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In the context of epidemic spreading, many intricate dynamical patterns can emerge due to the
cooperation of different types of pathogens or the interaction between the disease spread and other
failure propagation mechanism. To unravel such patterns, simulation frameworks are usually
adopted, but they are computationally demanding on big networks and subject to large statistical
uncertainty. Here, we study the two-layer spreading processes on unidirectionally dependent
networks, where the spreading infection of diseases or malware in one layer can trigger cascading
failures in another layer and lead to secondary disasters, e.g., disrupting public services, supply
chains, or power distribution. We utilize a dynamic message-passing method to devise efficient
algorithms for inferring the system states, which allows one to investigate systematically the nature
of complex intertwined spreading processes and evaluate their impact. Based on such dynamic
message-passing framework and optimal control, we further develop an effective optimization
algorithm for mitigating network failures.

Epidemic outbreaks do not only possess a direct threat to public health but
also, indirectly, impact other sectors1–3. For instance, when many infected
individuals have to rest, be hospitalized or quarantined in order to slow
down the epidemic spread, this could severely disrupt public services,
causing disutility even to thosewho are not infected. For instance, the highly
interdependent supply chains can be easily disrupted due to epidemic
outbreaks4,5. Similar concerns apply to cyber security. The spread of mal-
ware is not merely detrimental to computer networks, but can also cause
failures to power grids or urban transportation networks which rely on
modern communication systems6,7.What is evenworse is that the failures of
certain components of technological networks can by themselves trigger a
cascade of secondary failures, which can eventually lead to large-scale
outages8. Therefore, it is vital to understand the nature of epidemic (or
malware) spreading and failure propagation on interacting networks, based
on which further mitigation and control measures can be devised.

A number of previous papers address the scenario of interacting
spreading processes. In the context of epidemic spreading, two types of
pathogens can cooperate or compete with each other, creating many
intricate patterns of disease propagation9–15. For interacting technological
networks (e.g., communication and power networks), the failure of com-
ponents in one network layer will not only affect neighboring parts within
the same network, but will also influence the second network layer through
the cross-layer connections. Macroscopic analyses based on simplified

models show that such a spreading mechanism can easily result in a cata-
strophic breakdown of the whole system16–18.

Most existing research in the area of multi-layer spreading processes
employs macroscopic approaches, such as the degree-distribution-based
mean-fieldmethods and asymptotic percolation analysis, in order to obtain
the global picture of the models’ behavior19. Such methods typically do not
consider specific network instances and lack the ability to treat the interplay
between the spreading dynamics and the fine-grained network topology19.
For stochastic spreading processes with specific system conditions (e.g.,
topology initial conditions and individual node properties), it is common to
apply extensive Monte Carlo (MC) simulations to observe the evolution of
the spread, basedonwhich important policy decisions aremade20.However,
such simulations are computationally demanding on big networks and can
be subject to large statistical uncertainty; as a result, they are difficult to be
used for downstream analysis or optimization tasks. Therefore, researchers
have been pursuing tractable and accurate theoretical methods to tackle the
complex stochastic dynamics on networks19,21.

Among the various developed theoretical approaches used, dynamic
message-passing (DMP) is based on ideas from statistical physics offering a
desirable algorithmic framework for approximate inferencewhile it remains
computationally efficient22–24. TheDMPmethodhas been shown tobemore
accurate than the widely adopted individual-based mean-field method,
especially in sparse networks25,26. Moreover, the DMP approach yields a set
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of closed-formequations, which is very convenient for additional parameter
estimation and optimization tasks14,27,28.

In this work, we study a scenario where the epidemic or malware
spreading on one network can trigger cascading failures on another. This is
relevant in the cases where epidemic outbreaks cause disruption in public
services or economic activities. Similarly, it can also be applied to study the
effect of malware spread on computer networks causing the breakdown of
other technological networks such as the power grid. The latter phenom-
enon is gaining more and more attention due to the increasing interactions
among various engineering networks7. We explore the dynamics and con-
sequences of such infection-induced cascading failures across two-layer
networks using theDMPmethod.Our results reveal that even relatively low
infection rates can induce large-scale cascading failures, leading to wide-
spread network disruptions. We characterized these phenomena through
the derivation and analysis of DMP equations, achieving a comprehensive
understanding by linking the process to combined bond and bootstrap
percolation models analytically. Leveraging the analytical tractability of the
DMP model, we also developed optimization algorithms that effectively
mitigate these network failures. By adjusting control parameters based on
the back-propagation of final state impacts, these algorithms helpminimize
the size of system failure.

Methods
Model and framework
The model. To study the impact of infection spread of diseases or
malware and their secondary effects, we consider multiplex networks
comprising two layers29, which are denoted as layers a and b, and are
represented by two graphs Ga(Va, Ea) and Gb(Vb, Eb). For con-
venience, we assume that the nodes in both layers correspond to the
same set of individuals, denoted as V = Va = Vb. This can be extended
to more general settings. Denote ∂ai and ∂bi as the sets of nodes
adjacent to node i in layers a and b, respectively. We also define
∂i ¼ ∂ai ∪ ∂bi . See Fig. 1 for an example of the network model under
consideration.

Each node has states on both layers a and b. In layer a, each node
assumes one of four states, susceptible (S), infected (I), recovered (R), and
protected (P) at any particular time step. The infection spreading process
occurs in layer a only, which is dictated by the stochastic discrete-time SIR
model19 augmented with a protection mechanism, which we term the SIRP
model. Stochastic models are commonly employed for modeling the
spreads of epidemics or malware20,30,31. The stochastic SIR model is com-
monly used for representing the spread of infections, wherein a susceptible
individual (in state S) may become infected through contact with infected
neighbors, and an infected individual (in state I) can recover, transitioning
to the recovered state (R) after a certain period. The process we consider is
based on the SIR model but includes one more state, P, in layer a; it admits
the following state-transition rule

SðiÞ þ IðjÞ�!
βji

IðiÞ þ IðjÞ;
IðiÞ�!μi RðiÞ
SðiÞ�!γiðtÞ PðiÞ;

ð1Þ

where βji is the probability that node j being in the infected state transmits
the infection to its susceptible neighboring node i at a certain time step. At
each time step, an existing infected node i recovers with probability μi; the
recovery process is assumed to occur after possible transmission activities.
At time t, an existing susceptible node i turns into state P if it receives
protection at time t− 1, which occurs with probability γi(t− 1). The pro-
tection can be achieved by vaccination in the epidemic setting or special
protection measures in the malware spread setting, which is usually subject
to certain budget constraints. The protection probabilities {γi(t)} will be the
major control variables for mitigating the outbreaks. Note that when no
protection is provided, i.e., all {γi(t)} are zero, the SIRPmodel reduces to the

traditional SIR model. At initial time t = 0, we assume that node i has a
probability Pi

Sð0Þ to be in state S, and probability Pi
Ið0Þ ¼ 1� Pi

Sð0Þ to be in
state I.

In layer b, each node i can either be in the normal state (N) or the failed
state (F), indicated by a binary state variable xi where xi = 1 (0) denotes the
‘fail’ (‘normal’) state at a particular time step. A node i in layer b fails if (i) it
has been infected, i.e., node i is in state IorR in layera; (ii) there exists certain
neighboring failed nodes such that

P
j2∂bi xjbji ≥Θi, whereΘi is a threshold

and the influence parameter bji measures the importance of the failure of
node j on node i. The latter case indicates that node i can fail due to the
failures of its neighbors which it relies on, even though node i itself is not
infected. In summary, the failure propagation process in layer b can be
expressed as

xi ¼
1; either (i) node i in state I or R in layer a;

or (ii)
P

j2∂bi xjbji ≥Θiin layer b;

0; otherwise:

8><
>: ð2Þ

The whole process is simulated for T time steps. As we are interested in the
time scale of infection spread which is usually very fast, we do not consider
any repair rule in layerb. Therefore, a failednode cannot return tonormality
within the time window under consideration.

Such a failure propagation mechanism is equivalent to the linear
threshold model (LTM), which is commonly used in studying social con-
tagion and other cascade processes19,32,33. The LTM model also offers a
straightforward yet effective framework for understanding cascading fail-
ures in various systems, as it effectively encapsulates the pivotal dynamics
where a component can become dysfunctional if a significant number of its
dependent components fail18,32. Other popularmodels for cascading failures
incorporate more details of the system functionalities34–36; these models
require theoretical analyses specific to each case, which fall outside the scope
of the current study.

Figure 1 illustrates the infection-induced cascades of our model in a
simple network of 4 nodes.Node 1 is the initial infectednode (or the seed) in
layer a, which transmits the infection to node 2 at a certain time step. Now
that node 2 is in the infected state in layer a, it also fails to function in layer b.
If b24 ≥Θ4, then node 4will also fail as it loses the support fromnode 2, even
though node 4 itself has not been infected. Such additional cascade pro-
pagation needs extra care when infections spread out. Similar interacting
SIR (without a protection mechanism) and LTM processes have also been
considered in the social contagion setting37.

We reiterate that the infection-spreading process (described by the
SIRP model) occurs in layer a only and not the entire network, while the
cascade process (described by the LTMmodel) occurs in layer b. Typically, a

Fig. 1 | An example of the two-layer spreading process considered in this work.A
node is in state I if it is infected in layer a, and a node is in state F if it fails in layer b. In
this example, node 2 is infected by node 1 in layer a, therefore it turns into state F in
layer b. If b24 ≥Θ4, then node 4 will also fail as it loses the support from node 2, even
though node 4 itself has not been infected.
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holistic treatment of the combined two-layer processes is needed to
understand their impact and develop mitigation strategies. We also remark
that our model differs from the traditional settings of interdependent net-
works, which typically includes reciprocal dependency.

The DMP framework. We aim to use the DMP approach to investigate
the two-layer spreading processes described above. The DMP equations
of the usual SIR and the LTM model have been derived, based on the
microscopic dynamic belief propagation equations24,38. As in generic
belief propagation methods39, the DMP method is exact for tree graphs,
while it can constitute a good approximation for loopy graphs, particu-
larly when short loops, such as those spanning 3 or 4 nodes, are scarce.
The two-layer spreading processes combining the SIR and LTM model
appear more involved, where approximations relying on uncorrelated
multiplex networks were used37. Such approximations become less ade-
quate when the two network layers are correlated, e.g., both layers share
the same network topology.

Dynamic belief propagation. To devise more accurate DMP equations
for general networkmodels and accommodate the protectionmechanism
for mitigation, we start from the principled dynamic belief propagation
equations of the two-layer processes. One important characteristic of our
model is that state transition is unidirectional, which can only take the
direction S→ I→ R or S→ P in layer a, and N→ F in layer b. Note that
layer b does not influence layer a. As a result, our model admits a reduced
representation of the system’s dynamical trajectories that subsequently
facilitates a drastic simplification of the derivation of the DMP equations,
which are exact on tree networks24. Nevertheless, we emphasize that the
exactness of the DMP formalism for tree networks is conditioned on the
unidirectional nature of the model, which no longer holds if layer b also
influences layer a. Introducing reciprocal interactions between both
model layers requires additional theoretical tools, which are interesting
by themselves but are beyond the scope of the current study.

Following previous works24,38, we parametrize the dynamical trajectory
of each node by its state transition times. In layer a, we denote τai ;ω

a
i and ε

a
i

as the first time at which node i turns into state I, R and P, respectively. In
layer b, we denote τbi as the first time at which node i turns into state F. The
quantity of interest is the probability of the trajectory of node i considered in
the entire graph comprising layersa andbbuthaving a cavitywherenode j is
absent, denoted asmi!jðτai ;ωa

i ; ε
a
i ; τ

b
i Þ. Throughout themanuscript, wewill

refer toprobabilitiesdefinedwithin a cavity graph as cavityprobabilities. It is
computed by the following dynamic belief propagation equations

mi!jðτai ;ωa
i ; ε

a
i ; τ

b
i Þ

¼ P
fτak ;ωa

k ;ε
a
k ;τ

b
kgk2∂i

Wi
SIRPðτai ;ωa

i ; ε
a
i jjfτak;ωa

k; ε
a
kgk2∂ai Þ

×Wi
LTMðτbi jjτai ; εai ; fτbkgk2∂bi Þ

×
Q

k2∂inj
mk!iðτak;ωa

k; ε
a
k; τ

b
kÞ;

ð3Þ

where Wi
SIRPð�Þ and Wi

LTMð�Þ are the transition kernels dictated by the
dynamical rules of the SIRP and LTM model, respectively (for details see
SupplementaryNote 1). Themarginal probability of the trajectory of node i,
denoted asmiðτai ;ωa

i ; ε
a
i ; τ

b
i Þ, canbe computed in a similarway asEq. (3), by

replacing the product
Q

k2∂inj in the last line of Eq. (3) by
Q

k2∂i . That is, the
marginal probabilitymi( ⋅ ) is calculatedusing the entire graph, in contrast to
the cavityprobabilitymi→j( ⋅ )which isdeterminedwith a cavity graphwhere
node j is absent.

The probability of node i in a certain state can be computed by sum-
ming the trajectory-level probability, which will be described in the next
section.

Full node-level DMP equations
Consider the cavity probability of node i being in state S in layer a at time t
(assuming node j is absent - the cavity), it is obtained by tracing over the
corresponding probabilities of trajectories mi→j( ⋅ ) in the cavity graph
(assuming node j is removed)

Pi!j
S ðtÞ ¼

P
τai ;ω

a
i ;ε

a
i ;τ

b
i

Iðt<τai <ωa
i ÞIðt<εai Þ

×mi!jðτai ;ωa
i ; ε

a
i ; τ

b
i Þ;

ð4Þ

where Ið�Þ is the indicator function enforcing the order of state transitions.
Similarly, we denote the cavity probability of node i in state F in layer b (in

the absence of node j) as Pi!j
F ðtÞ; it is obtained by

Pi!j
F ðtÞ ¼

P
τai ;ω

a
i ;ε

a
i ;τ

b
i

Iðτbi ≤ tÞmi!jðτai ;ωa
i ; ε

a
i ; τ

b
i Þ: ð5Þ

The marginal probabilities Pi
SðtÞ and Pi

FðtÞ can be computed in a similar
manner, by replacing mi→j( ⋅ ) in Eq. (4) and Eq. (5) withmi( ⋅ ).

DMPequations inLayer a.Wenote that infection spread in layer a is not
influenced by cascades in layer b, while the failure time in layer b depends
on the infection time and the protection time of the corresponding node
in layer a. Hence, we can decompose the message mi→j( ⋅ ) to the
respective components as

mi!jðτai ;ωa
i ; ε

a
i ; τ

b
i Þ ¼ mi!j

a ðτai ;ωa
i ; ε

a
i Þ

×mi!j
b ðτbi jτai ; εai Þ:

ð6Þ

where mi!j
a ð�Þ and mi!j

b ð�Þ denote the trajectory-level probabilities of the
processes in layer a and b, respectively.Note that themessages {mi→j( ⋅ )} live
in the entire network comprising layers a and b, which implies that
fmi!j

a ð�Þ;mi!j
b ð�Þg are also defined on the entire network.

Summingmi!j
a ð�Þ over τai ;ωa

i ; ε
a
i up to a certain time yields the normal

DMPequations of node-level probabilities for the infection spread in layer a
(see details in SupplementaryNote 1). They admit the following expressions
for t > 0

Pi!j
S ðtÞ ¼ Pi

Sð0Þ
Yt�1
t0¼0

1� γiðt0Þ
� � Y

k2∂ai nj
θk!iðtÞ; ð7Þ

θk!iðtÞ ¼ θk!iðt � 1Þ � βkiϕ
k!iðt � 1Þ;

ϕk!iðtÞ ¼ 1� βki
� �

1� μk
� �

ϕk!iðt � 1Þ ð8Þ

� Pk!i
S ðtÞ � Pk!i

S ðt � 1Þ 1� γkðt � 1Þ� �� �
; ð9Þ

where θk→i(t) is the cavity probability that node k has not transmitted the
infection signal tonode iup to time t, andϕk→i(t) is the cavityprobability that
k is in state I but has not transmitted the infection signal to node i up to time
t. Note that the messages fPk!i

S ðtÞ; θk!iðtÞ; ϕk!iðtÞg are only needed for
edges belonging to layer a where the SIRP model is defined.

At time t = 0, as we consider that each node i is either in state S with
probability Pi

Sð0Þ or in state I with probability 1� Pi
Sð0Þ, we have the fol-

lowing initial conditions for the messages

Pi!j
S ð0Þ ¼ Pi

Sð0Þ;
ϕi!jð0Þ ¼ 1� Pi

Sð0Þ;
θi!jð0Þ ¼ 1:

ð10Þ
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Upon iterating the above messages (7)-(8) starting from the initial condi-
tions (10), the node-level marginal probabilities can be computed as

Pi
SðtÞ ¼ Pi

Sð0Þ
Yt�1
t0¼0

1� γiðt0Þ
� �Y

k2∂ai
θk!iðtÞ; ð11Þ

Pi
RðtÞ ¼ Pi

Rðt � 1Þ þ μiP
i
Iðt � 1Þ; ð12Þ

Pi
PðtÞ ¼ Pi

Pðt � 1Þ þ γiðt � 1ÞPi
Sðt � 1Þ; ð13Þ

Pi
IðtÞ ¼ 1� Pi

SðtÞ � Pi
RðtÞ � Pi

PðtÞ: ð14Þ

The above DMP Eqs. (11)–(14) bear similarity to those of SIR model23,
except for the protection mechanism with control parameters {γi(t)}. The
computational complexity for obtaining the messages for the SIRP process
in layer a over a total time T is O(∣Ea∣T), where ∣Ea∣ denotes the number of
edges in layer a.

DMPequations in layer b. As for the cascade process in layer b, whether
node i will turn into state F (fail) also depends on the state in layer a,
making it more challenging to derive the corresponding DMP equations.
The key to obtaining node-level DMP equations for Pi!j

F ðtÞ in Eq. (5)
(and the corresponding marginal probability Pi

FðtÞ) is to introduce sev-
eral intermediate quantities to facilitate the calculation; the details are
outlined in Supplementary Note 1.

To summarize, the node-level failure probability Pi
FðtÞ can be

decomposed as

Pi
FðtÞ ¼ Pi

IðtÞ þ Pi
RðtÞ þ Pi

SFðtÞ þ Pi
PFðtÞ; ð15Þ

where Pi
SFðtÞ and Pi

PFðtÞ are the probabilities that node i is in state F in layer
b, while it is in state S or state P in layer a, respectively. For these two cases,
the failure of node i is triggered by the failure propagation of its neighbors
from layer b. A similar relation holds for the cavity probability Pi!j

F ðtÞ.
The probability Pi

SFðtÞ admits the following iteration

Pi
SFðtÞ ¼ Pi

Sð0Þ
Yt�1
t0¼0

1� γiðt0Þ
� � Y

k2∂ai n∂ai \∂bi

θk!iðtÞ

×
X
fxkgk2∂b

i

I
X
k2∂bi

xkbki ≥Θi

0
@

1
A

×
Y

k 2 ∂bi n∂ai \ ∂bi ;
xk ¼ 1

Pk!i
F ðt � 1Þ

Y
k 2 ∂bi n∂ai \ ∂bi ;

xk ¼ 0

1� Pk!i
F ðt � 1Þ� �

×
Y

k 2 ∂ai \ ∂bi ;
xk ¼ 1

χk!iðtÞ
Y

k 2 ∂ai \ ∂bi ;
xk ¼ 0

θk!iðtÞ � χk!iðtÞ� �
;

ð16Þ

where χk→i(t) is the cavity probability that node k is in state F at time t− 1,
and it has not sent the infection signal to node i up to time t.

The cavity probability χk→i(t) can be decomposed into

χk!iðtÞ ¼ ψk!iðtÞ þ Pk!i
SF ðt � 1Þ þ Pk!i

PF ðt � 1Þ; ð17Þ

where ψk→i(t) is the cavity probability that node k is in state I or R at time
t− 1, but has not transmitted the infection signal to node i up to time t. The
cavity probability ψk→i(t) can be computed as

ψk!iðtÞ ¼ψk!iðt � 1Þ � βkiϕ
k!iðt � 1Þ

þ 1� γkðt � 2Þ� �
Pk!i
S ðt � 2Þ � Pk!i

S ðt � 1Þ:
ð18Þ

Similarly, the probability Pi
PFðtÞ admits the following iteration

Pi
PFðtÞ ¼ Pi

Sð0Þ
Xt

ε¼1
γiðε� 1Þ

Yε�2
t0¼0

1� γiðt0Þ
� �

×
Y

k2∂ai n∂ai \∂bi

θk!iðε� 1Þ
X
fxkgk2∂b

i

I
X
k2∂bi

xkbki ≥Θi

0
@

1
A

×
Y

k 2 ∂bi n∂ai \ ∂bi ;
xk ¼ 1

Pk!i
F ðt � 1Þ

Y
k 2 ∂bi n∂ai \ ∂bi ;

xk ¼ 0

1� Pk!i
F ðt � 1Þ� �

×
Y

k 2 ∂ai \ ∂bi ;
xk ¼ 1

~χk!iðt; εÞ
Y

k 2 ∂ai \ ∂bi ;
xk ¼ 0

θk!iðε� 1Þ � ~χk!iðt; εÞ� �
;

ð19Þ

where the dummy variable ε indicates the time at which node i receives the
protection signal.

In Eq. (19),~χk!iðt; εÞ is the cavity probability that node k is in state F at
time t− 1, but has not transmitted the infection signal to node iup to time ε.
It can be decomposed into

~χk!iðt; εÞ ¼ ~ψk!iðt; εÞ þ Pk!i
SF ðt � 1Þ þ Pk!i

PF ðt � 1Þ; ð20Þ

where ~ψk!iðt; εÞ is the cavity probability that node k is in state I orR at time
t− 1, but has not transmitted the infection signal to node i up to time ε− 1.
The cavity probability ~ψk!iðtÞ can be computed as

~ψk!iðt; εÞ ¼ψk!iðε� 1Þ þ Pk!i
I ðt � 1Þ þ Pk!i

R ðt � 1Þ
� Pk!i

I ðε� 2Þ þ Pk!i
R ðε� 2Þ� �

:
ð21Þ

Note that the cavity probabilities Pi!j
SF ðtÞ and Pi!j

PF ðtÞ are computed using
the similar formula as in Eqs. (16) and (19), but in the cavity graph where
node j is removed. This closes the loop for theDMPequations in layer b.We
also observe in the above equations that the node-level messages for the
SIRP process only enter into the DMP equations for the LTM process
through the overlapping neighbors ∂ai \ ∂bi .

The initial conditions for the corresponding messages are given by

Pk
Fð0Þ ¼ Pk!i

F ð0Þ ¼ Pk
I ð0Þ; ð22Þ

Pk
SFð0Þ ¼ Pk!i

SF ð0Þ ¼ 0; ð23Þ

Pk
PFð0Þ ¼ Pk!i

PF ð0Þ ¼ 0; ð24Þ

ψk!ið1Þ ¼ χk!ið1Þ ¼ ð1� βkiÞPk
I ð0Þ; ð25Þ

~ψk!ið1; 1Þ ¼ ~χk!ið1; 1Þ ¼ Pk
I ð0Þ: ð26Þ

For t ≥ 2, ε = 1, we have

~ψk!iðt; ε ¼ 1Þ ¼ Pk!i
I ðt � 1Þ þ Pk!i

R ðt � 1Þ;
~χk!iðt; ε ¼ 1Þ ¼ Pk!i

I ðt � 1Þ þ Pk!i
R ðt � 1Þ

ð27Þ

þPk!i
SF ðt � 1Þ þ Pk!i

PF ðt � 1Þ: ð28Þ

We remark that for a total time T, the computational complexity for
obtaining the messages of the cascade process in layer b is O(∣Eb∣T2) where
∣Eb∣ denotes the number of edges in layer b, unlike theO(∣Ea∣T) complexity
for the SIRP process in layer a. This is due to the dependency of layer b on
layera, aswell as theprotectionmechanism in layera. The summationof the
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dummy state fxkgk2∂bi in Eq. (16) and Eq. (19) also implies a high compu-
tational demand of networks with high-degree nodes. One way to alleviate
this complexity is to use the dynamic programming techniques introduced
in by Torrisi et al.40.

These DMP equations are exact if both layers are tree networks, while
they are approximate solutions when there are loops in the underlying
networks.

Simplification under small inter-layer overlap
If there are no overlaps between the neighbors of node i in layer a and those
in layer b, i.e., ∂ai \ ∂bi ¼+, the messages χk!i;ψk!i; ~χk!i and ~ψk!i are
not needed, and the node-level probabilities Pi

SFðtÞ and Pi
PFðtÞ can bemuch

simplified as

Pi
SFðtÞ ¼ Pi

SðtÞ
X
fxkgk2∂b

i

I
X
k2∂bi

xkbki ≥ Θi

0
@

1
A

×
Y

k2∂bi ;xk¼1
Pk!i
F ðt � 1Þ

Y
k2∂bi ;xk¼0

1� Pk!i
F ðt � 1Þ� �

;

ð29Þ

Pi
PFðtÞ ¼Pi

PðtÞ
X
fxkgk2∂b

i

I
X
k2∂bi

xkbki ≥ Θi

0
@

1
A

×
Y

k2∂bi ;xk¼1
Pk!i
F ðt � 1Þ

Y
k2∂bi ;xk¼0

1� Pk!i
F ðt � 1Þ� �

:

ð30Þ

This is also a reasonable approximation if the two layers a and b have
little correlation, which has been exploited by previous work37. We
remark that the computational complexity of obtaining messages for
the cascade process in layer b using this approximated method is
O(∣Eb∣T). In this work, we will employ this approximation when we
consider the dynamics in the large time limit and devise an opti-
mization algorithm for mitigating the cascading failures, in order to
reduce computing time. In situations where inter-layer overlaps are
significant and accuracy is important41,42, one can always use the
complete formulations of the DMP equations as detailed in the “Full
Node-level DMP Equations” subsection above.

Results
Effectiveness of the DMPmethod
We firstly test the efficacy of the complete DMP equations derived in
“Full Node-level DMP Equations” subsection in the Methods section, by
comparing the node-level probabilities Pi

SðtÞ and Pi
FðtÞ to those obtained

by Monte Carlo simulations. The DMP theory produces exact marginal
probabilities for node activities in tree networks; this is verified in Fig. 2a,
b where both layers a and b are the same binary tree network of size
N = 63. For random regular graphs (RRG) where there are many loops,
the DMP method also yields reasonably accurate solutions; this is
demonstrated in Fig. 2c, d where both layers a and b are the same RRG of
size N = 100 and degree K = 5. We also validate the effectiveness of the
non-overlapping approximation applied to the DMP equations for the
process in layer b introduced in the subsection “Simplification under
Small Inter-layer Overlap” in Methods; the results are shown in Sup-
plementary Note 2.

Impact of infection-induced cascades
The obtainedDMP equations of the two-layer spreading processes allow us
to examine the impact of the infection-induced cascading failures, on either
a specific instance of a multiplex network or an ensemble of networks
following a certain degree distribution. In this section, we do not consider
the protection of nodes by setting γi(t) = 0, where the process in layer a is
essentially a discrete-time SIR model.

Impact on a specific network. For the process in layer a, we define the
outbreak size at time t as the fraction of nodes that have been infected at
that time

ρIðtÞ þ ρRðtÞ ¼
1
N

X
i2Va

Pi
IðtÞ þ

1
N

X
i2Va

Pi
RðtÞ: ð31Þ

For the process in layer b, we define the cascade size at time t as the fraction
of nodes that have failed at that time

ρFðtÞ ¼
1
N

X
i2Vb

Pi
FðtÞ: ð32Þ

By definition, we have ρF(t) ≥ ρI(t)+ ρR(t).
In Fig. 3, we demonstrate the time evolution of the infection outbreak

size and the cascade size in a multiplex network where both layers are
randomregular graphswith sizeN = 1600. It canbeobserved thatρF ismuch
larger than ρI+ ρR asymptotically, which suggests that the failure propa-
gation mechanism in layer b significantly amplifies the impact of the
infection outbreaks in layer a. In particular, the failure can eventually pro-
pagate to the whole network even though less than 70% of the population
gets infected when the spread of the infection saturates. Compare toMonte
Carlo simulations, the DMP method systematically overestimates the out-
break sizes due to the effect of mutual infection, but it has been shown to
offer a significant improvement over the individual-based mean-field
method25,26,43.

Asymptotic properties. In the above example, the system converges to a
steady state in the large time limit. The DMP approach allows us to
systematically investigate the asymptotic behavior of the two-layer
spreading processes.

For the process in layer a, we define an auxiliary probability

pij :¼
βij

βij þ μi � βijμi
: ð33Þ

Fig. 2 | Comparison of node-level probabilities. The node-level probabilities Pi
SðtÞ

and Pi
F ðtÞ are obtained by the DMP theory and Monte Carlo (MC) simulation

(averaged over 105 realizations). Panels a and b correspond to a binary tree network
of size N = 63 for both layers. Panels c and d correspond to a random regular graph
(RRG) of size N = 100 and degree K = 5 for both layers. The system parameters
are T ¼ 50; βji ¼ 0:2; μi ¼ 0:5; bji ¼ 1;Θi ¼ 0:6j∂bi j; γiðtÞ ¼ 0.
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Then the messages in layer a admit the following expressions in the limit
T→∞

ϕi!jð1Þ ¼0;
θi!jð1Þ ¼1� pij þ pijP

i!j
S ð1Þ;

Pi!j
S ð1Þ ¼ Pi

Sð0Þ
Y
k2∂ai nj

θk!ið1Þ;

Pi
Sð1Þ ¼ Pi

Sð0Þ
Y
k2∂ai

θk!ið1Þ;

ð34Þ

Details of the derivation can be found in Supplementary Note 3. The above
asymptotic equations (34) suggest a well-known relationship between
epidemic spreading and bond percolation19,22,44. The bond percolation
problem involves a network where the bonds (or edges) between nodes are
randomlyoccupiedwith a certainprobability (denoted asλ).Themain focus
is to understand the formation of a giant cluster comprising connected
occupied edges in the network; in large systems, this typically occurs when λ
is greater than a transition point λc

45.
As mentioned above, it is well established that the asymptotic prop-

erties of many stochastic epidemic spreading models can be mapped to
certain bond percolation problems44,46; we refer interested readers to two
recent reviews for more details on the subject19,45. In the SIR model studied
here (where γi(t) = 0), the quantity pij defined in Eq. (33) can be interpreted
as the probability that an infection transmission on edge (i, j) has been
realized in the long run, corresponding to an edge occupation probability in
bond percolation. When the transmission probabilities {βij} are large ({pij}
will also be large), a few initially infected seeds can eventually infect a
significant proportion of the population and lead to a pandemic, which
corresponds to the formation of a giant cluster in percolation theory. We
refer readers to Supplementary Note 3 for more details of the correspon-
dence between our model and bond percolation. Note that the edge occu-
pation probability pij in this discrete-time SIR model differs from the
continuous-time counterpart22,44 with an additional term βijμi in the
denominator. The term βijμi accounts for the simultaneous events that node
i infects node j and recovers within the same time step25.

For the process in layer b, we assume that layers a and b are weakly
correlated due to their different topologies and adopt the approximation
made in the subsection “Simplification under Small Inter-layer Overlap” in

Methods. As no protection is applied, we have Pi
PFðtÞ ¼ 0. Then the mes-

sages in layer b admit the following expression in the limit T→∞

Pi!j
F ð1Þ ¼1� Pi

Sð1Þ

þ Pi
Sð1Þ

X
fxkgk2∂b

i
nj

I
X
k2∂bi nj

xkbki ≥Θi

0
@

1
A

×
Y

k2∂bi nj;xk¼1
Pk!i
F ð1Þ

Y
k2∂bi nj;xk¼0

1� Pk!i
F ð1Þ

� �
;

ð35Þ

where a similar expression holds for Pi
Fð1Þ by replacing ∂bi njwith ∂bi in Eq.

(35). The asymptotic equations for layer b suggest a relationship between the
LTM model and bootstrap percolation38.

Two-layer percolation in large homogeneous networks. The large-
time behaviors of the two processes correspond to two types of perco-
lation problems. To further examine themacroscopic critical behaviors of
the two-layer percolation models, it is convenient to consider large-size
random regular graphs of degreeK (which have a homogeneous network
topology), and homogeneous system parameters with
βji = β, μi = μ, bji = b,Θi =Θ. We further assume that each node i has a
vanishingly small probability of being infected at time t = 0 with
Pi
Ið0Þ ¼ 1� Pi

Sð0Þ / 1=N . In the large size limit N→∞, we
have Pi

Sð0Þ ! 1.
Due to the homogeneity of the system, one can assume that all mes-

sages and marginal probabilities are identical,

θi!jð1Þ ¼ θ1; ð36Þ

Pi!j
F ð1Þ ¼ P1F ; ð37Þ

Pi
Sð1Þ ¼ ρ1S ; ð38Þ

Pi
Fð1Þ ¼ ρ1F : ð39Þ

It leads to the self-consistent equations in the large size limit (N→∞),

θ1 ¼ 1� pþ p � ðθ1ÞK�1; ð40Þ

ρ1S ¼ ðθ1ÞK ; ð41Þ

P1F ¼ 1� ρ1S

þ ρ1S
XK�1
n¼dΘe

K � 1

n

� 	
ðP1F Þnð1� P1F ÞK�1�n;

ð42Þ

ρ1F ¼ 1� ρ1S

þ ρ1S
XK
n¼dΘe

K

n

� 	
ðP1F Þnð1� P1F ÞK�n;

ð43Þ

where p ¼ β
βþμ�βμ and ⌈x⌉ is the smallest integer greater than or equal to x.

We observe that θ1 ¼ 1; ρ1S ¼ 1; P1F ¼ 0; ρ1F ¼ 0 is always a fixed
point to Eqs. (40)–(43), which corresponds to vanishing outbreak sizes.
When the infection probability β is larger than a critical point βac , this fixed
point solution becomes unstable and another fixed point with finite out-
break sizes develops.

As a concrete example, we consider random regular graphs of degree
K = 5 and fix μ = 0.5, b = 1,Θ = 3. By solving Eqs. (40)–(43) for different β,
we obtain outbreak sizes for both layers a and b under different infection
strengths. The result is shown in Fig. 4, where the asymptotic theory
accurately predicts the behavior of a large-size system (N = 1600) in the
large-time limit. It is also observed that the outbreak sizes in both layers

Fig. 3 | Evolution of the sizes of the infection outbreak in layer a and total failures
in layer b. The size of infection outbreak is measured by ρI+ ρR (green lines), while
the size of total failures is measured by ρF (orange lines). Both the DMP method
(solid line) and MC simulation (dashed-dotted line) are considered. Layer a and
layer bhave different network topologies, but both are realizations of random regular
graphs of size N = 1600 and degree K = 5. At time t = 0, there are 5 infected nodes.
The system parameters are βji ¼ 0:2; μi ¼ 0:5; bji ¼ 1;Θi ¼ 0:6j∂bi j; γiðtÞ ¼ 0.
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becomenon-zerowhenβ is larger than a critical point βac ¼ 1
7. Furthermore,

the outbreak size ρ1F in layer b exhibits a discontinuous jump to a complete
breakdown (ρ1F ¼ 1) when β increases and surpasses another transition
point βbc ≈ 0:159. However, at the transition point βbc , only about 28.6% of
the population has been infected in layer a.

This example again indicates that the cascading failure propagation in
layer b can drastically amplify the impact of the epidemic outbreaks in layer
a. Lastly, we remark that whether layer b will exhibit a discontinuous
transition or not depends on the values of K and Θ38, as predicted by the
bootstrap percolation theory47.

Mitigation of Infection-induced Cascades
The optimization framework. The catastrophic breakdown can be
mitigated if timely protections are provided to stop the infection’s spread.
In our model, this is implemented by assigning a non-zero protection
probability γi(t) to node i, after which it is immune from infection from
layer a. Tominimize the size of final failures, it would bemore effective to
take into account the spreading processes in both layers a and b when
deciding which nodes to prioritize for protection.

Here, we develop mitigation strategies by solving the following con-
strained optimization problems

min
γ

OðγÞ :¼ ρFðTÞ ¼
1
N

X
i2Vb

Pi
FðTÞ; ð44Þ

s. t. 0≤ γiðtÞ≤ 1 8i; t; ð45Þ

X
i2Vb

XT�1
t¼0

γiðtÞ ≤ γtot; ð46Þ

where the constraint in Eq. (45) ensures that γi(t) is a probability, and Eq.
(46) represents the global budget constraint on the protection resources. As
the objective function OðγÞ (the size of final failures) depends on the evo-
lution of the two-layer spreading processes, the optimization problem is
challenging. Lokhov and Saad introduced the optimal control framework to
tackle similar problems, by estimating the marginal probabilities of
individuals with the DMP methods28. The success of the optimal control
approach highlights another advantage of the theoretical methods over
numerical simulations14,28,48.

In this work, we adopt a similar strategy to solve the optimization
problem defined in Eqs. (44)–(46), where Pi

FðTÞ is estimated by the DMP
equations derived in Methods. As the expressions of the DMP equations
have been explicitly given and only involve elementary arithmetic

operations, we leverage tools of automatic differentiation to compute the
gradient of theobjective function∇γOðγÞ in a back-propagation fashion49. It
allows us to derive gradient-based algorithms for solving the optimization
problem. We remark that such a back-propagation algorithm is equivalent
to optimal controlwith gradient descent update on the control parameters50.
To save computing time, we adopt the approximation made in the sub-
section “Simplification under Small Inter-layer Overlap” in Methods for
conducting the optimization; but we always use the full DMP formulations
developed in the subsection “Full Node-level DMP Equations” in Methods
for the evaluation of the outcomes. This is particularly suitable for networks
having little inter-layer overlaps. In scenarios where significant inter-layer
overlaps exist and precision is crucial, it is always possible to resort to the
complete version of the DMP equations.

To handle the box constraint in Eq. (45), we adopt the mirror descent
method, which performs the gradient-based update in the dual (or mirror)
space rather than the primal space where {γi(t)} live

51,52. In our case, we use
the logit functionΨðxÞ ¼ logð x

1�xÞ tomap theprimal control variable γi(t) to
the dual space as hiðtÞ ¼ ψðγiðtÞÞ 2 R, where the gradient descent updates
are performed. The primal variable can be recovered through the inverse
mapping of Ψ( ⋅ ), which is Ψ�1ðhÞ ¼ 1

1þexpð�hÞ. The elementary mirror
descent update step is

gn  ∇γOðγnÞ; ð47Þ

γnþ1  Ψ�1 ΨðγnÞ � sgn
� �

; ð48Þ

where n is an index keeping track of the optimization process and s is the
step size of the gradient update.

In general, the above optimization process tends to increase the total
resources ∑i,tγi(t). To prevent the violation of the constraint in Eq. (46)
during the updates, we suppress the gradient component which increases
the total resources when∑i,tγi(t) ≥ (1− ϵ)γtot, by shifting the gradient gn in
Eq. (48) with a magnitude bn

bn  
P

t;iγ
n
i ðtÞð1� γni ðtÞÞ ∂

∂γiðtÞOðγ
nÞP

t;iγ
n
i ðtÞð1� γni ðtÞÞ

; ð49Þ

gn  ∇γOðγnÞ � bn: ð50Þ

The rationale for the choice of bn is explained in Supplementary Note 4. In
our implementation of the algorithm, we choose ϵ = 0.02. Even though the
shifted gradientmethod is used, it does not strictly forbid the violation of the
constraint in Eq. (46). If the resource capacity constraint is violated, we
project the control variables to the feasible region through the simple
rescaling

γn  γtotP
t;iγ

n
i ðtÞ

γn: ð51Þ

Finally, the resource capacity constraint Eq. (46) implies that a γtot amountof
protection resources can be distributed in different time steps. In some
scenarios, the resources arrive in an online fashion, e.g., a limited number of
vaccines can be produced every day. In these cases, there is a resource
capacity constraint at each time step. Some results of such a scenario are
discussed in Supplementary Note 5.

Case study in a tree network. We first verify the effectiveness of the
optimization method by considering a simple problem on a binary tree
network of size N = 63, where both layers have the same topology. The
results are shown in Fig. 5, where three individuals are chosen to be the
infected seeds at time t = 0, and the outbreak is simulated for T = 50 time
steps. Without any mitigation strategy, more than half of the population
fail at the end of the process.

Fig. 4 | Size of infection outbreak and total failures as a function of the infection
probability β. The size of infection outbreak is measured by ρI+ ρR (green lines),
while the size of total failures is measured by ρF (orange lines). The limits of large
system size and large time are considered. a Random regular graphs with
N = 1600, K = 5 are considered. The spreading processes are iterated for T = 100
steps, where stationary states are attained. Both the DMP method (solid line) and
MC simulation (dashed-dotted line) are considered. b Random regular graphs with
K = 5 in the asymptotic limit T→∞,N→∞ are considered by analyzing the large-
time behaviors of the DMP equations. The triangle and the square markers indicate
the locations of the two transition points βac and βbc , respectively. The system para-
meters are homogeneous, with μ = 0.5, b = 1,Θ = 3, γi(t) = 0.
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We then protect some vital nodes to mitigate the system failure, by
using the optimizationmethod proposed above. In Fig. 5a–c, we restrict the
total resources to be γtot = 5. Fig. 5a shows that the optimization algorithm
successfully reduces the final failure rate, which demonstrates the effec-
tiveness of the method. We found that the optimal protection resource
distribution fγ�i ðtÞgmostly concentrates ona fewnodes at a certain time step
(as shown in Fig. 5b), which implies that we can confidently select which
nodes to protect. All the nodes with high γ�i ðtÞ receive protection at time
t = 0, which implies that the best mitigation strategy in this example is to
distribute all γtot resources as early as possible to stop the infection spread.
Figure 5c shows the optimal placement of resources, which can completely
block the infection spread, hence minimizing the network failure. In this
example, both layers a and b have the same network structure, which is
depicted in Fig. 5c.

Similar phenomena are observed in the case with γtot = 4 as shown in
Fig. 5d–f, except that the protections are not sufficient to completely block
the infection spread. The optimization algorithm sacrifices only two nodes
in the vicinity of the infected node in the lower right corner of Fig. 5f
(indicated by a black arrow), leaving other parts of the network in the
normal state.

In Fig. 6, we further examine the influence of the total resource avail-
ability, i.e., γtot, on the final failure size N ⋅ ρF(T) determined at the optimal
solution γ�i ðtÞ. It is observed that when γtot increases, the failure size (at the
optimum) firstly decreases monotonically, and then saturate when γtot

reaches a certain value such that there are enough protection resources to
completely block the infection transmission. Another interesting observa-
tion is that for the cases with more initially infected seeds, introducing
additional units of protection resource yields a less effective reduction in
failure size compared to the cases with fewer initial infected seeds.

The good performance of the optimization is based on the fact that
there are enough protection resources (i.e., having a large γtot) as well as
being aware of the origins of the outbreak. In some cases, whether a node
was infected at the initial time is not fully determined but follows a prob-
ability distribution. Such cases can be easily accommodated in the DMP
framework which is intrinsically probabilistic. We investigated such a sce-
nario with probabilistic seeding in Supplementary Note 6, and found that
the optimization method can still effectively reduce the sizes of network
failures.

Case study in a synthetic network. To further showcase the applic-
ability of the optimization algorithm for failure mitigation, we consider a

synthetic technological multiplex network where layer a represents a
communication network and layer b represents a power network. We
consider the scenario that the communication network can be attacked
bymalware but can also be protected by technicians, which ismodeled by
the proposed SIRPmodel. The infection of a node in the communication
network causes the breakdown of the corresponding node in the power
network. The breakdown of components in a power network can trigger
further failures and form a cascade, which is modeled by the proposed
LTMmodel.We have neglected the details of the power flow dynamics in
order to obtain a tractable model and an insightful simple example.

Here, we extract the network topology from the IEEE 118-bus test case
to form layer b53, which has N = 118 nodes. We then obtain layer a by
rewiring a regular graph of the same size with degreeK = 4 using a rewiring
probability prewire ¼ 0:3, which creates a Watts-Strogatz small-world net-
work andmimics the topology of communication networks54. The resulting
multiplex network is plotted in Fig. 7a.

As the failures in layer b are initially inducedby the infections in layera,
onemaywonderwhether deploying the protection resourcesbyminimizing
the size of infections, i.e., minimizing ρI(T)+ ρR(T) instead of minimizing
ρF(T), is already sufficient to mitigate the final failures. To investigate this
effect, we replace the objective function in Eq. (44) by OaðγÞ ¼ ρIðTÞ þ
ρRðTÞ and solve the optimization problem using the same techniques in the
subsection “The Optimization Framework”. The result is shown in Fig. 7b,

Fig. 6 | Final failure size N ⋅ ρF(T) of a binary tree network evaluated at the
optimal solution fγ�i ðtÞg, as a function of the amount of total resources γtot.
Different curves correspond to different number of initially infected seeds. The
network topology and the system parameters are the same as those in Fig. 5.

Fig. 5 | Mitigation of the network failures in a
binary tree network of size N= 63, where both
layers have the same topology. Panels
a–c correspond to the case with γtot = 5, while Panels
d–f correspond to the case with γtot = 4. Panels a and
d depict how the final failure size changes during the
optimization process. Specifically, the control
parameters fγni ðtÞg for each optimization step nwere
recorded, which were fed to the DMP equations for
computing ρF(T) at step n. Panels b and e plot the
histogram of the optimal decision variables fγ�i ðtÞg.
Panels c and f show the optimal placement of
resources on layer a, where green square nodes
receive protection (having a high γ�i ðtÞ at time t = 0).
The three red triangle nodes are the initially infected
individuals. The system parameters are set
as βji ¼ 0:5; μi ¼ 0:5; bji ¼ 1;Θi ¼ 0:6j∂bi j.
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which suggests that blocking the infection is as good as minimizing the
original objective function in Eq. (44) for the purpose of minimizing the
total failure size. Minimizing either objective function constitutes a much
better improvement over the random deployment of the same amount of
protection resources in this case.

The results in Fig. 7bpoint to the conventionalwisdom that one should
try best to stop the epidemic or malware spread (in layer a) for mitigating
system failure. The situationwill be different if there are vital components in
layer b, which should be protected to prevent the failure cascade. This is
typically manifested in the heterogeneity of the network connectivity or the
system parameters. To showcase this effect, we manually plant a vulnerable
connected cluster in layer b by setting the influence parameters bji for an
edge (i, j) in this cluster as bji >Θi, so that the failure of node j itself is already
sufficient to trigger the failure of node i. Such a set-up is relevant for com-
mercial, industrial and engineering networks, among others; e.g., supply
chain networks evolve to enhance their throughput and efficiency but may
operate with little redundancy and low robustness. In this case, we found
that minimizing ρF(T) yields a much better improvement over minimizing
ρI(T)+ ρR(T) for the purpose of mitigating the system failure, as shown
in Fig. 7c.

Case studies in a real-world social networks. Lastly, we examine the
Kapferer’s tailor shop network, a well-known social network dataset
gathered by B. Kapferer in Zambia, documenting interactions among
workers in a tailor shop55,56. This dataset records two types of interactions
across two different time frames. The first interaction type is termed
“sociational”, which encapsulates friendship and socioemotional rela-
tionship among the workers. The second interaction type is termed
“instrumental”, which reflects work- and assistance-related connections
among them. For our analysis, the “sociational” network observed in the
initial time frame is assigned to layer a, acting as the substrate for
infection transmission, while the corresponding “instrumental” network
is assigned to layer b, where the failure (in terms of work accomplish-
ment) of a node can be triggered by themalfunctioning of its neighboring
nodes. These networks are treated as undirected graphs for simplicity.
The resulting two-layer network is depicted in Fig. 8a.

We assign homogeneous values to the majority of system parameters
without deliberately introducing any vulnerable component in the network;
the set-up closely aligns with the scenario depicted in Fig. 7b and presents a
stark contrast to the scenario in Fig. 7c.We select five nodes that possess the
highest degrees to serve as the initially infected individuals, which can be
viewed as super-spreaders in the network.We then protect the vital nodes to
mitigate the system failures by using the optimization method as above,
where the result is shown in Fig. 8b. Interestingly, minimizing the size of
failures (i.e., ρF(T)) is evidently better thanminimizing the size of infections

(i.e., ρI(T)+ ρF(T)) for the purpose of failure mitigation. It suggests that in
this realistic and natural scenario, simply blocking the infection transmis-
sion is sub-optimal and one needs to take a holistic view of the two-layer
model for optimizing the network’s utility.

Conclusion
We investigate the nature of a type of two-layer spreading processes in
unidirectionally dependent networks, comprising two interacting layers a
and b. Disease or malware spreads in layer a, which can trigger cascading
failures in layer b, leading to secondary disasters. The spreading processes in
the two layers are modeled by the SIRP and LTM models, respectively. To
tackle the complex stochastic dynamics in the two-layer networks, we uti-
lized the dynamic message-passing method by working out the dynamic
belief propagation equations. The resulting DMP algorithms have low
computational complexity in sparse networks and allow us to perform
accurate and efficient inference of the system states.

Based on the DMP method, we systematically studied and evaluated
the impact of the infection-induced cascading failures. The cascade process
in layer b can lead to large-scale network failures, even when the infection
rate in layer a remains at a relatively low level. By considering a homo-
geneous network topology and homogeneous system parameters, we derive
the asymptotic and large-size limits of the DMP equations. The asymptotic
limit of the two-layer spreading processes corresponds to the coupling
between a bond percolation model and a bootstrap percolation model,

Fig. 7 | A synthetic two-layer network and the evolution of its failure rate. a The
structure of the two-layer network, where each layer has N = 118 nodes. Layer a is a
Watts–Strogatz small-world network, which mimics the topology of communica-
tion networks; it is obtained by rewiring a regular graph of degree 4 with rewiring
probability prewire ¼ 0:3. Layer b is a power network extracted from the IEEE 118-
bus test case. b Evolution of the failure rate ρF(t) under various mitigation strategies
under homogeneous {bji}. The curve labeled by “random γ” corresponds to the
random deployment of a γtot amount of protection resources at time t = 0; 20 dif-
ferent random realizations are considered and the error bar indicates one standard

deviation of the sample fluctuations. The time window is set as T = 50. Most system
parameters are homogeneous with βji = 0.2, μ = 0.5, bji = 1, while Θi ¼ 0:6j∂bi j. Five
nodes are randomly chosen as the in1itially infected individuals, and γtot = 10 is
considered. c Evolution of the failure rate ρF(t) under various mitigation strategies
under planted {bji}. The system parameters are βji ¼ 0:17; μ ¼ 0:5;Θi ¼ 0:6j∂bi j.
Planted influence parameters {bji} are considered. Three nodes are randomly chosen
as the initially infected individuals, and γtot = 9 is considered. Other experiment set-
ups are identical to those in Panel b.

Fig. 8 | The Kapferer’s tailor shop network and the evolution of its failure rate.
a The structure of the Kapferer’s tailor shop network, which involves interactions
among 39 workers in a tailor shop in Zambia during a period of one month. Layer a
represents the “sociational” relations, while layer b represents the “instrumental”
relations. b Evolution of the failure rate ρF(t) of the tailor shop network up to time
T = 10 under various mitigation strategies. The “random γ” strategy has the same
set-up as the one in Fig. 7b; 20 different random realizations are considered and the
error bar indicates one standard deviation of the sample fluctuations.. Most system
parameters are homogeneous with βji = 0.07, μ = 0.5, bji = 1, whileΘi ¼ 0:6j∂bi j. Five
nodes with the highest degrees in layer a are selected as the initially infected indi-
viduals, and γtot = 10 is considered.

https://doi.org/10.1038/s42005-024-01638-1 Article

Communications Physics |           (2024) 7:144 9



which can be analytically solved. The infection outbreak size in layer a
changes continuously from zero to non-zero as the infection probability β
surpasses a transition point βac , while the failure size in layer b can exhibit a
discontinuous jump to the completely failed state when β surpasses another
transition point βbc under certain conditions. All these results highlight the
observation that cascading failure propagation in layer b can drastically
amplify the impact of the epidemic outbreaks in layer a, which requires
special attention.

Another advantage of the DMPmethod is that it yields a set of closed-
formequations,which canbe veryuseful for other downstreamanalyses and
tasks. We exploited this property to devise optimization algorithms for
mitigating network failure. The optimization method works by back-
propagating the impact at the final time to adjust the control parameters
(i.e., the protection probabilities). The mirror descent method and a heur-
istic gradient shift method were also used to handle the constraints on the
control parameter. We show that the resulting algorithm can effectively
minimize the size of system failures. We believe that our dedicated analyses
provide valuable insights and a deeper understanding of the impact the
infection-induced cascading failures on networks, and the obtained opti-
mization algorithms will be useful for practical applications in systems of
this kind.

Data availability
Datasets cited in this study are publicly accessible and have been referenced
accordingly in the manuscript.

Code availability
Source codes of themethods and analyses used in this study are available at
https://github.com/boli8/DMP-for-SIRP-LTM.
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