotyped for 1,732
microsatellites, and linkage analysis was performed on 20,877 standardized
gene expression traits (see Methods for detail). Expression traits, ranked
according to their differential expression or heritability strength, were
binned into quartiles (Q1 R Q4), each comprised of 5,939 genes. a, Shown is
the fraction of traits that have varying levels of differential expression and
heritability with significant cis-acting eQTL in adipose that reproduced in
blood at 1% FDR. b, Shown is the number of significant cis eQTL in both
tissues, as a function of differential expression and heritability at 1% FDR.
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Characterizing the transcriptional network

The analysis of gene expression traits in a large sample of individuals
allows for a direct and unbiased assessment of the connectivity struc-
ture of transcriptional networks27. This further provides a basis for
the identification of key functional modules within such networks
that contribute to disease risk28. We have previously described the
characterization of transcriptional networks based on brain, adipose
and liver tissues in a cross between two inbred strains of mice
(referred to here as the B 3 H cross)29–31. Building on this approach,
we constructed extensive, sex-specific, gene co-expression networks
based on the human adipose tissue data to identify modules strongly
associated with obesity and, more generally, comparing the structure
of this human network to that constructed in the mouse B 3 H cross
using similar tissues. The adipose co-expression network was con-
structed by considering all pair-wise correlations among the most
differentially expressed genes detected in this tissue (Methods). The
resulting gene–gene correlation matrix was then transformed into an
adjacency matrix in which the connectivity of a given gene was
defined as the sum of its connection strengths with all other genes
in the network27. The gene–gene interconnectivity represented in this
matrix (referred to here as the connectivity map) was then character-
ized using a topological overlap measure28. The identification of
functional modules of highly co-regulated genes in the resulting
network was carried out using a dynamic programming procedure
to search the network for sets of maximally interconnected genes29.

Figure 3a depicts the connectivity map for the male human adipose
tissue as a heat map of the topological overlap matrix. In this type of
map, the rows and the columns represent genes in a symmetric fash-
ion, and the colour intensity represents the interaction strength
between genes. This connectivity map highlights that genes in the
adipose transcriptional network fall into distinct network modules,
where genes within a given module are more highly interconnected
with each other (blocks along the diagonal of the matrix) than with
genes in other modules, as has been described previously for mice30. A
comparison of the connectivity structure between the male and
female human adipose networks reveals a number of network

modules that are well conserved between gender, both in terms of
gene identities and the connectivity strength (hub status or centrality;
see Supplementary Figs 6 and 7). However, there are also network
modules that are strictly gender specific (Supplementary Fig. 6).

An explicit comparison of the human and mouse adipose gene co-
expression networks revealed a single core module in humans that
was highly conserved in mice (Fig. 3a–c). The mouse module corres-
ponding to this human module (Fig. 3b) is very significantly enriched
for genes with eQTL that co-localize with obesity-associated-trait
QTLs as well as for genes shown to be in a causal relationship with
obesity-associated traits31. This mouse module significantly over-
lapped the human network module (Fig. 3a), with 196 out of the
673 (,29%) genes in the mouse module overlapping the set of 886
genes in the corresponding human module (only 8 were expected to
overlap by chance; Fisher’s Exact Test, P 5 8.4 3 102118). In addi-
tion, the Gene Ontology (GO) Biological Process categories that were
enriched in this conserved network module were virtually identical in
mouse and human (Supplementary Table 7). This conserved module
was also strongly indicative of macrophage function for a number of
reasons. First, GO Biological Process categories enriched in this
module relate to inflammatory response and macrophage activation
pathways. Second, well known macrophage-specific cell-surface
markers such as EMR1 and CD68 are represented in the mouse and
human modules. Third, using a recently constructed mouse body
gene expression atlas comprised of more than 60 tissues and cell
lines31, this conserved module had an over-representation of genes
enriched for expression in bone-marrow-derived macrophages
(Fisher’s Exact Test, P , 1 3 10221), spleen, thymus and lymphoid
tissue (Fisher’s Exact Test, P , 1 3 10220). These findings are con-
sistent with results from recent studies showing that the adipose
tissue secretes factors that regulate a wide variety of physiological
states, including energy homeostasis and the immune response25.
Given all of these significant enrichments and the association of this
module to macrophage function and metabolic traits, we refer to it as
the macrophage-enriched metabolic network (MEMN).

Because the mouse MEMN described above had previously been
shown to be significantly enriched for genes associated with obesity31,
we investigated whether a similar association to obesity could be
detected for the corresponding human module. Our results show
that the expression of 868 (or 98%) of the 886 genes in the human
MEMN module were significantly correlated with BMI in adipose
tissue at an FDR of 1%, indicating that the human MEMN module
may have a key role in obesity. Although the connection between
inflammation and metabolic disorders such as obesity and diabetes
has been reported previously25, these data suggest that there may
be many immune pathways or entire networks functioning in the
adipose tissue. In fact, a number of genes previously identified and
validated as being in a causal relationship with obesity-associated
phenotypes are represented in this module, and perturbing many
of these genes perturbs the entire module (see Supplementary
Results for additional information).

If the MEMN module has a role in human obesity, then variations
in DNA that result in expression changes in genes in the MEMN
module should, in the obese, be enriched for variations that are
associated with obesity. Therefore, we combined genotype and gene
expression data to identify the SNP in the vicinity of each gene in the
human MEMN module (Fig. 3a) that was most strongly associated
with the corresponding gene expression trait. We then tested these
variants jointly for association to BMI and PBF—the biometric traits
most widely used to assess human obesity. Of the 886 expression
traits represented in this module, 785 had a well defined genomic
position and were used in this analysis. A selection of 768 cis eSNPs
for the blood and adipose tissue data were successfully genotyped in a
cohort of 8,685 individuals measured for BMI and 1,939 for PBF
(Table 2). We used multiple linear regression analysis to test the
association of the sex- and age-adjusted trait values to genotype
counts for all the cis eSNPs jointly (see Methods for details).

a

Overlap
(P = 8.4 x 10–118) 

Human males  Mouse males

b

c

Enriched GO biological categories:
Inflammatory response (P < 10–36)
Immune cell activation (P < 10–27)
Cell activation (P < 10–26)
Macrophage-mediated immunity (P < 10–4)
Macrophage activation (P < 10–3)

Figure 3 | The human and mouse gene transcriptional networks.
a, Clustering of the connectivity matrix for the top 25% most differentially
expressed genes in the male human adipose data. In the heat map, rows and
columns represent genes in a symmetric fashion. The colour intensity
signifies the connection strength between two genes, with red colour
representing the strongest connection and white representing no
connection. The colour bars along the x- and y-axes delineate the highly
interconnected gene modules. b, Same as a, but for the male mouse B 3 H
adipose data. c, The turquoise module in the male human network (a) is
significantly overlapping the male mouse brown module (b), as well as the
turquoise module in human females. The GO list in c shows the enrichment
of inflammatory pathways in the conserved module.
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Furthermore, we constructed 20,000 sets of simulated genotypes for
all the variants conditioned on the familial relatedness of the indivi-
duals from the Icelandic genealogy database to compare the observed
association with that expected to occur by chance, and used these to
generate the adjusted P values represented in Table 2. In the larger
data set with BMI measurements, we find that the cis eSNPs selected
for genes in the human MEMN module showed some evidence for
association to BMI, with P values of 3.8 3 1026 (adjusted P 5 0.005)
and 5.3 3 1027 (adjusted P 5 0.002) for the cis eSNPs in adipose
tissue and blood, respectively (see Table 2). Although these analyses
were crude for individual cis eSNPs and the corresponding genes,
these results suggest that the human MEMN module is enriched for
sequence variants that confer risk of obesity in humans, and that
genetic perturbations affecting gene expression traits may more
generally perturb networks that in turn lead to increased susceptibi-
lity to disease. These data combined offer a glimpse of the compli-
cated network of interactions that could drive at least a portion of
obesity in humans, and demonstrate that at least a part of obesity is a
property of the macrophage gene network.

Discussion

Previous studies of the genetics of gene expression in humans have
been restricted to lymphoblastoid cell lines with no clinical pheno-
types12,13,16. Before our study, the validation of this type of data in
primary human tissues from subjects scored for clinical traits was
lacking. Our analysis of genetic variation and gene expression in
population-based sampling of blood and subcutaneous adipose tis-
sue from a large number of extended families begins to fill this gap.
We showed that more than 50% of all gene expression traits in adi-
pose tissue are strongly correlated with clinical traits related to
obesity, compared to less than 10% in blood. Furthermore, through
segregation analysis and genome-wide linkage and association stud-
ies, we demonstrated an extensive genetic component underlying
gene expression traits in blood and adipose tissue. This was evidenced
by detection of heritability as a highly significant contributor to
variation in gene expression and by the identification of a large
number of significant linkage and association signals for the expres-
sion traits in the two tissues, with approximately 50% overlap of
genetic signals between the two tissues. Consistent with previous
reports, the signals detected using both linkage and association ana-
lysis was strongly biased towards cis- rather than trans-acting genetic
signals.

We also constructed an extensive co-expression network on the
basis of the human adipose tissue data with the aim of identifying key
functional modules within this network that associated with obesity.
A core gene expression module, the MEMN module, was identified in
humans that has significant overlap with a previously described
mouse network module. The gene sets in the core human and mouse
modules were highly enriched for genes involved in inflammatory
response and macrophage activation pathways. Furthermore, the
mouse MEMN module has previously been shown to be enriched

for genes that contribute to the risk of obesity, diabetes and
atherosclerosis-associated traits. By using the strongest cis-acting
SNPs for each of the gene expression traits from the human
MEMN module and testing them jointly as a group, we observed a
significant enrichment of genetic associations to clinical traits related
to human obesity in this module. The identification of SNPs that are
associated with variation in gene expression provides a level of func-
tional support for such SNPs that makes them ideal candidates to
identify genetic determinants of complex traits including diseases
and drug response. Clearly this approach warrants serious conside-
ration given the potential to affect our understanding of human
health.

METHODS SUMMARY
Subjects used in the present study were of Caucasian descent. They were

recruited as dense three-generation pedigrees, and comprehensively scored for

multiple phenotypes including biometric traits related to obesity. Peripheral

blood (N 5 1,002) and subcutaneous fat (N 5 673) were collected, and DNA

and RNA extracted. The RNA samples (a total of 1,765 samples), including

reference pools, were hybridized to a single custom-made human array contain-

ing 23,720 unique oligonucleotide probes. We estimated the differential expres-

sion, heritability, cis and trans eQTL, and association signals for each gene

expression trait in each tissue. For the genetics of gene expression analysis, all

subjects in these cohorts were genotyped at 1,732 microsatellites. A subset of 150

unrelated subjects, donating both blood and adipose tissue, was genotyped at

317,000 SNPs. Multiple testing for significance was taken into account through

the use of an FDR procedure. The expression and clinical data were adjusted for

standard covariates including age and sex for all analyses. The gene–gene co-

expression network was constructed from the human adipose tissue expression

data and compared to a similarly constructed adipose tissue network from an

experimental mouse cross. Finally, expression variation markers (eSNPs) map-
ping to a core network module identified in human adipose tissue and found to

be conserved in mice and previously shown to be enriched for genes in a causal

relationship with obesity were tested jointly for association to obesity-related

traits in humans using multiple regression analysis.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Human study populations and sample processing. The subjects, ranging in age

from 18 to 85 years old, in the IFB and IFA cohorts were clustered into multi-

generational families on the basis of relatedness of individuals in the Icelandic

genealogy database32. For the IFB cohort, 1,002 Icelandic subjects were recruited,

and for the IFA cohort, 673 subjects were recruited. All participants in the IFA

and IFB cohorts were scored for various clinical traits related to obesity, includ-

ing height, weight, waist circumference, hip circumference and percentage body

fat (PBF) measured by bioimpedance. In addition to the IFA and IFB cohorts, 85

(43 males and 42 females) Icelandic individuals were recruited to generate a

blood RNA reference pool for the IFB cohort. Furthermore, ten (six females

and four males) additional Icelandic individuals being operated on for abdo-

minal hernia were recruited to construct an adipose reference RNA pool for the

IFA cohort. Ethical approval for the present study was granted by the National

Bioethics Committee (NBC 01-033) and the Icelandic Data Protection Authority

(DPA). All participants in the study signed informed consent. All personal

identifiers associated with tissue samples, clinical information and genealogy

were encrypted by the DPA, using a third-party encryption system in which

DPA maintains the code32. The RNA and DNA sample preparation, microarray

hybridization and expression analysis are described in the MIAME checklist that

is provided in the Supplementary Information.

Identifying differentially expressed genes. To assess whether a gene in a given

sample was differentially expressed, we used a previously described and validated

error model for testing whether the mean log ratio of the intensity measurements

between the experiment and reference channels was significantly different from

zero33,34. On the basis of this error model, we obtained P values for each of the

individual gene expression measures in each sample as described previously33.

We then computed the standard deviation of –log10 of the P value for each gene

expression measure over all samples profiled for a given tissue, and then rank-

ordered all of the genes profiled in each tissue on the basis of this standard

deviation value (rank-ordered in descending order). Genes that fall at the top

of this rank-ordered list can be considered to be the most differentially expressed

or variable genes in the study. We have previously shown that this type of

ordering approach well captures the most active genes in a set of samples33. To

demonstrate the number of genome-wide significant eQTL and eSNPs as a

function of differential gene expression, we binned the expression traits into

quartiles (Q1 R Q4) on the basis of the rank-ordered gene list, with each bin

containing 5,939 genes and the bins increasing in significance with respect to

differential expression, from Q1 to Q4.

Heritability, genome-wide linkage and association analysis. All subjects were

clustered into families in which each proband is related to at least one other

proband within five meiotic events; members of the IFB cohort were clustered

into 209 families with 938 contributing individuals, and those from IFA were

clustered into 124 families with 570 contributing individuals. Individuals in

these cohorts were genotyped with 1,732 microsatellites uniformly distributed

across the human genome, as described previously35. Each gene expression trait

was treated as a quantitative trait. For the heritability calculations, linkage ana-

lysis and association to genetic markers, the expression trait values were first

adjusted for relevant covariates such as sex, age, blood cell count and BMI using

multiple linear regression analysis as (age 1 age2 1 neutrophil 1 monocyte 1

lymphocyte) 3 sex 1 trait in blood and as (age 3 age2 1 log(BMI)) 3 sex 1 trait

for IFA. Traits were then standardized by mapping the distributions of the

inverse normal transformation to each of the expression traits onto a normal

distribution with a mean of 0 and a variance of 1. This was done to eliminate the

effect of outliers on all subsequent analyses. To calculate the heritability, a poly-

genic model was fitted to determine how much of the variation in the trait was

caused by genetic effects. To carry out these calculations, we used SOLAR 2.0, a

publicly available software package for human genetic analysis36.

Linkage analysis and the calculation of IBD matrices used in the heritability

calculations were carried out using the program Allegro37. The linkage analysis

was based on a locally most-powerful score statistic for a gaussian variance

component model with an additive variance component and assuming

heritability for each trait was known. Significance was assessed using the expo-

nential tilting method38, which has previously been demonstrated to give accu-

rate type I error rates39. The accuracy of type I error rates was verified for the

present score statistic by carrying out extensive simulation analysis, including

simulations that assumed various deviations from the gaussian variance com-

ponent model40.

Multiple testing for significance was taken into account through the use of

FDR procedures21. The software QVALUE was used in the calculations21. The

proportion of significant tests g was estimated as g 5 1 – p0, where p0 is the

estimate of the overall proportion of true null hypotheses. In estimating p0,

the pi0.meth 5 ‘‘bootstrap’’ option in the QVALUE software was used.

Controlling for multiple testing in the genome-wide association scans. To

control for multiple testing in the genome-wide association scans carried out on

the gene expression traits in a subset of the IFA cohort, we used simulations to

adjust the P values for each trait for the number of SNPs tested. In each simu-

lation, we permuted the gene expression trait values for the 150 individuals and

recalculated the association test for all SNPs in the 2 Mb window centred at the

probe sequence location for the corresponding gene. This was repeated up to

50,000 times depending on the significance of the original cis association iden-

tified for the expression trait in question. More specifically, if we define the

Bonferroni-adjusted P value, PBadj, as P 3 N, where P is the unadjusted P value

and N is the number of SNPs tested, the number of permutations41 performed for

each trait was selected as 100/PBadj. The minimum number of permutations

performed for any given expression trait was 500. This was sufficient for roughly

70% of the traits. An adjusted P value was then calculated as the fraction of

simulations that produced an association for any SNP tested that was at least as

significant as the most significant cis association observed in the original data set.

For the X chromosome, the permutations were done preserving the sex of the

individuals. The permutation test was applied to those traits where the strongest

cis association corresponded to a P . 0.000001, whereas for traits with more

significant cis associations a simple Bonferroni correction was used to calculate

the adjusted P values. The Bonferroni adjustment was applied to approximately

10% of the traits. Multiple testing for significance was then taken into account

through the use of the FDR procedures21. Here, the calculated P values (as

described above) were used as the input to estimate the overall FDR.

Assessing the significance of trans-acting eQTL signals. We defined a linkage

for a gene expression trait as being trans-acting (distal to the physical location of

the probe) if the associated LOD score curve peak was located on a different

chromosome to the physical location of corresponding probe sequence. To

assess the significance of the observed trans-acting eQTL signals, we created 10

sets of simulated genotypes for all of the 1,732 microsatellite markers using drop-

down simulations, under the assumption of no linkage anywhere in the genome,

for the same family structure as that used in the linkage analysis. For each marker,

the simulated genotypes matched the original genotypes both in terms of missing

genotypes and in terms of the frequency distribution of the genotypes for each

marker. We then ran the linkage analysis on each of the simulated data sets for all

of the 20,877 uniquely mapped traits. From each linkage run, we identified the

strongest trans-acting eQTL for each gene expression trait. Combining the

results for all 20,877 gene expression traits over all 10 simulated data sets yielded

a reference distribution of 208,770 of the strongest trans-acting eQTL detected in

the simulated data. By comparing the observed trans-acting eQTL distribution to

this reference distribution, we assigned empirical P values to the trans-acting

eQTL signals observed in the original analysis.

Assessing the significance of eQTL hotspots. Given the strong correlation

structure among gene expression traits, if one expression trait falsely links to a

given genomic region then it is possible that many other expression traits highly

correlated with this expression trait may also falsely link to the given genomic

region. To assess whether eQTL hotspots were artefacts driven by false-positive

eQTL of highly correlated expression traits, we again used the eQTL results

generated on the 10 simulated data sets described above. Using the same linkage

threshold as that used in the observed data to detect trans eQTL, we examined

whether hotspots were detected that were of similar magnitude or greater than

what was detected in the observed data. In all of the simulated data sets, we

observed hotspots of similar or greater magnitude than the hotspots we detected

in the observed data (see Supplementary Fig. 1), suggesting that the hotspots

detected in the observed data could be due to false linkages of highly correlated

gene sets.

Construction of the adipose co-expression network. A previously described

weighted gene co-expression network reconstruction algorithm was used to

reconstruct the human and mouse co-expression networks27. The weighted net-

work reconstruction algorithm involved first constructing a matrix of Pearson

correlations between all gene expression pairs. The correlation matrix was then

transformed into an adjacency matrix using a power function f(x) 5 xb. The

adjacency matrix defines the weighted co-expression network. The parameter

b of the power function was determined such that the resulting adjacency matrix

was approximately scale-free based on a previously proposed model-fitting

index27. This index is defined as the coefficient of determination (R2) of the

linear model constructed by regressing log(p(k)) onto log(k), or by regressing

log(p(k)) onto log(k) 1 k, where k represents the number of edges connecting to

the given node and p(k) is the frequency distribution of the degree k in the co-

expression network. The model-fitting index of a perfect scale-free network is 1.

The exponent of the power function, b, was chosen to be the smallest value such

that the co-expression network exhibited the scale-free property, that is, the

model-fitting index R2 $ 0.8.
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The adjacency matrix was further transformed into a topological overlap
matrix to more readily identify modules of highly co-regulated genes. The topo-

logical overlap captures not only the direct interaction between two genes but

also their indirect interactions through all the other genes in the network.

Traditionally, the connectivity of a node is defined as the sum of its connection

strengths in the adjacency matrix with all other genes in the network. Here we

extended the definition to the topological overlap matrix and derived a topo-

logical overlap connectivity map. Module identification was conducted through

a dynamic programming procedure to search the topological overlap matrix

ordered by hierarchical clustering for maximum sets of inter-connected genes28.

Testing the association of cis variants to obesity traits. To test the association of

cis variants for the genes in the MEMN module to the obesity traits BMI (or

PBF), we tested the difference between two regression models: model 1 is

log(BMIj) , sexj 3 (agej 1 agej
2), where subscript j refers to individual j, and

model 2 is log(BMIj) , sexj 3 (agej 1 agej
2) 1 gji 1 … 1 gjn, where gji is the

minor allele count for individual j and cis variant i. To adjust for relationship

and for associations occurring by chance, we simulated genotypes for all of the cis

variants through the genealogy of 708,683 Icelanders. Here, for each of the 20,000

simulated sets of genotypes we constructed, we repeated the association tests
between the cis variants and the obesity traits. We then calculated adjusted P

values as the fraction of simulations that yielded equally or more significant

association between a particular trait and the corresponding cis variants. These

adjusted P values are summarized in Table 2 in the main text.
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