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Understanding the errors made by
artificial intelligence algorithms in
histopathology in terms of patient impact
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An increasing number of artificial intelligence (AI) tools are moving towards the clinical realm in
histopathology and across medicine. The introduction of such tools will bring several benefits to
diagnostic specialities, namely increased diagnostic accuracy and efficiency, however, as noAI tool is
infallible, their use will inevitably introduce novel errors. These errors made by AI tools are, most
fundamentally, misclassifications made by a computational algorithm. Understanding of how these
translate into clinical impact on patients is often lacking, meaning true reporting of AI tool safety is
incomplete. In this Perspective we consider AI diagnostic tools in histopathology, which are
predominantly assessed in terms of technical performancemetrics such as sensitivity, specificity and
area under the receiver operating characteristic curve. Although these metrics are essential and allow
tool comparison, they alone give an incomplete picture of how an AI tool’s errors could impact a
patient’s diagnosis, management and prognosis. We instead suggest assessing and reporting AI tool
errors from a pathological and clinical stance, demonstrating how this is done in studies on human
pathologist errors, and giving examples where available from pathology and radiology. Although this
seems a significant task, we discuss ways to move towards this approach in terms of study design,
guidelines and regulation. This Perspective seeks to initiate broader consideration of the assessment
of AI tool errors in histopathology and across diagnostic specialities, in an attempt to keep patient
safety at the forefront of AI tool development and facilitate safe clinical deployment.

Histopathology, alongwithother image-baseddiagnostic specialities suchas
radiology, are seeing significant development of artificial intelligence (AI)
tools. In histopathology the potential uses of AI include diagnosis, prog-
nostication, workflow applications, and education1. In diagnostic terms, AI
could increase diagnostic accuracy and efficiency1,2 which is invaluable in
the face of a rising workload and a widespread lack of pathologists3,4.

However, AI tools and the machine learning (ML) algorithms that
form them, are not infallible and perfect accuracy is unlikely to be
achievable5. Therefore, the introduction of AI will bring not only the
aforementioned benefits, but also the pervasive issue of AI tool errors. A
report by the European Parliamentary Research service identified patient
harm fromAI errors as one of themajor risks arising from the introduction
of AI into healthcare6.

Currently AI tool errors are predominantly reported in terms of
technical performancemetrics, which although are undoubtably important
to the safe assessment of a tool, do not adequately explain how these

misclassifications translate into impact on patients7,8. The consequences of
AI tool errors are vital to understand and report because they have the
potential to cause profound and harmful effects on people7,9. The literature
highlights that transparency and validation of tools in terms of their impact
onclinical outcomes is essential to build trust inAI2 but suchreportingof the
clinical impact of AI tool errors is currently lacking in histopathology and
other specialities. This is likely contributing to the described “imple-
mentation chasm” between AI tool development and clinical use5. This
Perspective aims to broaden the horizons of how we consider and report
errors made by AI tools, suggesting a more clinical focus is greatly
warranted.

Definitions of error
Clinical diagnostic errors
The World Health organisation states that “A diagnostic error emerges
when a diagnosis is missed, inappropriately delayed or is wrong”10. Another
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definition describes diagnostic errors as “the failure to (a) establish an
accurate and timely explanation of the patient’s health problem(s) or (b)
communicate that explanation to the patient”11.

It is key to state that not all medical errors result in patient harm12.
Some errors have potentially serious consequences such as death or injury,
however, others may not even cause a noticeable impact. This has led to the
use of the term ‘adverse event’ to describe medical errors that result in
patient harm12.

AI tool errors
MLmodels are trainedon large amounts of data to learnpatterns that enable
the model to make predictions. In histopathology diagnostics these pre-
dictions can include identification and classification of entities, grading of
tumours andquantification tasks that encompass roles currently assigned to
human pathologists13, however, at the MLmodel level these remain simply
classifications, and any errors are misclassifications between one group and
another. When assessing a ML model’s performance, the model classifica-
tions are compared to a chosen ground truth, usually a pathologist’s diag-
nosis, again framing errors as simply misclassifications.

In general, the deep neural networks that form the basis of many AI
tools are trained to minimise errors but assume that all types of error are
equal. This is termed being ‘insensitive to impact’14,15. This assumption is
vastly incorrect in healthcare, where the consequences of different mis-
classifications could have hugely different outcomes for patients in terms of
treatment decisions and prognosis.

We thereforeneed to translate theseAI tool errors ormisclassifications,
into meaningful error information that is understandable in the clinical
context.

Current assessment of histopathologist errors
A literature review from the College of American Pathologists summarising
116 studies on diagnostic errors in pathologists found the median dis-
crepancy rate between the primary report and secondary pathologist review
was 18.3%, with a rate of major discrepancies of 5.9%16. They acknowledge
that “not all errors are alike”, and across the review found 81 different
definitions of major or significant diagnostic discrepancy, highlighting that
although studies aimed to quantify error severity, standardised definitions
are lacking.

Several studies give detailed pathological information about patholo-
gist errors, such as Oxley et al. who assessed for errors in 4192 prostate core
biopsies and found that the diagnostic category changed in 146 cases. They
quantified the misdiagnoses, for example 32 cases were upgraded to ade-
nocarcinoma (from previous diagnosis of suspicious for malignancy (5
cases), high-grade prostatic intra-epithelial neoplasia (5 cases) and benign
(22 cases)). Additionally, they discussed reasons for these errors, such as
small tumour area and rare morphology17. An example of a study quanti-
fying not only the number and type of errors, but also their clinical impact is
Kronz et al. who, when considering the clinical impact of lesions missed on
prostate biopsies, found that although they identified 87 errors across 3251
patients, only 15 of thesemisses, if found, would have resulted in a definitive
change in care, and 17 a possible change in care (e.g., bilateral vs unilateral
cancer)18.

Importantly, because the pathologist’s diagnosis forms the basis of a
report to guide the clinician, but does not automatically result in a defined
outcome, the clinical impact of a diagnostic error is also determined by the
clinician’s response to the report. Highlighting this is work by Raab et al.
who reported diagnostic discrepancies by review of histology and cytology
specimens and found that in non-gynaecological cases, 5% had errors that
were nearmisses,meaning the clinician intervenedbefore harmoccurred or
did not act on the incorrect diagnosis19.

Current assessment of AI tool errors in histopathology
In order to understand the current approach taken in studies on AI tools in
histopathology, a literature search was conducted through PubMed, Med-
line, Embase,Webof Science andGoogle scholar using terms: ‘Pathology’or

‘Histopathology’ AND ‘Artificial intelligence’ OR ‘Machine learning’ OR
‘Neural network’ OR ‘Computer-assisted diagnosis’ AND ‘Risk’ (including
risk assessment/evaluation/reduction/management/ factor/patient risk)OR
‘Error’ (including diagnostic error or medical error).

This search found no papers that specifically discussed the measure-
ment or approach to errors in AI tools in histopathology. Instead, it high-
lighted that the literature consists of a vast number of small studies
evaluating a single AI tool performing a narrowly defined task. In such
studies, the technical accuracy of tools is well documented, using a wide
range of robust performance metrics including sensitivity and specificity,
positive andnegative predictive values and area under the receiver operating
characteristic curve, or area under the precision-recall curve20. Calculating
the areaunder these curves eachgives a single powerfulmetric thatmeasures
a ML tool’s ability to differentiate between two binary groups21. It is, of
course, fundamental that a tool can classify entities well, but without
understanding, in clinical terms, of the implications of different classifica-
tions, or misclassifications, this only gives a report of the volume of errors,
not their severity.

These metrics do allow a rudimentary understanding of an AI tool’s
error profile in terms of its false negative and false positive results, but the
implications of different false negatives and positives are likely to vary.With
a screening tool designed to detect a region of interest, for example cancer
detection, false positive results where the slide is normal but is flagged as
abnormal will need to be reviewed by a pathologist, potentially creating
additional workload for the pathologist and increasing reporting time. This
is likely to be considered less costly than false negative results,where the slide
contains pathologybut is labelled as negative by the tool. The risk here is that
failure to recognise the region could mean that the patient does not receive
the correct diagnosis, potentiallymissing out on treatment and succumbing
to disease progression.

These metrics are essential, allowing standardised reporting and
comparison between tools and should always remain the foundation of any
AI tool assessment, however, we argue that they alone are not sufficient.

Comprehensive approaches to reporting AI tool errors
In order to develop an appropriate strategy for error management of AI
tools in pathology we need to consider the risks of errors made at a level
beyond simply the algorithm output, but rather at the level of the pathology
diagnosis or, more holistically, in terms of clinical outcome.

Reporting of errors in terms of the histopathological diagnosis
Having pathological information about each error, for example the entity
concerned and other relevant information such as the size and location,
would allow some understanding of error severity based on the pathological
understanding of different diseases. Details of the pathological nature of
errors is seen in some studies but is not widespread practice and it lacks
consistency, in contrast to studies on human pathologists where this
information is widely provided.

Graham et al. published their colon biopsy screening algorithm, which
classifies entities into normal and abnormal, and studied both false positive
and false negative errors22. Analysis of false positive cases with the highest
confidence scores identified that the algorithm had actually correctly clas-
sified several of these cases but there has been mislabelling errors in the
dataset, thusmeaning a slight improvement in the algorithm’s performance.
Analysis of the false negatives highlighted the pathological entitieswhere the
algorithm performance was weak, such as lymphocytic and collagenous
colitis22. This demonstrates how pathological interpretation of the errors
made can have several benefits: aiding understanding of where the tool
would struggle in practice, setting out further training requirements and
even refining the original results.

An important point is highlighted in a study on Paige Prostate-AI for
the detection of prostate carcinoma and atypia. In the study, several of the
false negative coreswere instances of glandular atypia. The authors note that
although these lesions are not actionable from a urologist’s perspective, they
are important to detect from the pathologist’s stance because they can
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prompt further work such as further levels or immunohistochemistry,
which thenmay lead to the detection of further disease23. This demonstrates
how knowing the pathological nature of errors made has unique merit
because this can shape pathologist’s actions and potentially the final
diagnosis.

The use of standardised pathological terms and entities would allow
pathologists and clinicians to understand the nature of each misclassifica-
tion made. Furthermore, there is merit in categorising errors, such as into
major and minor errors, as seen in error rates in human pathologists,
although this currently lacks standardisation and so a collaborative
approach would be required to define such groups.

Reporting of errors in terms of the clinical impact
As discussed, not all errors in medicine cause harm; some errors go com-
pletely unnoticed but others are serious adverse events. Therefore, to
understand the true consequences that AI tool errors have, we need to
consider the potential clinical consequences of each misclassification.

Separating errors into false positives and false negatives is the most
simplistic distinction of errors based on potential impact, however the
severity of different types of false positives or negatives are not equal. For
example, in a colon biopsy screening tool, a false negative result in a patient
with adenocarcinoma is unlikely to be considered the same clinically as a
missed mild chronic inflammation, with the former potentially being a
serious adverse event, and the latter potentially having no patient impact.
Discussions on clinical impact require clinical team input and can be
complex, requiringknowledgeof the care pathways fordifferent results.One
example is seen in the Paige Prostate-AI study cited previously, where
clinical impact is considered by reporting that in 4/5 missed adenocarci-
noma cores the patient had cancer detected in another core and that in the
fifth case the patient was known to have low volume disease and was under
routine surveillance already, thus these misses were unlikely to significantly
impact management23.

With more sophisticated algorithms, more complex clinical questions
arise. For example,with algorithms that grade cancers, is the risk of harm the
same for up-grading, compared to down-grading a tumour? If, or when,
algorithms are introduced that diagnose specific entities (rather than just
normal versus abnormal),wewill be considering the impact of onediagnosis
compared to another.

There is a need for standardised terminology to report on the clinical
impactofAI tool errors.We suggest this could bedone either by considering
the severity of patient impact (e.g., none, mild, moderate, severe) or the type
of impact on patient care (e.g., no change in care, delayed diagnosis, missed/
delayed investigations, missed/ delayed treatment).

Although there is likely to be debate about the relative harms of dif-
ferent errors24, if we agree that there are differences, then simply considering
the technical properties of an algorithm and the volume of errors is an
inadequate strategy. Figure 1 summarises the different levels at which
algorithms can be assessed, and Fig. 2 proposes some of the benefits of a
holistic, clinical consideration of errors.

Parallels to radiology
In radiology, a similar diagnostic speciality that has seen a much greater
influx of AI tools, interesting work demonstrates that assessing AI tools can
be done at multiple hierarchical levels.

In 1991 Fryback and Thornbury stated that when evaluating any
diagnostic imaging, it is important to go beyond simply the quality and
accuracy of the radiological examination25. They note that because any
diagnostic imaging process sits within wider clinical and societal realms,
there are numerous levels at which to assess its efficacy. They proposed a
hierarchical six tier system to assess diagnostic imaging tools, which was
then adapted by van Leeuwen et al. in order to specifically appraise AI
tools26. An adapted version is seen in Table 1.

van Leeuwen et al. evaluated the literature on 100 CE-marked AI
products in radiology, appraising them against this model. They found that
64/100 products had no peer reviewed evidence of safety, with the other 36
products had a combined evidence base of 237 studies. Of these, 65% only
focusedondiagnostic accuracy (level two).Only 18productshad studies that
discussed evidence at level three or higher, meaning that the vastmajority of
these products had no available data on their potential clinical impact in
terms of either the clinical benefits or harms26. As noted in the paper dis-
cussion, the level of efficacy assessment required for a tool varies according to
its intended use, for example it is likely to be lower if the tool is only intended
to aid the clinician (e.g., by performing ameasurement task for a radiologist)
than if it is an independent diagnostic tool, however the lack of clinical
consideration across approved tools is surprising. If we apply this model to
pathology, the algorithmic output measurements we currently see reported
for AI tools equate to level two, but as discussed there is benefit in including
wider assessment of accuracy, namely level three: howdoes theAI tool affect
the pathological diagnosis?, and level four: how does the AI tool impact
patientmanagement decisions? In the future, levels five and six could also be
considered, although there could be significant time and cost involved.

Future directions
Reporting of errors in the literature
We argue that for any AI diagnostic tool that is nearing the clinical realm
there should be an assessment of the expected clinical impact of errors to

Fig. 1 | The different stages at which to consider
the errors made by an AI diagnostic algorithm in
pathology. This figure demonstrates how errors can
be considered in terms of technical metrics, the
pathological information or the clinical impact, with
a hypothetical example of two different false nega-
tives from a colon biopsy screening algorithm. (FN-
False negative, PPV- positive predictive value, NPV-
negative predictive value, AU-ROC – area under the
receiver operating characteristic curve, AU-PR- area
under the precision-recall curve). Icons used in
image from Freepik from Flaticon.com.
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supplement the technical metrics reported, in order to aid pathologists,
clinicians, healthcare organisations and patients to gain a wider under-
standing of the errors made.

Furthermore, as workloads increase and the pathologist shortages
continues, it is increasingly likely that AI tools will assist or replace histo-
pathologists in certain diagnostic tasks. We therefore will need to compare
the errors made by AI tools with the current standard of care which is
human pathologists. This relies on a standardised reporting of the clinical
implications of errors to facilitate a cross modality comparison of safety.

In order to achieve this there must be high-quality pathology and
clinical data collection and interpretation built into study design, and tool
development and analysis conducted by multidisciplinary teams.

This is a call to action for researchersworking onAI diagnostic tools, in
histopathology and other specialities, to allow time, finances, and personnel
in study plans to consider the broader consequences of AI tool errors. This
should be fruitful for teams, in terms of refining study results, and increasing
transparency for all concerned.

Guidelines
Guidelines are essential to support and standardise this process but, as stated
by Wismüller and Stockmaster, there is a current lack of guidance on

“objectively evaluating AI systems with regards to clinically meaningful
performance metrics”8.

Several AI specific guidelines do exist for the evaluation of various
trial types; including CONSORT-AI (Consolidated Standards of
Reporting Trials–Artificial Intelligence) for randomised controlled
trials, SPIRIT-AI (Standard Protocol Items: Recommendations for
Interventional Trials–Artificial Intelligence) for clinical trials and
STARD-AI (Standards for Reporting of Diagnostic Accuracy Study-
AI) for diagnostic test studies27–29. These helpfully provide checklists of
the minimum requirements that should be reported for AI interven-
tions and state that investigators should provide an analysis of error
cases27–29. However, there is currently no specification that this includes
a clinical assessment of errors, although this would be the ideal place to
introduce such requirements and could be incorporated into future
iterations.

Prospective and randomised control trials
Most trials onAI diagnostic tools to date are retrospective in nature, often in
an artificial setting or using datasets that have been filtered, and so are not
representative of real data in clinical practice2. Furthermore, in practice, all
AI tools will interact with humans to some degree (even those deemed
autonomous require humans for data input and interpretation of some
results), and so studying AI tools in isolation means it is impossible to truly
measure the tools performance in practice. Prospective and randomised
control trials allow for inclusion of human factors and allow factors such as
automationbias to be studied, aswell as collectionofmore clinically relevant
outcome data.

Regulation
Regulatory incentives are also essential to drive a shift in reporting practices.
Interestingly, Gerke et al. suggest that regulators such as the Food andDrug
Administration and the Medicines and Healthcare products Regulatory
Agency currently regulate medical products and devices, but that to truly
ensure safe practice, they must evaluate the entire system, in what they call
the “systems approach”30. They argue that performance in an artificial
testing environment is not suitable, giving an incomplete study of the risks
(and benefits) of AI tools when used in practice and not allowing for the
impact of human-tool interactions30. Although a full “systems approach” is
unfeasible30, a wider view incorporating human interaction with AI tools,
and an assessment of errors in terms of their clinical consequences could be
possible.

Training machine learning models based on the clinical
outcomes of errors
As our understanding of the clinical impact of different errors increases,
there may be the option of building this knowledge into algorithm devel-
opment, making algorithms themselves safer and tackling the problem of
ML algorithms being insensitive to impact. Santana et al. have proposed a
novelmethod forDNNclassifiers that considers risk during the training and
verification stages, allowing factors such as the risk of each specific mis-
classification, and the likelihoodof themoccurring to bebuilt into themodel
itself during development14.

Conclusion
This perspective highlights the importance of translating the mis-
classification errors made by AI diagnostic tools in histopathology into
the pathological and clinical realms, to understand how AI tool errors
impact patients. Although this is currently only done sporadically and in
an unstandardised manner, a concerted effort to make this routine
practice would improve AI tool safety, transparency and facilitate their
introduction to clinical practice.

Received: 11 December 2023; Accepted: 29 March 2024;

Table 1 | Hierarchical model to assess the efficacy of AI soft-
ware in the diagnostic imaging process adapted from van
Leeuwen et al.26 and Fryback and Thornbury25

Level Consideration

Level 1t: Technical
efficacy

What is the technical usability of the software?
For example reproducibility, error rate

Level 1c: Potential clinical
efficacy

What is the correlation between this software and
other methods used such as biomarker studies?

Level 2: Diagnostic accu-
racy efficacy

What is the standalone performance of the
software?
Sensitivity, specificity, Area under the receiver
operating characteristic curve

Level 3: Diagnostic think-
ing efficacy

What is the impact of the software on the diagnosis?
Diagnosticians performance with and without AI
Any changes in diagnostic judgement?

Level 4: Therapeutic
efficacy

What is the impact of the software on patient man-
agement decisions?
Effect on treatment and follow up

Level 5: Patient outcome
efficacy

What is the impact of the software on patient
outcomes?
Effect on quality of life, morbidity, survival

Level 6: Societal efficacy What is the impact of the software on society?
Economic effect

Fig. 2 | The potential benefits of reporting AI pathology tool errors in terms of
clinical impact. This is not an exhaustive list but details some of the most important
reasons why a more holistic consideration of errors is beneficial.
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