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research publications
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Avi Ma’ayan

Manybiomedical researchpublications contain gene sets in their supporting tables, and these sets are
currently not available for search and reuse. By crawling PubMed Central, the Rummagene server
provides access to hundreds of thousands of such mammalian gene sets. So far, we scanned
5,448,589 articles to find 121,237 articles that contain 642,389 gene sets. These sets are served for
enrichment analysis, free text, and table title search. Investigating statistical patterns within the
Rummagene database, we demonstrate that Rummagene can be used for transcription factor and
kinase enrichment analyses, and for gene function predictions. By combining gene set similarity with
abstract similarity, Rummagene can find surprising relationships between biological processes,
concepts, and named entities. Overall, Rummagene brings to surface the ability to search a massive
collection of published biomedical datasets that are currently buried and inaccessible. The
Rummagene web application is available at https://rummagene.com.

The introduction of omics technologies has gradually moved biological and
biomedical research from studying single genes and proteins towards
studying gene sets, clusters of genes, molecular complexes, and gene
expression modules1. Many biomedical and biological research studies pro-
duce and publish gene and protein sets. For example, differentially expressed
genes and proteins from transcriptomics and proteomics assays, genes
associated with genomic variants identified to be relevant to a phenotype,
gene knockouts associatedwith a cellular or an organismal phenotype, target
genes of transcription factors as determined by ChIP-seq experiments,
proteins identified in differential phosphoproteomics, proteins identified in a
complex from immunoprecipitation followed bymass-spectrometry studies,
genes associated with a cellular phenotype from CRISPR screens, and many
more types of sets can be generated. These gene sets are highly valuable but
not often reused. This lack of reuse is partially because there are no standards
for submitting gene sets in publications, and there are no centralized com-
munity repositories for depositing gene and protein sets. As a result, the
potentially useful information about gene sets is buried in supporting
material tables stored as PDF, Excel, CSV, orWordfile formats. Since general
and domain specific search engines do not index the contents of such sup-
porting materials, there is no way to search through these tables. These
supporting tables are not indexed by search engines because most search
engines can only deal with free text and are not capable of parsing data tables.

Named entity recognition methods have been widely applied to bio-
medical and biological publication text, but not yet to extract gene sets from
supporting tables. Manual gene set annotations and extraction of gene sets
from publications has been achieved, but it is time consuming, labor
intensive, and requires domain expertise. Most such efforts miss many
relevant studies. For example, to create the ChIP-x Enrichment Analysis
(ChEA) resource we manually extracted gene sets from supporting mate-
rials ofChIP-seq studies2,3.While theChEAdatabase achieved great success,
it is difficult to maintain. Efforts such as ReMap4, Recount5, and ARCHS46

aim to address this challenge by uniformly reprocessing all the raw data
available from community repositories to recompute gene sets from pub-
lished studies, but such efforts rely on the existence of community reposi-
tories anduniformdata collection standards.Another effort to automate the
extraction of gene sets from publications is Pathway Figure Optical Char-
acter Recognition (PFOCR)7. PFOCRautomatically extracts pathways from
publications by scanning pathwaydiagrams.However, surprisingly, as far as
we know there are no publications, databases, or community repositories
that contain extracted gene sets from supporting materials of scientific
biomedical research publications. Rummagene is a web-based software
application that serves hundreds of thousands of gene sets extracted from
publications listed on PubMed Central (PMC). It contains a softbot that
scans supporting materials of publications listed on PMC to keep the
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resource consistently updated. TheRummagenewebsite provides the ability
to search the corpus of gene sets by an input gene set query, a PMC free text
search, and a table title search. To understand the statistical patterns within
the Rummagene corpus, we performed various exploratory analyses, as well
as demonstrate how this rich resource of organized biological knowledge
can be used for specific applications.

Results
Descriptive statistics
The initial version of Rummagene contains 642,389 gene sets extracted from
121,237 articles. These 121,237 articles are identified as containing gene sets
from 5,448,589 scanned PMC articles. The distribution of the occurrence of
genes in gene sets is not even. Some genes are found in many sets, but most
genes are members of few sets (Fig. 1a). At the same time, most identified
gene sets have less than one hundred genes in each set (Fig. 1b). While most
publications only contributed to the Rummagene collection one or two gene
sets, there are few publications that contributed a few hundred sets (Fig. 1c).
Over the years, more andmore gene sets are found in publications (Fig. 1d).
In fact, in the past four years, publications included many more sets com-
pared to sets identified in the30years between1988and2018. Since2005, the
average lengthof gene sets jumped from less than20genes in each set to~150
genes in each set (Fig. 1e). This is likely due to the introduction of omics
technologies and publications reporting gene sets identified from such stu-
dies. Byprojecting the gene set content into twodimensionswithUMAP8,we
see that, on average, short gene sets contain genes that are more commonly
studied (Fig. 1f, g). While this is a general trend, some genes occur in many
sets but are less commonly studied (Fig. 1h, i). Specifically, we identified 604
gene sets that are enriched in understudied genes.Understudied gene sets are
defined as gene sets where the median citations per gene is less than 3 stan-
dard deviations from the median for citations observed for randomly
assembled gene sets of similar size (Supplementary Data 1). These gene sets
containmany sets that aremade of orphanGPCRs andZnf familymembers.
Other sets are mainly modules of differentially expressed genes. These
modules are likely serving critical biological roles but are less explored. Next,
we noticed that the Rummagene collection of gene sets has many duplicate
entries. In fact, duplicated gene sets make up approximately 15% of the
Rummagene gene sets. Many of these duplicate sets are found in the same
publication. The publications having multiple tables often list the same sets
but with different measurements or statistics, for example, measuring the
expression of a set of genes under different conditions. We found fewer
duplicate gene sets across multiple papers (Fig. 1j, k).

Annotated collections of themed gene set libraries
For the collection of 642,389 gene sets we can identify subsets of gene sets
associated with specific biological themes such as sets related to kinases,
transcription factors, cell types, cell lines and tissues. Such themed gene sets
can be used for specific enrichment analysis tasks such as kinase enrichment
analysis9, transcription factor enrichment analysis2. Producing such subsets
of gene sets can be done by simply searching the table titles for terms that
match named entities such as protein kinases or transcription factors.
Indeed,we identified 4525 gene sets that containnamedhumankinases, and
8078 gene sets that contain named transcription factors in the table titles.
444 kinase names and 1121 transcription factor names are unique in these
collections of gene sets (Fig. 2a, Supplementary Data 2, 3). Similarly, we
identified 4443 gene sets that contain named cell lines, and 6268 gene sets
that contain cell types or tissues in table titles, with 450 and 670 unique
terms, respectively (Fig. 2b). In addition, 5560 sets had the term “down” and
6677 had the term “up” in their table titles (Fig. 2c). These sets likely contain
up- and down-regulated genes from gene expression signatures. A large
portion of the identified gene sets contain gene names in their titles. Spe-
cifically, 97,478 table titles contain human gene symbols or synonyms
(Fig. 2c). For the subset of gene sets containing known transcription factors
in their titles, Uniform Manifold Approximation and Projection (UMAP)
plotswere generated from the inverse document frequency (IDF) vectors for
all gene sets in the subset. Points representing different gene sets are colored

by both the PubMed Central ID (PMCID) of the original publication
(Fig. 2f), and by the associated transcription factor (Fig. 2e). We found that
these gene sets tend to cluster by transcription factor even when they are
derived from different publications. This was further confirmed to be sta-
tistically significant (T-test; p < 0.0001) by comparing the average and dis-
tribution of the Jaccard index similarities between gene sets mentioning the
same transcription factor fromdifferent publications compared to those not
mentioning the same TF (Fig. 2d). We also applied the same process to
generateUMAPplots for the subset of terms containing knownkinases, and
similarly saw that these gene sets clustered by kinase (Fig. 2g) although
originating fromdifferent PMCIDs (Fig. 2h). This trendwas also confirmed
statistically (Fig. 2d). Next, we aimed to assess whether kinase and tran-
scription factor gene set libraries created from Rummagene contain useful
information for performing gene set enrichment analysis. To achieve such
an assessment, we queried each gene set from the Rummagene kinase and
transcription factor libraries against corresponding kinase and transcription
factor libraries created from multiple sources2,9. We observe a significant
recovery of the correct kinases and transcription factors with all libraries,
with best agreement observed for KEA9 for kinases, and ChEA 202210 for
transcription factors (Fig. 3a–f). This is likely because these two resources
are manual efforts of extracting gene and protein sets from publications,
including data from supporting tables. Comparing the kinase and tran-
scription factor Rummagene libraries to KEA and ChEA, Rummagene is
likely more comprehensive and updated, but less accurate.

Topic modeling
To obtain a global view of the contents of the gene sets in Rummagene, we
performed latent Dirichlet allocation (LDA) analysis11 on all abstracts from
publications containing at least one extracted gene set. Nine topics were
identified and subsequently manually labeled based on the most common
terms and their relative weights (Fig. 4a). Some of the most fre-
quently appearing terms across all topics included gene, cell, expression,
DNA, patient, cancer, and analysis. The greatest portion of abstracts are
relating to mutations and variants in diseases, protein-protein interactions,
and mechanisms, while the topics with the least abstracts are related to
immune functions and genome-wide associations and risks. The visuali-
zation of abstracts in topic space also reveals the relation and similarity
between topics (Fig. 4b). For instance, the topic mutations and variants in
disease borders DNA transcription and methylation. Additionally, the
genome wide association and risk topic is isolated from the other topic
clusters. Thedata andmodeling topic is located adjacent tomost of the other
topics suggesting that abstracts with this topic may be related to a variety of
other topics as expected. Overall, the topic analysis reveals the predominant
categories of gene sets in Rummagene, specifically those concerning
mutations and variants in diseases and those concerning protein interac-
tions and functional mechanisms.

Similar gene set pairs that are distant in abstract space
Next, we asked whether the knowledge embedded in Rummagene can lead
to the construction of hypotheses by identifying gene sets with high simi-
larity in gene set space while completely disjointed at the publication
abstract text space. The rationale for this is that this way we can identify
undiscovered associations between named entities such as genes and dis-
eases. Surprisingly, we first observed that the pairs of gene sets with the
highest similarity at the gene set level, with no similarity at the abstract level,
are highly enriched in proteins that are commonly detected in mass-
spectrometry proteomics studies (Fig. 5a), highly expressed in RNA-seq
assays (Fig. 5b), but less widely studied (Fig. 5c). This is likely because
proteomics studies tend to commonly report the same abundant, large-size,
and “sticky” proteins, transcriptomics studies detected as differentially
expressed highly expressed genes, and gene sets in publications commonly
report overlapping genes in pathways and ontology terms containing highly
studied genes. After filtering pairs of gene sets that are proteomics rich, or
contain highly expressed genes, or composed of highly studied genes, we
identified a fewpairs of sets that contain a gene name in one table title of one
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set, and a disease name in the table title of the second set (Supplementary
Note). For example, some of the top identified pairs highlight a possible
relationship between the proteins identified to interact with CLUH12, and
gene sets identified in hypoxia13,melanoma14, and glioma15. This connection
is logical because CLUH was found to be critical to mitochondrial function
which is altered in these conditions. Similarly, other top overlapping pairs

include the TOPBP1 interactome16 and a potential relationship to
melanoma14, hypoxia17, and teratomas18. To assist in possibly explaining
these connections, we utilized the GPT-4 API, a large language model, to
compose hypotheses that suggest how such seemingly unrelated named
entities might be in fact related by giving GPT-4 the two abstracts. For
example,when asked about the connection between the geneCLUH and the

Fig. 1 | Distributions of the genes and gene sets in the Rummagene database.
a Distribution of genes in gene sets. bDistribution of gene set lengths. cDistribution
of gene sets per paper. d Gene set contribution per year. e Average gene set length
per year. f Projection of the Rummage gene sets into UMAP space where gene sets
are colored by the natural logarithm of their average citations per gene. g Projection
of the Rummage gene sets into UMAP space where gene sets are colored the natural
logarithm of by their length. h Scatter plot of all genes with their overall citations vs.
membership in Rummagene sets. i Scatter plot of Rummagene sets with their
median gene-citation vs. number of genes in the set compared with randomly

constructed gene sets’ median gene-citation of similarly sized gene sets. The black
lines show the +/− 3 standard deviation from the mean median gene-citation
boundary line for each binned range of gene set sizes. j Publications that contain at
least one redundant gene set. The x-axis corresponds to the number of times the
gene set is repeated, and the y-axis corresponds to the number of papers with such
redundant gene sets. k Gene sets that are redundant across more than one pub-
lication. The x-axis corresponds to the number of times the gene set is repeated, and
the y-axis corresponds to the number of different publications that contain the
redundant gene set.
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Fig. 2 | Extracting kinases, transcription factors, tissues, cell types, and cell lines
from Rummagene gene sets. a The number of unique and non-unique kinases and
transcription factors identified in table headers describing gene sets. b The number
of unique and non-unique cell types and tissues, as well as cell lines identified in table
headers describing gene sets. c Gene set table titles containing the terms “up”,
“down”, or gene symbols. dMean Jaccard similarity coefficient for gene sets con-
taining a TF or a kinase in the column title and fromdifferent PMC articles with gene

sets containing the sameTF or kinase compared to thosewith a different TFor kinase
also from different PMC articles (p < 0.0001). e UMAP projection of the tran-
scription factors gene set library created fromRummagene where sets are colored by
the top-most common transcription factors. f The same UMAP as d except that sets
are colored by their PMCID. g UMAP projection of the kinases gene set library
created from Rummagene where sets are colored by the top-most common kinases.
h The same UMAP as f except that sets are colored by their PMCID.
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disease hypoxia, prompted with the abstracts and gene set terms, the LLM
respondedwith a plausible explanation concerningmitochondrial function,
specifically: “Therefore, it is plausible that the CLUH gene may be involved
in the adaptive response of SKOV-3ovarian cancer cells tohypoxia, possibly
by regulating the translation and stability of mitochondrial proteins. This
could explain the high overlap between the two gene sets. Further experi-
mental studies would be needed to confirm this hypothesis.” The model
successfully determined the cell line used to produce the gene set concerning
hypoxia from the abstract provided and it made a reasonable hypothesis
about the relationship between the two gene sets given the dissimilar context

of the abstracts. Additionally, when asking the LLM about the connection
between the gene sets with TOPBP1 and teratomas in their column names,
using the two abstracts associated with these gene sets, the LLM produced a
plausible explanation about their similarity after stating a hypothesis and
reiterating information from the abstracts: “Given the role of TOPBP1 in
DNA repair and the importance of gene mutations in the development of
teratomas, it is plausible that mutations or dysregulation of TOPBP1 could
contribute to the development or progression of teratomas. This could
explain the high overlap between the two gene sets. Further research would
be needed to confirm this hypothesis and elucidate the exact mechanisms

ChEA
ENCODE

Cusanovich

Single-TF

TFpertGEO200

TFpertGEO1000

TFpertGEOdn

TFpertGEOup

random

0

0.2

0.4

0.6

0.8

1 ChEA
ENCODE
Cusanovich
Single-TF
TFpertGEO200
TFpertGEO1000
TFpertGEOdn
TFpertGEOup
random

S
ca

le
d 

R
an

k

L1000FWD GEO PTMsigDB KEA random

0

0.2

0.4

0.6

0.8

1 L1000FWD
GEO
PTMsigDB
KEA
random

P-
va

lu
e

a b

c d

e f

Fig. 3 | Benchmarking the consensus transcription factor gene and kinase set
libraries created from Rummagene. aMean receiver operating characteristic
(ROC) curves and mean area under the ROC curves (AUC) generated from 5000
bootstrapped curves. b Scaled ranks of each TF in the benchmarking datasets when
enriched against the consensus TF gene set library. cMean significance of overlap
(Fisher’s exact test) for Rummagene generated consensus TF gene sets with each

benchmarking library. d Mean ROC curves and AUCs generated from 5000 boot-
strapped curves. e Scaled ranks of each kinase in the benchmarking datasets when
enriched against the consensus kinase gene set library. fMean significance of overlap
(Fisher’s exact test) for Rummagene generated consensus kinase gene sets with each
benchmarking library.
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Fig. 4 | Topic modeling with LDA from the abstracts of 121,043 papers from
which gene sets in Rummagene were extracted. a Based on the word counts and
importance of each word from the LDAmodel, topics were manually labeled: Topic
1: Data drivenmodeling; Topic 2: Cancer; Topic 3: DNA transcription, methylation;
Topic 4: Mutations, variants in diseases; Topic 5: Protein interactions, mechanisms;

Topic 6: Tissue/cell expression; Topic 7: Gene expression analysis, pathway iden-
tification; Topic 8: Immune; Topic 9: Genome wide associations and risk. b t-SNE
projection of each of the 121,043 papers fromwhich gene sets were extracted labeled
by their topic identified through LDA.
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involved”. The summaries produced by the GPT-4 LLM are mostly helpful
and logical but should be manually verified as the model states on its own.

Gene function predictions
Large collectionsof gene sets canbeused toeffectivelypredict gene functions
with semi-supervised learning19. Thefirst step to produce suchpredictions is
to construct a gene-gene similaritymatrix from theRummagene database of
gene sets. This can be done with different algorithms. Here we tested the
ability of three previously published co-occurrence algorithms20 to make
such predictions, and compare the quality of such predictions to predictions
made with a similar method that utilizes gene-gene co-expression correla-
tions from thousands of RNA-seq samples6. The gene-gene similarity
matrices from Rummagene were able to predict with high accuracy and
precision the gene membership for functional terms created from the Gene
Ontology (GO) Biological Process21, GWAS Catalog22, Mouse Genome
Informatics (MGI) Mammalian Phenotypes (MP)23, and WikiPathways24

(Fig. 6a). To illustrate an example for one term, the term “Fasting Plasma
Glucose” fromGWASCatalogwas selected.The top10 genes that are closest
to the genes known to be associated with this phenotype are SLCO1B3-
SLCO1B7, P3R3URF-PIK3R3, SLC30A8, FAM240B, MTNR1B, PERCC1,
EEF1AKMT4-ECE2, KLF14, CCDC201, and PAX4; and the ROC curve to
assess the quality of the predictions has a 0.75 area under the curve (Fig. 6b).
The top 10 predicted genes for each term from these three gene set libraries
are provided as a supporting table (Supplementary Data 4).

The knowledge space that is covered byRummagene compared
with Enrichr
To assess the breadth and coverage of the automatically curated Rumma-
gene gene set space, we contrasted it against the Enrichr10 gene set space.
Enrichr is a large-scale curated database of gene sets of similar size when
compared to Rummagene. UMAP25 was applied to project over 1 million
gene sets into two dimensions for the purpose of data visualization where
each point represents a gene set from either Rummagene or Enrichr. Gene
sets are colored by whether they originate from Rummagene or Enrichr’s
gene set library categorization: Transcription, Pathways, Ontologies, Dis-
eases/Drugs, Cell Types, Miscellaneous, Legacy, Crowd (Fig. 7a, b). We
observe that Rummagene gene sets cluster into many punctate clusters that
likely represent themed gene sets (Fig. 7A). Also, Enrichr’s gene sets are

clustered by category (Fig. 7b). When overlaying the Rummagene gene sets
on the Enrichr gene sets, most categories are covered with some few
exceptions. We observe that some gene set libraries are not covered by
Rummagene, while few areas in gene set space are much more common in
Rummagene compared with Enrichr. To quantitatively verify the presence
of these unique clusters, UMAP enhanced clustering was employed with a
UMAP projection with min_dist of 0 followed by HDBSCAN clustering26.
Clusters were assigned labels based on whether 25% of the gene sets within
that cluster were from a given Enrichr gene set library, or otherwise they
were labeled by a cluster number. Mostly Enrichr and mostly Rummagene
clusters, making up 90% of gene sets in the cluster across the projection are
visible (Fig. 7c). The largest clusters that are mostly from Enrichr are from
gene set libraries that were created from unique sources, for example, the
LINCS L1000 data27,28, single cell transcriptomics29, virus-host protein-
protein interactions30, pathways extracted from figures31, and gene sets
related to NIH funded investigators32 (Fig. 7d). On the other hand, several
clusters were unique to Rummagene (Supplementary Data 5–8). One of
these clusters, namely cluster 81, contains gene sets that are exclusively
transcription factors. This is likely because there are specific assays and
studies that focus on profiling these genes exclusively.

The Rummagene website
TheRummagenedata is servedon thewebsitehttps://rummagene.comwith
three search engines. The first search engine accepts gene sets as the input
query and then returnsmatching gene sets basedon the overlap between the
input gene set and the unique sets in the Rummagene database. The results
are ranked by the Fisher’s exact test, and to optimize responsiveness, a fast
in-memory algorithm is implemented. The results are presented to the user
in paginated tables with hyperlinks to the original publication and the
supplementalmaterial fromwhich the gene sets were extracted, the genes in
the matching sets, the overlapping genes, the p-values and the Benjamini-
Hochberg corrected p-values of the overlap, and the odds ratios. When
clicking the overlap numbers, a popup screen shows the overlapping genes
with the ability to copy them to the clipboard, submit them to Rummagene,
or submit them to Enrichr10. Similarly, the original gene set can be accessed
by clicking on the columnname. The second search engine facilitates a free-
text PMC search. This search engine queries PMCwith the entered terms to
receive PMCIDs that match the query. It then compares the returned
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sourced from ARCHS4, in the overlapping genes of the gene set pairs. “All pairs”
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PMCIDs to the PMCIDs in Rummagene to identify matching PMCIDs.
Once suchmatches are detected, the gene sets in the Rummagene database
are returned to the user as a paginated table with hyperlinks to the original
publications and thematching gene sets. The third search engine queries the
table titles from which gene sets were extracted. Table titles that match the
inputted search terms are displayed in a paginated table with hyperlinks to
the matching publications and gene sets. All search engine results can be
filtered, sharedbyURL, anddownloaded.The entire database is available for
downloadas a textfile, andaccess to thedata is providedvia aGraphQLAPI.
Importantly, the Rummagene resource is updated automatically
once a week.

Discussion
By crawling through full articles and supporting materials from over five
million research publications available from PMC, we were able to identify
over 150,000publications that contain over 600,000mammaliangene sets of
various lengths. Smaller gene sets are enriched for widely studied genes
while longer lists contain less studied genes likely due to their origin from
omics studies. Interestingly, in thepastfive years, the publicationof gene sets
in articles has been increasing exponentially. Hence, most gene sets in the
Rummagene database are from this period. Here we demonstrated how the
Rummagene resource can be used for various applications. Specifically, we
showed how a subset of the extracted sets can be used for transcription
factor and kinase enrichment analyses. We also showed how the rich
knowledge in Rummagene can be used for gene function predictions. In
addition,wedemonstrated howwe can formhypotheses by identifying gene
set pairs with high similarity in gene set space and low similarity in abstract
space. However, many additional applications are possible. For example,
Rummagene can be used to produce textual descriptions for gene sets using
large language models (LLMs). Given the large collection of Rummagene
gene sets, as well as the fast enrichment search engine that is implemented,

we could provide the Rummagene API to an LLM to act as a chatbot that
searches for relevant papers that are related to a given gene set and then
summarize the collective functions identified in these papers. This is dif-
ferent from just giving an LLM a gene set because it adds focus to the search
by utilizing the RummageneAPI. The LLMuse case currently implemented
in Rummagene is forming hypotheses about two highly overlapping gene
sets with dissimilar abstracts. We show how when submitting the two
abstracts to an LLM to provide an explanation about why the seemingly
unrelated abstracts might have highly overlapping gene sets, the LLM is
constrained to provide a plausible explanation. Although such an expla-
nation is at times trivial, in all cases that we tested, it was based on correct
facts. Hence, the prompt is detailed and constrained enough to produce
high-quality responses from the LLM.One of the opportunities providedby
Rummagene is its integration with other resources that contain large col-
lections of gene sets and signatures, for example, Enrichr10, ARCHS46, and
SigCom LINCS27. Biomedical research has been traditionally commu-
nicated via hardcopy printed paper journals. The transition into fully digital
research communication, and with the introduction of omics technologies,
increased efforts are placed on better annotation and standardization of
published research data including the publication of gene sets and data
tables. During this transition period toward such improved annotations,
Rummagene plays an important role in making previously published data,
buried in supplemental materials of publications, more findable, accessible,
interoperable, and reusable (FAIR)33.

Methods
Crawler to extract gene sets from publications listed in PMC
The PMC Open Access Subset34 contains millions of journal articles avail-
able under license terms that permit reuse. Additionally, PMC provides
uniformly structured bundles that can be retrieved in bulk over FTP. An
indexfile contains a tabular listing of all PMCIDs representedwith a pointer

Fig. 6 | Benchmarking gene function prediction
using Rummagene gene sets. a The area under the
receiver operating characteristic (AUROC) curve
distributions for predicting genes associated with
terms from four different gene-set libraries. Pre-
dictions were made using three gene-gene similarity
matrices (cosine, Jaccard, and NPWMI) and the
ARCHS4 gene-gene co-expression matrix. b The
AUROC curve for the GWAS Catalog term “Fasting
Plasma Glucose”, produced from the average
NPWMI of each gene to the 66 genes included in the
“Fasting Plasma Glucose” gene set.

a

b

0
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Fig. 7 |Visualizing the global space of the gene sets containedwithinRummagene
and Enrichr. Vectorization by IDF followed by Truncated SVD to 50 dimensions is
applied to the combined gene sets from both Rummagene and Enrichr. The Enrichr
gene sets are colored by library categories. UMAP visualization of the gene sets in
Enrichr without (a) and with (b) the Rummagene sets. 10% of extreme points are
omitted for zooming into the area with themost sets/points. HDBSCANwas used to
assign cluster labels to the gene set clusters that are over-represented with gene sets

fromunique Enrichr libraries orwere uniquely labeled in Rummagene. The gene sets
are colored by whether they were assigned to a cluster with other gene sets from the
same source, Enrichr or Rummagene in (c). Gene sets that are colored in gray include
those that are unclustered or are members of a heterogeneous cluster. The gene sets
are colored by the top representative Enrichr libraries, or by the Rummagene cluster
number, or otherwise gray in (d), including gene sets that are unclustered or belong
to a heterogeneous cluster.
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to the compressed bundle corresponding to that PMCID. Each bundle has a
PDF of the paper, anXMLdocument containing structuredmetadata about
the paper, figures, and supplemental material files. First, the index file is
downloaded, a job is then submitted for each paper. The job downloads and
extracts the archive and processes the XML structured paper by loading the
tables from the paper and all supplemental files. Both the tables from the
main paper, and the tables in the supplemental files may have captions or
labels. These captions or labels are saved. Additionally, places in the text that
mention the table, or the supplemental file, are identified when they are
linked in the markup; at most, 15 words before such a call to the tables are
saved. Every supplemental file is processed by one of several table-extractor-
functions, selected based on the file extension. These extractor functions
include support for Excel, CSV, TSV, and inferred separator loading of TXT
files, as well as a PDF table extractor based on Tabula-Py. For each sup-
porting materials table that is extracted, every column in the table is con-
sidered. The extractor function attempts to map all unique strings to gene
symbols.Mappingmaybe direct, through some synonym, or identifier. Any
columnwheremore than half of the strings can be successfullymapped to a
valid human gene symbol using NCBI’s Gene Info35 file for Homo sapiens
are retained. In otherwords, all columnspassing thisfilter become a gene set
in the Rummagene gene set library. This approach aims to capture human
gene sets, but also captures gene sets fromothermammalianorganisms such
as mouse or rat because of the high overlap in gene symbols. Hence, we
consider the overall collection of gene sets in Rummagene as mammalian.
The term describing the gene set ismade of the PMCID, the file name in the
bundle, the Excel spreadsheet name or the XML table label, the column’s
first cell, and additional sequential numbers that are added to the term to
make it unique if needed. The description field is constructed by con-
catenating any available caption, label, and text mention. The original items
in each table column that pass thefilter are preserved, but genes are included
only if they can be mapped to official symbols. In addition to filtering out
columnswith too fewmapped genes (< 5), columnswith toomanymapped
genes (> 2500) are ignored. This is because these are likely to contain gene
sets that cover all measured genes and not a subset of identified genes with a
potentially unique function. This pipeline produces a large gene matrix
transpose (GMT) file which can be added to incrementally. The pipeline is
designed to continue where it left off when it is re-run. It is set to runweekly
to extend the databasewith any newpublications that are added to the PMC
Open Access database. The new entries to the GMT are stored in the
Rummagene database to be accessed from the web-based application. By
extracting gene sets from supporting material of published research articles
we can make these more accessible for search and reuse.

Search engine implementation
The large size of the Rummagene gene set library requires special imple-
mentation of an algorithm that can quickly compare the input gene set to all
the gene sets in the Rummagene database. Besides a fast algorithm that can
compare the input set to all other sets, efficient storage of the gene sets is
neededaswell as sufficient hardware.Toenable a fast gene set search, aRust-
powered RESTAPI was implemented. The algorithm first initializes several
in-memory data structures: 1) a background sorted set of all genes across all
gene sets in the database; 2) the index of each gene saved in a hashmap
mapping where each gene is mapped to a 32 bit unsigned integer (U32)
index; 3) the gene set IDs and unique hashes stored as UUIDs; and 4) a
hashset of mapped genes using the Fowler–Noll–Vo (FNV) hash function
on each gene for each unique gene set. FNV is known to performwell when
dealing with small keys. This is the case in our implementation which uses
32-bit unsigned integer keys. In our tests, FNV performedmuch faster than
the default hasher. These data structures are created by querying the data-
base with Rust. When the user presses the search button, the queried gene
sets are forwarded to theAPI. After ensuring that the index is initialized, the
code maps the user submitted gene set to a U32 hash set. It then computes
the intersections between the user’s gene set and the gene sets in memory
and performs the Fisher’s exact test using the identified overlap. Parallel
processing with Rayon36 is employed to further speed up this process. Once

completed, Benjamini-Hochberg adjusted p-values are computed. Next, the
results are sorted by p-value, temporarily cached, and returned. The gene
sets in Rummagene are stored in a Postgres database37. A function in the
Postgres database is responsible for mapping the gene symbols to UUIDs
before passing them to the Rust API to obtain results. These returned results
can be joined by ID with the gene sets and genes in the database to facilitate
furtherfiltering. In thisway, the use of anAPI is transparent to the front-end
which queries the database with PostGraphile powered GraphQL. By
implementing an advanced fast search engine, we can offer an interactive
real-time service to users of the Rummagene application. The Rummagene
database is automatically updated once a week by processing all the new
articles added to PMC in the past week to identify new gene sets in the
supporting materials of these articles. When a batch of new gene sets are
added to the database, a new reference of valid gene names is constructed
with the complete set of genes in the database. At that time, theAPI is called
to prepare the new gene name reference prior to removing the old reference.
By automatically updating the database, we ensure that it will remain
relevant and current long term with minimal effort.

Extracting functional terms from column titles
To assess the contents of the extracted gene sets, the column titles for each
tablewere examined to identify a variety of functional terms. Supplementary
table titles often include DOI and other identification information, thus
these were ignored when conducting this analysis. After separating column
titles in each gene set, column titles were split on dashes, underscores, and
periods. To identify gene sets in each column, each resulting string was
examined to assess if it was anNCBI Entrez38 approved human gene symbol
or a listed synonym. All gene synonyms were subsequently converted to
their official symbol. Although genes can be represented with integer
identifiers, strings only containing numbers were ignored because after
manual examination, we discovered that many of these as artifacts. Addi-
tionally, strings containing S succeeded by an integer were ignored con-
sidering the vast majority of these refer to the supplemental table number.
Transcription factors and kinases were subsequently identified from the
extracted gene symbols. To identify gene sets that may represent signatures,
the strings ‘up’, ‘down’, and ‘dn’were searched for in the split column titles.
To identify tissues, cell types and cell lines present in the column titles, the
Brenda Tissue Ontology (BTO)39 official terms and synonyms were
extracted, and exact matches were identified. For gene sets containing
multiple BTO terms, they were hyphenated to capture, for instance, a cell
type from a specific tissue.

Visualization of the kinase and TF gene set libraries
For each extracted gene set, IDF vectors were computed using the Scikit-
learn40 Python package using the set of all included genes as the corpus.
Using the Scanpy41 Pythonpackage,UniformManifoldApproximation and
Projection (UMAP)8 plots for different categories of gene sets were then
generated from the IDF vectors and clusters were automatically computed
using the Leiden algorithm42. To visualize broad patterns across the data,
each point representing a gene set was colored based on the cluster, asso-
ciated PMCID, and associated kinase or transcription factor, if applicable.
By visualizing the kinase and TF gene set libraries we can observe higher
level functional clusters of related kinases and TFs.

Benchmarking transcription factor and kinase enrichment
analyses
Consensus transcription factor and kinase gene set libraries were created by
performing a metadata search of the Rummagene database by submitting
the kinase or transcription factor named entities as the search term.
Returned entries arematches where the transcription factor or kinase terms
appear in the gene set’s table title, table legend, or column legend. The gene
set for each transcription factor andkinase is composed from theunionof all
identifiedgene sets corresponding to the given transcription factoror kinase.
Benchmarking datasetswere sourced fromChEA32 for transcription factors
and fromKEA39 for kinases. To benchmark enrichment analysis performed
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with the constructed consensus gene set libraries, the rank of each tran-
scription factor/kinasewas identified using the Fisher’s exact test p-value for
each matching gene set in each benchmarking dataset. To generate ROC
curves, we downsampled the negative class to the same size as the positive
class to achieve class balance. ROCcurveswere then bootstrappedover 5000
iterations and the mean ROC and AUCs were reported. Since we are ran-
domly downsampling the negative class, bootstrapping the curve over
several thousand iterations ensures a more accurate depiction of the ability
of the Rummagene transcription factor and kinases gene set libraries to
accurately predict the perturbed transcription factor or kinase. The numpy
interp function was used to linearly interpolate between all points from the
5000 ROC curves to generate composite ROC for each benchmarking
library.

Topic modeling
To identify the predominant topics associated with gene sets in the Rum-
magene database, the abstracts of each paper contributing at least one gene
set were assembled from the PMC bulk download. The text contained
within the<abstract> tagswas concatenated. Papers containingno abstracts
were excluded from the analysis. Each abstract was then tokenized, stop
words were removed, and lemmatized using the Python package Natural
Language Toolkit (NLTK)43. The LdaModel class of Python package
Gensim44 was then used to identify nine topics with a chunksize of 100 over
10 passes. The number of topics was chosen manually by observing the
separation of topics given different sets of parameters. Word counts and
word importance were extracted from themodel for each of the nine topics.
The abstracts were visualized in topic space using the vectors produced by
the latentDirichlet allocation (LDA)model11 for adherence of each paper to
each topic using t-SNE25.

Similar gene set pairs that are distant in abstract space
The preprocessing of publications’ abstracts followed the same procedure as
in topic modeling where abstracts were first extracted from the PMC bulk
download, then cleaned of stopwords and lemmatized using the NLTK43

Python package. Abstracts were then converted to word counts using the
count vectorizer and subsequently fit to term frequency - inverse document
frequency (TF-IDF) vectors using the Scikit-learn40 Python package. The
cosine similarity of each paper abstract to all other abstracts was then
assessed using the Scikit-learn pairwise linear kernel metric based on the
computed TF-IDF vectors. Only pairs of gene sets from different publica-
tions with zero cosine similarity of their abstracts were retained. For each
pair of such gene sets, Fisher’s exact test was performed to assess the sig-
nificance of the overlap among the genes within these two sets. Only pairs
with p < 0.05were retained for further analysis. Pairswith identical gene sets
were excluded. Pairswere furtherfiltered to only include thosewith overlaps
ofmore than 50 genes. Additionally, to assess novelty of the recovered pairs,
the percentage of their overlapping genes with ‘sticky proteins’ identified in
analysis of protein-protein interactions45wereused (SupplementaryData 9).
In the analysis of gene set pairs including a gene or a disease in the table or
column title and legend, only the top 10,000 most significant pairs with
< 10% ‘sticky proteins’ were included. To assess the amount of highly cited
genes, present in the overlapping genes of gene set pairs, the top 500 most
cited genes according to GeneRIF38 were used (Supplementary Data 9).
Additionally, to determine the amount of highly expressed genes present in
the overlapping genes of gene set pairs, the top 500 most highly expressed
protein coding genes were sourced based on mean expression across 5000
random samples from ARCHS46 (Supplementary Data 9). To identify
disease names in column titles of the gene set pairs, DisGeNet46 disease
terms were used and gene names were identified using NCBI gene38 map-
pings. The OpenAI API chat completion module using the GPT-4 model
was utilized to hypothesize about the connection between the remaining top
pairs of gene sets from the subset of filtered genes sets based on the filtering
steps described above. When prompting the model, we provide it with the
gene set terms, the abstracts of both papers, as well as any identified disease
or gene extracted from the gene set term column title in following format:

“Based on the pair of extracted gene sets from two research publications,
hypothesize why theremight be a connection between these gene sets based
on the twoabstracts, and the provided gene anddisease terms:Gene set term
1: [term1], disease fromgene set 1 term: [disease], abstract of publication for
gene set term 1: [term1_abstract], Gene set term 2: [term2], gene(s) from
gene set 2 term:47, abstract of publication for gene set term 2: [term2_ab-
stract].”Additionally, the systemmessage explains the task as follows: “You
are a biologist who attempts to generate a hypothesis about why two gene
sets, which are lists of genes,mayhave a highoverlap despite being extracted
from two publications that have dissimilar abstracts. The gene set/paper
pairs you will be given have one gene set with a disease term and the other
with a gene name, so you should include reasoning as to a possible con-
nection between the disease and the gene and explain this possible con-
nection. Such a connection should be related to the abstracts.”The response
fromthemodel alongwith statistics about the significanceof theoverlap and
a PubMed querywith the disease and the gene is provided to help uncover if
this association is already published in literature.

Gene function predictions
50,000 gene sets were randomly selected from Rummagene and filtered for
sets with less than 2000 genes. For all human genes, we formed a matrix A
where Aði; jÞ ¼ 1 if gene i is a member of gene set j and 0 otherwise. Then
the co-occurrence matrix Φ ¼ A � AT . As previously described20, the co-
occurrence probability between two genes:

P α; β
� � ¼ Φ α; β

� �

ϕ0
;

where ϕ0 is the total number of co-occurrences, and the marginal prob-
ability PðαÞ ¼ 1

ϕ0

P

β≠α
Φðα; βÞ.

The cosine similarity, Jaccard index, and normalized pointwisemutual
information (NPWMI) for each pair of genes were then calculated as fol-
lows:

Cosineðα; βÞ ¼ Pðα; βÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðαÞPðβÞ

p

Jaccardðα; βÞ ¼ Pðα; βÞ
PðαÞ þ PðβÞ � Pðα; βÞ

NPWMIðα; βÞ ¼ �1
lnðPðα; βÞÞ �max 0; ln

Pðα; βÞ
PðαÞPðβÞ

� �� �

TheNPWMI is a value between 0 and 1, where a larger value indicates
the two genes co-occur with greater probability than expected by random
chance48. Four gene set libraries were used to benchmark gene function
prediction: GO Biological Process (2023), GWAS Catalog (2023), MGI
Mammalian Phenotypes (2021), and Human WikiPathways (2021). To
perform thepredictionsof the likelihood that a genebelongs toa gene set,we
measured the distance of each gene to each gene set in each library by
computing the average distance of the gene to each gene in each gene set.
Suppose L is a matrix where Lði; jÞ ¼ 1 if gene i is a member of gene set j in
the library L, and 0 otherwise. Let D be the similarity matrix as described
above, where the diagonal is set to 0. The gene/gene-set association matrix
G ¼ D�L

L�1T where the division is elementwise. Each entry Gði; jÞ is then the
mean similarity of gene i to all the genes in gene set j. ThematrixG can then
be used to predict membership of gene i in any gene set. ROC curves and
AUC values for each term in the library were computed using the Python
sklearn.metrics module40.

Comparing the Rummagene gene set space to the Enrichr gene
set space
All the gene set libraries in Enrichr were assembled and processed together
with the Rummagene gene sets so they can be projected into the same two-
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dimensional space. First, all genes were mapped to their official NCBI gene
symbols forHomo sapiensorfilteredout.Gene setswere then converted into
vectors with values corresponding to the inverse document frequency
(IDF)49. Truncated Singular Value Decomposition (Truncated SVD)50 was
then used to reduce the dimensionality of the IDF vectors to the 50 largest
singular values. AUMAP25 with the default settingswas then used to embed
all samples into two dimensions. Finally, to better position the visualization,
we computed themeanandstandarddeviationof the embeddingdimension
axes and show the bulk of the samples that are within 1.68 standard
deviations from the mean.

Data availability
The Rumamgene dataset version analyzed here is available for download
from: https://rummagene.com/download and from Figshare51. The most
recent updated version of the Rummagene dataset is also available from
https://rummagene.com/download. This dataset is updated weekly on
Mondays. Additional files needed to reproduce the results are provided as
Supplementary Data files.

Code availability
The Rummagene web server application is available from: https://
rummagene.com/. The Rummagene source code is available from: https://
github.com/MaayanLab/rummagene and a snapshot of the source codewas
deposited in Figshare52. The code and files needed to reproduce the figures
are available from: https://github.com/MaayanLab/rummagene/tree/main/
figures.
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