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Computational fluid dynamics is both a thriving research field and a key tool for advanced industry
applications. However, the simulation of turbulent flows in complex geometries is a compute-power
intensive task due to the vast vector dimensions required by discretized meshes. We present a
complete and self-consistent full-stack method to solve incompressible fluids with memory and run
time scaling logarithmically in the mesh size. Our framework is based on matrix-product states, a
compressed representation of quantum states. It is complete in that it solves for flows around
immersed objects of arbitrary geometries, with non-trivial boundary conditions, and self-consistent in
that it can retrieve the solution directly from the compressed encoding, i.e.without passing through the
expensive dense-vector representation. This framework lays the foundation for a generation of more
efficient solvers of real-life fluid problems.

The Navier-Stokes equations remain one of the biggest open problems in
physics1, with closed-form solutions knownonly in restricted cases. This has
given rise to the field of Computational Fluid Dynamics (CFD)2. Most CFD
methods rely on a problem-specific discretization of the spatial domain, a
mesh. There, the velocity and pressure fields are represented by vectors
whose dimension is given by themesh size. However, the precision required
to capture relevant dynamics often translates into prohibitively high
dimensions. For instance, for an accurate description of turbulent flows, the
ratio between the largest and the smallest length scale in themeshmust grow
with the Reynolds number (Re)3,4. The resulting mesh can then have sizes
that render the problem intractable for standard methods. This is a mani-
festation in CFD of the infamous curse of dimensionality, a major limitation
of state-of-the-art mesh-based solvers.

A similar limitation arises in simulations of quantum systems,
described by vector spaces exponentially large in the number N of
particles5,6. There, sophisticated tensor-network techniques7–9 have been
developed to tackle the problemunder the assumption of low entanglement,
i.e. non-factorability of the quantum state10. The best-known example is
matrix-product states (MPSs)11,12, also known as tensor trains13. These
represent 2N-dimensional quantum states as a set of 2N matrices whose
maximal size (called bond dimension) depends on the amount of entan-
glement. For instance, low-entangled states of 1D systems can be expo-
nentially compressed by MPSs5,7–9. In fact, MPSs and their tensor-network

extensions provide the state-of-the-art framework for simulating complex
quantum dynamics14,15.

In view of this, MPSs have been applied to a variety of other high-
dimensional problems16–22. In particular, turbulent fluids in simple geo-
metries have been observed to also admit an efficient MPS description23–26.
The rationale is that the energy cascade mechanism3, whereby energy
transfer takes place only between adjacent spatial scales, may play a similar
role to local interactions in 1D quantum systems. This may open a new
arena for CFD solvers. Nevertheless, for this to happen, compression effi-
ciency should be combined with versatility to describe immersed objects of
diverse geometries, with non-trivial boundary conditions. Moreover, a
practical solver should also allow for accessing the solution directly in the
MPS encoding, without passing through the dense vector. Otherwise,
potential speed-ups in solving the problem may be lost at evaluating the
solution. It is an open question whether these requirements can be har-
moniously met and, most importantly, if there are settings of practical
relevance where this can be achieved with a moderate bond dimension.

Here,we answer these questions in the affirmative.Wedeliver anMPS-
based toolbox for simulating incompressible fluids, with complexity loga-
rithmic in the mesh size and polynomial in the bond dimension. This is
achieved via three major contributions: First, approximate MPS masks to
encode object shapes into MPSs of low bond dimension. Second, a native
time-integration scheme incorporating the masks as built-in features.
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This is based on finite-differences as in refs. 23,24, but it operates with
open boundary conditions, as in ref. 25, crucial to treat immersed objects
without very large spatial domains. Additionally, the proposed scheme
embeds open boundary conditions into a matrix-product differential
operator. Third, anMPS solution oracle for querying the solution directly
from the MPS, bypassing dense-vector evaluations. This features two
main operation modes: coarse-grained evaluation and pixel sampling. In
particular, the latter generates random points weighted by the squared
magnitude of a target property (vorticity, pressure, etc.), mimicking the
measurement statistics on a quantum state. This is ideal for Monte-Carlo
simulations.

We validate the framework by reproducing text-book regimes of flows
around a cylinder and by comparing our solutions for flows around a
square, and even a collection of squares, with those of the popular com-
mercial solver Ansys Fluent. To our knowledge, this is the first MPS algo-
rithm for differential-equation systems validated to such extents. Finally, we
venture intoflows arounda real-life airfoil from theNACAdata set.MPSsof
18,800 parameters are enough for an accurate simulation with a mesh of
219 = 524288 pixels, a significant 27.9X compression. Among others, we use
pixel sampling to randomly explore the regions of highest vorticity around
the wing, without evaluating a single component of the 219-dimensional
vorticity vector field itself. These tools may be relevant for aero- and hydro-
dynamic design optimizations.

Results
MPS framework for CFD
Our toolbox is summarized in Fig. 1. The details of the Navier–Stokes
equations as well as of the MPS encoding of velocity and pressure fields are
given in the Methods. Our presentation is restricted to the 2D case for
simplicity, but all components of the framework can be straightforwardly
generalized to the 3D case.

ApproximateMPSmasks. If a rigid body is immersed in afluid at afixed
position, the velocity field must be zero both inside the object and on its
boundary (no-slip condition). This is a crucial requirement that, to our
knowledge, has not been addressed in the literature of quantum-inspired
solvers. To incorporate it, we introduce the notion of approximate MPS
masks (see Fig. 1b). These areMPSs encoding functions that approximate
the target indicator function θ of the object – i.e. the function equal to zero
within the object and to one outside it – up to arbitrary, tunable precision.
We apply these masks on the MPS representing the field by simple
element-wise multiplication.

To build such MPSs, we first consider a scalar function q(x), with
x 2 RD, such that it i) vanishes on the boundary of the D-dimensional
object in question, ii) takes negative values in the interior of the object, and
iii) tends to infinity far away from the boundary. For example, for a circular
object of unit radius in D = 2, q(x, y) = x2+ y2− 1 does the job. Using such

Fig. 1 | Schematics of the framework. a Main steps of the solver, featuring the
paradigmatic steady flow around a cylinder. The first step is the flow initialization
with constant velocity. The second one is the Matrix Product State (MPS) mask
application, which nullifies the velocity field inside the object. This produces an
artificial field that is not divergence-free. To correct this, in the third step, we project
the field back onto the divergence-free manifold. The fourth step is the time inte-
gration over a small evolution time, using an explicit Euler method. The last three
steps are then iterated T times to get the final MPS field at time T. Finally, the fifth
step is the MPS solution oracle. The two boxes there represent the main operation
modes: coarse-grained evaluation and pixel sampling. b Construction of approx-
imateMPSmasks (for a 1D object for clarity). Given a smooth function q(x) (in light
blue, its absolute value in green) that vanishes on the boundary of the object, we
define mðxÞ ¼ 1� e�α qðxÞþjqðxÞjð Þ (red solid). This approximates the object’s

indicator function θ(x) (black dashed) up to a tunable small error (through α). Next,
we apply the TT-cross algorithm to produce an MPS approximation tom(x) from a
few queries of it. cCoarse-grained evaluation: a 4-bitMPS, encoding an average over
the smallest (pink) spatial scale, is obtained directly from a 6-bitMPS through simple
contractions with constant single-site gadget tensors in green. d Pixel sampling:
mesh cells (red points) are randomly chosen with probabilities proportional to the
squared vorticity field at those points. The key tool are the marginals of the joint
probability distributions over the binary representation of the cell positions. These
allow one to sample the entire string bit by bit and can be efficiently obtained directly
from the MPS. In the figure, a 2-bit marginal is obtained through simple single-site
contractions of two copies of 4-bit MPS and the gadget tensors in yellow. Neither
operation mode of the oracle requires field evaluations in the dense-vector repre-
sentation (see Section MPS solution oracle).
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boundary functions, we define the smooth function

mðxÞ :¼ 1� e�α qðxÞþjqðxÞjð Þ; ð1Þ

with α > 0. By construction, m approximates θ increasingly better for
growing values of α. In particular, the l2 distance between m(x) and θ(x)
decreases with α as 1=

ffiffiffi

α
p

(see Supplementary Note 1).
The next step is to obtain an MPS representation of m(x). If m(x)

consists of elementary functions, the MPSs can be constructed
analytically 27,28. However, in general, one must resort to numerical
approximations. In this work, we use the standard TT-cross algorithm29 to
find anMPS approximation ofm(x). This approximation can be found, up
to a controllable l2 distance ϵ, from few evaluations of the function. TT-cross
is a classical tensor sketching algorithm, and more details can be found in
SupplementaryNote 1.Weobserve that ϵ = 10−3 is enough to generate high-
quality masks of the cylinder up to meshes of 230 cells (see Supplementary
Note 1). The 30-bit MPS masks generated there have χ = 30 and a total of
24,200 parameters, corresponding to a compression factor of more than
44,360. Our observations consistently show that the TT-cross approxima-
tion directly on the discontinuous function θ produces significantly worse
masks than via the intermediate approximation m. This is shown in full-
resolution in Fig. 2 for a 22-bit mesh. (The 30-bit case is too large for full
resolution evaluation, see Supplementary Note 1.).

Time evolution. We discretize the differential operators in Eqs. (2) using
finite differences with an 8-th order stencil30. We use open boundary
conditions (BCs), necessary to treat immersed objects using limited
spatial domains. More precisely, we apply inlet-outlet BCs31 at the left-
and right-hand edges, where the fluid enters and exits the domain,
respectively; and use closed BCs at the upper and lower edges. We note
that, in ref. 25, inlet-outlet BCs are enforced via application of a mask.
Instead, we embed them directly into the differential operator. This
operator can in turn be analytically recast as a matrix product operator
(MPO), as shown in refs. 28,32,33 for simpler BCs. As a result, we obtain
differential MPOs with inlet-outlet BCs as built-in features, with low
bond dimensions (see Supplementary Note 2). With the differential
MPOs in place, we can perform the time evolution.

The first step (see Fig. 1a) is to initialize the velocityMPSs [see Eq. (3)]
as a constant vector field (flow far away from the object). Next, we loop T
times over steps 2–4, with T the desired evolution time. Step 2 is the object
mask application, described above. Steps 3 and 4 consist respectively of
projecting the resulting MPS velocity field onto the divergence-free mani-
fold, defined by Eq. (2b), and integrating over a small time step Δ t. We
implement these two steps with Chorin’s projectionmethod34,35. That is, we
first solve for the pressure from a Poisson equation, and use that pressure to
project the velocity back onto the divergence-free manifold, enforcing the
incompressibility condition (see Supplementary Note 2 for details). Then,
we solve for the velocity at the next time instant by integrating the
momentum equation [Eq. (2a)] without its pressure term. This iterative
splitting procedure is equivalent to directly solving Eqs. (2) (see

Supplementary Note 2). The resulting velocity field satisfies neither the no-
slip nor the incompressibility conditions, but this is corrected for in (steps 2
and 3 of) the next iteration (and, after the last iteration, we run one extra
round of steps 2 and 3). The fifth and final step is to retrieve the solution
from its MPS encoding, explained in Sec. MPS solution oracle.

The Poisson equation is the most computationally-expensive task in
each iteration (see Section Computational complexity analysis). We tackle
this with a DMRG-type algorithm that solves an equivalent linear system36.
As for the time integration,weuse theEuler explicit time stepping,with time
and spatial steps chosen according toknownnumerical-stability criteria (see
Supplementary Note 2). Finally, every operation on an MPS typically
increases its bond dimension. We keep it under a chosen threshold by
periodic truncation (see Supplementary Note 3).

MPS solution oracle. Our solver outputs the solution in the MPS form,
requiring up to exponentially fewer parameters than the dense-vector
representation. This is specially relevant for turbulent flows (large Re),
where the separation between the Kolmogorov scale (η) and integral scale
(l) growswithReynolds number, given by η=l∼Re�3=43,4. Forfields in 3D,
this means a mesh size which scales as Re9=4. This raises the question of
how to retrieve the solution without mapping the MPS to the dense
vector, which can eliminate potential speed-ups gained in solving the
problem. We propose two methods to extract the main features of the
solution directly from the MPS: coarse-grained evaluation and pixel
sampling.

Coarse-grained evaluation (Fig. 1c) produces an MPS with fewer
spatial scales, encoding an averaged version of the solution. The averaging is
donedirectly on theMPSs in ahighly efficientmanner: one simply contracts
the physical indices of the fine scales one wishes to average out with single-
site constant gadget tensors (in light-green in the figure). To evaluate the
averagedfield in full resolution, one thenmaps the obtained, smallerMPS to
its corresponding dense vector, contracting the virtual indices between all
N− 1 nearest-neighbors. Clearly, the finest-scales details are lost in this
operation mode. A convenient, complementary alternative is pixel
sampling.

Pixel sampling (Fig. 1d) is an exact sampling method that generates
random points (xi, yj) chosen with probability P(i, j) = ∣vi,j∣2/∥v∥2, where
∥v∥2 is the l2-normof v. Next, one can efficiently query theMPS to assess the
encoded solution at the sampled points. This reproduces the measurement
statistics of a quantum state that encodes v in its amplitudes, hence being
potentially relevant also to future quantum solvers37. We note that related
sampling methods have been used for training mesh-free neural-network
solvers38. However, there, the points are sampled uniformly, whereas here
according to their relevance to the field. Our approach relies on standard
techniques for l2-norm sampling physical-index values from anMPS7,8. The
key ingredient is the marginals of P(i, j), which can be computed by simple
single-site tensor contractions on two copies of the MPS (with the gadget
tensors in yellow in thefigure).AllNmarginals are calculated in this fashion,
without a single evaluation of v at any point (i, j). With the marginals, the
conditional distribution for each bit given the previous ones is obtained,

Fig. 2 | Reconstruction error of theMPSmask.The
figure shows the absolute error between the exact
indicator function θ(x) and theMPSmasks obtained
from TT-cross approximation of (a) θ(x) and (b)
m(x). The domain discretization isNx =Ny = 11 bits
both horizontally and vertically (we show only a 6X
close-up of the object); and the bond dimension is
χ = 30. Clearly, the deviations seen in panel a are
much larger, not only close to the object’s boundary
but also far from it (note the thin vertical lines). That
is, the intermediate step throughm leads tomasks of
significantly higher accuracy. This is crucial for the
solver, which applies the mask at every time
iteration.

https://doi.org/10.1038/s42005-024-01623-8 Article

Communications Physics |           (2024) 7:135 3



allowing one to sample the entire bit string. Importantly, the technique
applies to any MPS39,40. For instance, one can obtain the MPS encoding the
vorticity field from that of the velocity.

In Fig. 3 below,we showcase the real-life applicability of coarse-grained
evaluation and pixel sampling for assessing the vorticity field around a wing
in a mesh of 219 cells. Moreover, in Supplementary Note 1, these evaluation
modes allow us to benchmark the MPS masks generated for a mesh of 230

cells. The hardware used for that is a standard Intel i9 CPU with 16 GB
RAM, where such high-dimensional benchmarks would be impossible
using dense vectors.

Finally, these oraclemodes canoptionally be combinedby close-ups, i.e.
zoomed-in evaluations of specifically chosen subdomains. Close-ups are
obtainedfixing anumberof large-scale bits of anMPS solutionwhich results
in a smallerMPS on the remaining bits, that corresponds to the solution on
the target subdomain. Depending on the use case, one can perform either
full-resolution evaluation, coarse-grained evaluation or pixel sampling of
the smaller MPS. For example, one can extend pixel sampling to sample
densely from several subdomains using close-ups.

Computational complexity analysis. We perform a full time-
complexity analysis of the solver and its components. Table 1 shows
the asymptotic (worst-case) upper bounds as well as the numerically
observed runtimes, per subroutine. For the tasks within the time inte-
gration loop, the estimates are per time iteration. The complexity of the
mask generation is due to the TT-cross approximation29. Those of the
other tasks are dominated by their corresponding tensor-network
operations (contractions and truncation of χ)7,39. As for the numerical
estimates, they correspond to an average over ten time iterations (see
SupplementaryNote 4).Note that the projection onto the divergence-free
manifold is the most expensive subroutine, with a worst-case

performance OðNχ6Þ. The latter is dominated by a sub-task involving N
linear systems of size 4χ2 × 4χ2, whichwe solve exactly since χ is low in our
cases. However, this can also be solved approximately via variational
approaches (see Supplementary Note 4), which render the complexity
OðNχ4Þ and are therefore a convenient alternative for high χ 23. Finally,
the last row shows the total numerically observed runtime per time
iteration. The scaling there is a conservative estimate from numerical fits
to the runtimes obtained for fixedN (between 15 and 23) as function of χ
(varying from 20 to 50). Those fits are consistent with scalings αN χ4.1,
with 10−7 ≤ α ≤ 10−6 (see Supplementary Note 4 for details). This is sig-
nificantly below the worst-case bound OðN χ6Þ.

Numerical results
To showcase the versatility of our frameworkwith three classes of immersed
objects. First, we show how our simulations reproduce well-known regimes
of flows around a cylinder at different Reynolds numbers. Second, we
benchmark our results for flows around squared cylinders against those of
the popular commercial solver Ansys Fluent. Third, we tackle the challen-
ging case of flows around an realistic airfoil, where we also showcase the
different operation modes of the MPS solution oracle.

The flow around a circular cylinder is one of the paradigmatic pro-
blems in fluid dynamics41.We simulate the three characteristic dynamics of
laminar flow at different Re≤ 150 (see Fig. 4). We solve for the velocity and
pressure fields on a mesh with Nx = 8 and Ny = 7, encoded in a 15-bit MPS
with χ = 30 (see SupplementaryTable S1 for details). The solutions obtained
reproduce the textbook sub-regimes as Re increases: from a flow without
downstream circulation to the well-known Kármán vortex street42.

Next, we simulate flows around a squared cylinder and a collection of
four squared cylinders at Re ¼ 127 and Re ¼ 141, respectively. Both
simulations are performed on amesh withNx = 8 andNy = 7 usingMPSs of
χ = 30. As shown in Fig. 5, we compare our solutionswith the ones obtained
using Ansys Fluent. We note that comparison between conceptually dif-
ferent solvers are meaningful only in the fully developed phase of the flow,
after the initial transient behavior. The evolution times used for Fig. 5 were
carefully chosen as to guarantee this condition (see Supplementary Note 5).
This rules out possible mismatches in the transient regimes due to different
numerical approaches. In addition, in SupplementaryNote 5, we also report
simulations for the squared cylinder at Re ¼ 630 and Re ¼ 2230.

Finally,we consider the simulationofflowsarounda realistic airfoil in a
mesh ofNx = 10 andNy = 9, shown in Fig. 3. Theflow inclination angle used
is 22°;Re ¼ 750, and χ = 45.We take advantage of this complex geometry to
showcase the different evaluation modes of the MPS solution oracle. As a
specific example, we consider the vorticity field ω ¼ ∇× v . We obtain its
associated MPS directly from the velocity MPSs and the matrix-product
form of∇ . The vorticity MPS is then taken as the solution oracle for the
plots in Fig. 3. We stress that neither coarse-grained evaluation nor pixel
sampling require the vector representation of ω, only its MPS.

The observed versatility for flows around realistic geometries, together
with the built-in ability to access the solution directly from theMPS, renders

Table 1 | Time complexities

Algorithmic task Complexity Runtime %

Mask generation OðN χ3Þ offline

Mask application Oðχ6Þ 2.0

Divergence-free projection OðN χ6Þ 80.1

Euler time stepping Oðχ6Þ 17.9

Coarse-grained evaluation OðN χ3Þ offline

Pixel sampling (per pixel) Oðχ3Þ offline

Numerically observed total runtime ≈N χ4.1

The first column shows the main subroutines. Their corresponding asymptotic worst-case time
complexity scaling and percentages of CPU runtime per time iteration observed are shown in the
second and third columns, respectively. In the third column, we highlight, with bold text, the most
expensive taskof thepipeline. Thenumerical run timesweremeasured for theflowarounda squared
cylinder, using a 15-bit MPS encoding with bond dimension χ = 30. We refer by offline to the tasks
performed outside the time evolution loop. Finally, the last row shows the scaling of the numerical
runtime observed for an entire time iteration (see Supplementary Note 4 in the SI for more details).

Fig. 3 | Vorticity field around a NACA 0040 airfoil, for different evaluation
modes of the MPS solution oracle. The mesh size is 219 = 524,288, the number of
time steps T = 5000, and Reynolds number Re ¼ 750. We compress the corre-
sponding fields into 19-bit MPSs of 18,800 parameters, a 27.9X compression.
a Vorticity field in full resolution. This requires mapping the MPS to the dense-

vector representation. b Coarse-grained evaluation, with the two smallest scales in
both x and y directions averaged out. The resulting 15-bit MPS has 16 times fewer
parameters than the 19-bit MPS solution. c Pixel sampling, featuring 2500 pixels
randomly selected according to their squared vorticity. No evaluation of the vorticity
field itself is required for that.
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our framework potentially interesting to hydro-dynamic design problems.
In particular, pixel sampling is well-suited for Monte-Carlo estimations of
objective functions that may be relevant to industrial optimizations.

Discussion
We have presented a quantum-inspired framework for CFD based on
matrix-product states (MPSs). Our solver supersedes previousworks in that
it incorporates immersed objects of diverse geometries, with non-trivial
boundary conditions, and can retrieve the solution directly from the com-
pressed MPS encoding, i.e. without passing through the expensive dense-
vector representation. For ameshof size 2N, bothmemory and runtime scale
linearly in N and polynomially in the bond dimension χ. The latter grows
with the complexity of the geometry in question. Nevertheless, we showed
that our toolbox can handle highly non-trivial geometries using not only
moderate χ but also very few parameters. For instance, themost challenging
flow simulation considered is for a wing airfoil in a mesh of 219 pixels. Our
machinery accurately captures the flows with MPSs of N = 19 bits, χ = 45,
and a total of 18,800 parameters (27.9X compression). In turn, it can also
accurately represent a cylinder in a mesh of 230 cells with an MPS of
N = 30, χ = 30, and a total of 24,200parameters: a compression ofmore than
44,360X.

A core technical contribution to enable such high efficiencies is the
approximate MPS masks. In fact, we have provided a versatile mask gen-
eration recipe exploiting standard tensor-network tools such as theTT-cross
algorithm. Another key ingredient is the alternative methods we have
proposed to query the solution directly from its MPS: coarse-grained

evaluation and pixel sampling. In particular, pixel sampling explores ran-
dommesh points distributed according to the square of a chosen property,
such as for instance vorticity or pressure (or, through an equation of state,
also temperature). This mimics the measurement statistics of a quantum
state encoding the property in its amplitudes, hence being relevant also to
future quantum solvers37. It does so by efficiently computing marginals of
the target distribution via local tensor contractions directly on the MPS,
without evaluating the property itself at any mesh point. Pixel sampling is
ideal for Monte-Carlo simulations, relevant to optimizations via stochastic
gradient descent, e.g. This can be interesting to aero- or hydro-dynamic
design problems as well as to training neural-network models.

Ourwork offers several directions for future research. In particular, the
extension to the 3D case will enable probing the framework in truly tur-
bulent regimes. This will also require in-depth studies of the dependence of
the bond dimension with the evolution time. We anticipate that further
optimization of the tensor-networkAnsatzwill play a crucial role for that, as
well as extensions to non-uniform meshes. Another possibility is the
exploration of tensor networks with other natural function bases for tur-
bulent phenomena, such as Fourier43 or wavelets44. In turn, an interesting
opportunity is the application of our framework to other partial differential
equations21,22,45. Thismay be combined with extensions to finite elements or
finite volumes, which can in principle also be formulated with tensor
networks25.Moreover, ourmethodmaybe relevant tomesh-free solvers too.
For instance, pixel sampling on smallmeshes could be explored to speed-up
the training of mesh-free neural-network schemes38. Finally, a further
prospect could be to combine the frameworkwith quantumsub-routines, in

Fig. 5 | Comparison with Ansys Fluent. Panels
a and b show theflows around a square cross-section
for Reynolds number Re ¼ 127 and at time step
T = 19,900, obtained by our solver (in a) and by the
commercial solver Ansys Fluent (in b). Panels c and
d show a similar comparison for a collection of four
squares, for Re ¼ 141 and at T = 2500, where panel
c corresponds to our solver and panel d corresponds
to Ansys Fluent. For both cases, we have MPSs with
Nx = 8 andNy = 7 and χ = 30. Importantly, the values
of T were chosen high enough for the flows to be in
the fully-developed regime (see Supplementary
Note 5). In both cases the agreement between our
solver and Ansys Fluent is excellent.

Fig. 4 | Flow around a circular cylinder at various Reynolds numbers. Each
column shows one of the three paradigmatic phases of a laminar flow around a
cylinder42. a–c Streamlines, originating at the inlet (left side), are shown. The color
code indicates the magnitude of velocity. The insets show the features of the flow
near the boundary of the object. d–f Vorticity field ω ¼ ∇× v is shown. The first
column corresponds to Reynolds number Re ¼ 1:7: in panel a, we observe that the
streamlines do not detach from the edge of the cylinder. In turn, in panel d, no
vorticity is observed behind the object. These are the signatures of a potential flow,
where v is given by the gradient of a scalar field. The second column corresponds to

Re ¼ 25. As seen in panel b, streamlines detach from the object’s boundary. In turn,
in panel e, a pair of counter-rotating vortices appears behind the object. These are the
characteristics of a steady laminar flow. The third column corresponds to Re ¼ 125.
In this regime, the flow becomes unsteady and develops the well-known Kármán
vortex street41. This can be observed in panels c and f, where clear oscillations in the
streamlines and in the vortices behind the object are shown. A 15-bit MPS with
χ = 30 is used for all cases. In all of them, the simulated flow reproduces the expected
behavior.
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view of hybrid classical-quantum solvers. For example, our main compu-
tational bottleneck is the Poisson equation, and future quantum linear
solvers may offer significant speed-ups for that37,46,47.

All in all, our findings open a playground with potential to build
radicallymore efficient solvers of real-lifefluid dynamics problems aswell as
other high-dimensional partial differential equation systems, with far-
reaching research and development implications.

Methods
Incompressible Navier–Stokes equations
We solve the incompressible Navier–Stokes equations in the absence of
external forces (for simplicity):

∂v
∂t

þ ðv � ∇Þ v ¼ � 1
ϱ
∇pþ ν∇2 v; ð2aÞ

∇ � v ¼ 0; ð2bÞ

where v = v(x, t) and p = p(x, t) are respectively the velocity and pressure
fields at position x and time t, ϱ is the density, and ν the kinematic viscosity.
Eqs. (2a) and (2b) follow respectively from momentum and mass
conservations4,48,49. They give rise to a variety of behaviors, ranging from
laminar to turbulent flows. The flow regime is determined by the Reynolds
number, Re¼ UL

ν
, whereU andL are characteristic velocity and length scales

of the problem4. This dimensionless parameter quantifies the ratio between
the inertial [(v ⋅ ∇ ) v] and dissipative [ν∇2v] force terms. At high Re, the
nonlinear inertial term dominates and the flow is highly chaotic and tur-
bulent. Instead, at low Re, the dissipative term dominates and the flow is
stable and laminar.

Field encoding with matrix product states
We encode scalar functions – such as the velocity components vx(x) and
vy(x), or the pressure p(x) – into matrix-product states (MPSs)7–9. We dis-
cretize the 2D domain into a mesh of 2N points, specified by N =Nx+Ny

bits. There, we represent a continuous function v(x, y) by a vector of ele-
ments vi,j≔ v(xi, yj), where the strings i≔ (i1, i2,…iNx) and j≔ (j1, j2,…jNy)
give the binary representation of xi and yj, respectively. Then, we write each
vi,j as a product of Nmatrices:

vi;j ¼ Aði1Þ
1 Aði2Þ

2 . . .A
ðiNx

Þ
Nx

Bð j1Þ
1 Bðj2Þ

2 . . .B
ðjNy

Þ
Ny

: ð3Þ

This is theMPS form (see also Fig. 1c). The indices ik and jk are referred to as
physical indices of thematricesAj and Bj, respectively. Note that, the firstNx

matrices correspond to xi and the remaining Ny ones to yj, as in refs. 21,24.
However, other arrangements are possible16,23,50. The bond dimension χ is
defined as themaximumdimension over all 2Nmatricesused. Importantly,
the total number of parameters is at most 2N χ2. Hence, if χ constant, the
MPS provides an exponentially compressed representation of the 2N-
dimensional vector. Moreover, instead of fixing all virtual dimensions at χ,
we dynamically adapt each site’s dimension to the amount of inter-scale
correlations. This typically reduces the number of parameters to well below
the bound 2N χ2.

Data availability
The data sets generated during the current study are available from the
corresponding author upon request.

Code availability
The software used in this work can be found at the accompanying
CodeOcean capsule.
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