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Non‑invasive prediction of maca 
powder adulteration using 
a pocket‑sized spectrophotometer 
and machine learning techniques
John‑Lewis Zinia Zaukuu 1*, Zeenatu Suglo Adams 1,2, Nana Ama Donkor‑Boateng 1,3, 
Eric Tetteh Mensah 1, Donald Bimpong 1 & Lois Adofowaa Amponsah 1

Discriminating different cultivars of maca powder (MP) and detecting their authenticity after 
adulteration with potent adulterants such as maize and soy flour is a challenge that has not been 
studied with non-invasive techniques such as near infrared spectroscopy (NIRS). This study developed 
models to rapidly classify and predict 0, 10, 20, 30, 40, and 50% w/w of soybean and maize flour in 
red, black and yellow maca cultivars using a handheld spectrophotometer and chemometrics. Soy 
and maize adulteration of yellow MP was classified with better accuracy than in red MP, suggesting 
that red MP may be a more susceptible target for adulteration. Soy flour was discovered to be a 
more potent adulterant compared to maize flour. Using 18 different pretreatments, MP could be 
authenticated with R2

CV in the range 0.91–0.95, RMSECV 6.81–9.16 g/,100 g and RPD 3.45–4.60. The 
results show the potential of NIRS for monitoring Maca quality.
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“Lepidium meyenii”, known as maca or Peruvian ginseng, is an edible herbaceous biennial plant of the family 
Brassicaceae that is native to South America in the high Andes mountains of Peru and Bolivia (Leon,1964). Maca 
is a natural nutraceutical product regarded as a “superfood”1. According to the Food and Agriculture Organi-
zation of the United Nations, the term “superfoods” was coined in 2005 by the food and beverage industry to 
designate a variety of fruits and vegetables regarded to bestow important and vital components to human health 
and nutrition2. There are three distinct hypocotyl colors for Maca, namely red, yellow, and black which are also 
sometimes referred to as their cultivars3.

The effectiveness and safety of consuming these maca cultivars have been evaluated in numerous clinical 
studies with the majority of these studies concentrating on how Maca affected sperm count, sexual behavior4 
and reduce dosteoarthritis pain and stiffness5. As the demand for Maca on the global market slowly rises due to 
its benefits, dishonest individuals have started adopting inexpensive substitutes to either adulterate or fabricate 
maca and boost their profit.

Existing techniques to detect maca origin and adulteration are time-consuming and costly. Maca adulteration 
has been investigated with DNA-barcoding approach based on the Internal transcribed spacer (ITS)6. Chemical 
profiling analysis of Maca using ultra-high- performance liquid chromatography (UHPLC),electrospray ioni-
zation mass spectrometry (ESI-Orbitrap) coupled with UHPLC-ESI-QqQ MS and the neuroprotective study 
on its active ingredients has also been reported7. Reported techniques for maca cultivar discrimination are the 
ESI8, the stable isotope ratio and mineral elemental fingerprints9, liquid chromatography-ultraviolet detection 
-tandem mass spectrometry (LC-UV–MS/MS)10. In recent years, quick techniques for food adulteration and 
authenticity are crucial11,12.

Spectroscopy is a science of light interaction (absorbance/reflectance) with an analyte across the electro-
magnetic spectrum. With just one test, spectroscopic techniques can gather a lot of data quickly and affordably. 
Additionally, spectroscopic methods only need little to no sample preparation11,13,14. In some instance, these 
spectroscopic techniques are used to identify the specific entities; however, fingerprints can also be established 
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as a more efficient screening technique. Most of these techniques are liaised with chemometric tools such as 
Principal component analysis (PCA), hierarchical cluster analysis (HCA), linear discriminant analysis (LDA), 
soft independent modeling by class analogy (SIMCA), and partial least squares regression (PLSR) to improve 
the selection of the most relevant instrumental data output15,16. NIRS in tandem with chemometric techniques 
has been used to successfully identify different adulterations based on compositional variations and disparity in 
chemical functional groups in several studies including honey, oil and ground powders12,15.

Different maca samples adulterated with turnip and radish powder individually at different percentages 
(5–95%) could be detected with near infrared spectroscopy (NIRS)17. In another study, pure maca powder mixed 
with rice flour and rice bran at proportions of 25%, 50%, and 75% could be classified with good accuracies using 
NIRS18. Even the fourier transform near infrared spectroscopy (FTIR) analytical method has been used to detect 
sucrose in Maca powder19.

A major gap in all of these studies Is that only benchtop instruments were used and adulteration of multiple 
maca cultivars were not tested. The emergence of handheld devices can cut analytical cost and avoid analytical 
technicalities. It also presents the advantage of remote analysis or on-site analysis. In addition, novel suspicious 
adulterants such as soybean flour and maize flour which bear a striking physical resemblance to maca powder 
were not tested. Lastly, multiple spectra preprocessing techniques which are known to increase model robustness 
were not test. There is also no reported study of using NIRS to discriminate maca cultivars.

Thus, the objective of this work was to create models utilizing a handheld near-infrared spectrophotometer to 
quickly classify and predict low to high amounts of soybean and maize flour in three different cultivars of maca 
powder and also to develop models to discriminated the different cultivars irrespective adulteration.

Materials and methods
Sample acquisition
Authentic Maca (Lepidium meyenii) and adulterants were purchased from reliable vendors (health stores) in the 
Greater Accra Region of Ghana in accordance with the International Union for Conservation of Nature (IUCN) 
policy statement on research involving species at risk of extinction and also, according to the Kwame Nkrumah 
University of Science and Technology Research (KNUST POLICY 0003) and Ethics policy (KNUST POLICY 
0007). Three major types of Maca (cultivar) powder were purchased: yellow Maca (YM), black Maca (BM), and 
red Maca (RM). Soybean powder and maize powder were also acquired at a reputable market in the Greater 
Accra region of Ghana and used as adulterants. The samples were kept in a low-density polyethylene (LDPE) 
plastic ziplock bag and transported aseptically to the laboratory to be used for the study.

Sample preparation
Artificial adulteration of Maca powder was performed in the laboratory to mimic the suspected practice on the 
market. For this, each Maca type in its powdered form was respectively mixed with the adulterants (soy and 
maize) in powdered form (equal particle size) at six different concentrations: 0, 10, 20, 30, 40, and 50% w/w of 
the respective adulterant. Each concentration was prepared in triplicate and thoroughly homogenized to yield a 
total of 108 samples (6 adulterant concentrations × 2 adulterants (soy and maize) × 3 Maca types (Red, Black and 
Yellow Maca) × 3 (triplicate samples)). The samples were labeled for easy identification while scanning. Soy and 
maize powder were milled and sieved to have the sample particle size as maca powder before NIRS analyses. This 
was to ensure effective homogenization of the mixtures and reduce the influence of no-homogenous scanning 
surfaces that could lead to additive or multiplicative effects on the spectra.

NIRS measurements
All 108 samples (10 g each) were scanned through the low-density polyethylene (LDPE) zip-lock bags using 
the handheld DLP NIRScan Nano instrument (Texas Instruments, Dallas, TX, USA). The instrument has a 
wavelength range of 900–1700 nm and a spectral resolution of 3 nm. Three consecutive spectral measurements 
were taken for each sample resulting in a total of 324 spectra. The entire spectrum capture process was done at 
ambient temperature. For each sample, the powder was gathered at one point of the plastic (lower right) before 
spectra collection as demonstrated by Zaukuu et al. (2020). This was to reduce the influence of no-homogenous 
scanning surfaces that could lead to additive or multiplicative effects on the spectra.

Spectral analysis
The spectra from the NIRS scan were first preprocessed with a Savitzky-Golay smoothing filter to reduce the 
noise additive effect of the collected spectra before performing a principal component analysis (PCA). PCA was 
employed to visualize, detect and remove outliers from all the samples. It was also used to reduce dimension 
while preserving the relevant information.

Linear discriminant analysis (LDA)
Linear discriminant analysis (LDA) was then used to develop models to classify the different concentrations 
based on the type of Maca powder that was being adulterated. In total eight different classification models were 
developed. The first model was developed to classify the different types of Maca powders in their pure state 
while the second was to classify the different types of Maca in their adulterated state. This was to ascertain the 
possibility of varietal differences irrespective of adulteration.

Three models were developed next to classify 0, 10, 20, 30, 40, and 50% w/w soy in yellow, black, and red 
Maca powders respectively, followed by another three models, which were developed to classify 0, 10, 20, 30, 40, 
and 50% w/w maize powder in yellow, black and red Maca powders respectively.
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By splitting the data into two categories—training and validation—the predictive value of each LDA model 
was assessed. The first and second replicates, which together made up two-thirds of the data, were represented in 
the training set by their spectra. The validation set was built using the spectra of the third replication. Calibration 
and validation set’’ replicates were switched out three times during the data splitting phase.

The statistical parameters used to evaluate the performance of the LDA models were the recognition accuracy 
(%) and prediction accuracy (%). Recognition accuracy (%), represents the accuracy of calibration, whereas 
prediction accuracy (%), represents the accuracy of cross-validation (%). These were assessed through confu-
sion matrices where, columns represented the actual class membership and the rows represented the predicted 
class membership. Other parameters used to evaluate the performance of the developed LDA models were the 
sensitivity, specificity and precision20 calculated after cross-validation as followed:

The sensitivity of the test was defined as its ability to determine the true (correct) classes, whereas, specificity 
refers to the ability to correctly determine the false (incorrect classes). Precision referred to the closeness of two 
or more measurements to each other. Their values were reported in percentages (%).

Partial least square regression (PLSR)
The potential of NIRS to predict concentrations of pure Maca in both the pure and adulterated samples was 
tested using the PLSR. For the development of the models, 18 different preprocessing techniques were tested 
using a combination of Savitzky-Golay pretreatment, derivation, standard normal variate, multiplicative scatter 
correction, and detrending as shown in Table S1.

With leave-one-sample-out cross-validations, all three repeats of each sampl’’s nine spectra were excluded 
from the validation procedure, allowing researchers to assess the predictive significance of all the PLSR models 
outlined. The coefficient of determination (R2

C), root mean square error of calibration (RMSEC), and the ratio of 
prediction to deviation (RPD) were the statistical variables used to assess the effectiveness of the PLS regression 
models (RMSECV, R2

CV). In order to avoid overfitting, the models, the ideal number of latent variables for each 
model was calculated based on the least RMSEC and RMSECV values.

Using only the best preprocessing method in the developed models, limit of detection minimum value (LOD), 
limit of detection maximum value (LODmax), limit of quantification minimum value (LOQ) and sensitivity 
were calculated through the partial least-squares (PLS) methods according to the International Union of Pure 
and Applied Chemistry (IUPAC) approach described by Allegrini and Olivieri21:

where, SEN is the sensitivity (inverse of the length of the regression coefficient), var (x) is the variance of the 
instrument signals. h0min/max is the minimum/maximum distance between a hyperplane for the calibration 
set, representing the scores of the samples for which the analyte of interest is absent and the center of a normal-
ized calibration score space. Var (ycal) is the variance in the calibration concentrations. LOD correspond to the 
calibration samples with the lowest and largest extrapolated leverages to zero analyte concentration22 Click or 
tap here to enter text. LOQ was obtained by multiplying the LOD values with a factor value of three (Allegrini 
and Olivieri, 2014). LOD, LOQ and Sensitivity values were calculated in MATLAB (version 2022b) and used to 
further evaluate the performance of the models for predicting the parameters of interest. All chemometric data 
was analyzed with R version R 3.3.0 + (Aquap2 package).

Ethical approval
Ethics approval was not required for the collection of plant samples according to the Kwame Nkrumah Univer-
sity of Science and Technology Research (KNUST POLICY 0003) and Ethics policy (KNUST POLICY 0007), 
where this study was conducted. Samples were however, collected in accordance with the International Union 
for Conservation of Nature (IUCN) policy statement on research involving species at risk of extinction.

Results and discussion
Spectral assessment
Figure 1 shows the Raw (A) and Savitzky-Golay pre-processed spectra (B) plot of yellow, red, and black Maca 
samples containing 0,10, 20, 30, 40, and 50% w/w soy and maize. . From spectral inspection, the extremities of 
the unprocessed spectra (Fig. 1A) were characterized by noise while the prominent peaks were observed at the 
wavelength ranges of 950–1500 nm, so this spectral range was selected and used for all subsequent analysis.

The pre-treated spectra plot of the different forms of maca powder (red, yellow, and black) and the forms of 
adulterant all presented prominent peaks around 1210 nm and 1450 nm. Based on the absorption characteris-
tics, the Near-infrared wavelength region is generally divided into two regions namely the long-wavelength NIR 
region (1300–2500 nm), where the absorptions are attributed to the combinations or the first overtones of the 

Sensitivity = True positives /
(

True positives + False negative
)

Specificity = True negative/
(

True negative + False negative
)

Precision = True positives/
(

True positives + False positives
)

LOD = 3.3
[

SEN − var(x)+ h0min SEN − var(x)+ h0min var
(

ycal
)]1/2

LOD = 3.3
[

SEN − var(x)+ h0max SEN − var(x)+ h0max var
(

ycal
)]1/2
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O–H (water, alcohol), C-H (fats, oil, hydrocarbons), and N–H (protein) vibrations23. The short-wavelength NIR 
region (700–1300 nm) with absorptions corresponds to the vibration of the second or third overtones which are 
not as strong and sharp as the former. Based on the two prominent peaks observed in the spectral band. The 
resultant peak observed at 1210 nm was due to C − H second overtone and O − H combination associated with 
C-H bonding, a characteristic group in lipids and proteins, also O − H, N − H stretch first overtone occurs at 
1450 nm, which is a characteristic group of moisture24. Sample absorbance is one of the main topics of interest in 
spectroscopy, and according to Beer Lamber’s law, the absorbance is directly proportional to the molar absorp-
tivity, sample concentration, and path length25. The spectra obtained from a sample will be nearly as linear with 
concentration as transmission spectra. The spectra belonging to the black Maca exhibited the highest absorbance 
and thus the most transmittance, although it had the least band. The second region which also recorded the 
most absorbance was the yellow Maca. The red Maca generated a wide band but recorded the least absorbance 
and thus less transmittance. All three forms of Maca were within the 0.1 to 0.18 absorbance region. The spectral 
lines of the Maca powder showed that there was a discerning difference among the various Maca types in terms 
of wavelength and absorbance. The differences obtained in the spectral lines generated by the NIR could be a 
result of the different particle sizes of the different forms of adulteration the Maca were subjected to26. In NIR 
spectra absorptions of overtones or combinations of fundamental stretching bands occur. The bands, usually 
caused by C, H, N, or O stretching are weak in intensity and very often overlap24. All pre-treated spectra of all 
three forms of Maca and adulterants have a similar shape (spectra) due to their almost similar chemical structure 
therefore, it is extremely difficult to distinguish these two compounds with the naked eye although all three forms 
depicted different bands, and absorbances based on adulterant concentrations. As a result, chemometric analysis 
is required to overcome such a problem27. The preprocessed spectra of yellow maca with soy (A), yellow maca 
with maize (B), Red maca with soy (C), Red maca with maize (D), Black maca with soy (E) and Black maca with 
maize (F) , at different concentrations can be found in Fig. 2

Classification results
Classification of red, black, and yellow Maca types
Figure 3 shows the classification of only pure, Yellow, Red, and Black Maca (A), classification of Red, and Black 
containing soy and maize as adulterants (B), model performance parameters for the classification of only pure 

Figure 1.   Raw (A) and Savitzky-Golay pre-processed and wavelength selected spectra (B) plot of yellow, red, 
and black Maca samples containing 0, 10, 20, 30, 40, and 50% w/w soy and maize.
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Yellow, Red, and Black maca (C) and model performance parameters of Yellow, Red, and Black maca containing 
soy and maize as adulterants (D).

A more visible pattern of separation could be visualized in Fig. 3(A) than in Fig. 3(B); where it could be 
observed that there was some overlapping between red, black, and yellow Maca showing no clear distinction 
between the various Maca colors in Fig. 3(B). Pure red, black, and yellow Maca likely have distinct chemical 
compositions due to genetic differences etc.. These inherent differences can lead to more pronounced separation 
in Fig. 3(A) as compared to the adulterated Maca types in Fig. 3(B), which is a mixture of the different maca types 
and may exhibit intermediate characteristics. Also Adulterated Maca, being a mixture of different types, may 
exhibit greater variability in its chemical composition compared to pure Maca types. This increased variability 
can result in less distinct separation between clusters in Fig. 3(B), making it more challenging to discriminate as 
compared to the pure maca types in Fig. 3(A).This proves that the addition of maize and soy in Maca can lead 
to challenges of varietal discrimination.

When only pure yellow, red, and black Maca were discriminatedr, there was an average recognition accuracy 
of 96.38% and prediction accuracy of 94.12% (Fig. 3C). A lower average recognition of 74.10% and an average 
prediction of 65.53% were obtained for discriminating the different maca varieties containing adulterants (con-
fusion matrices can be viewed in the supplementary sheet Table S2). This suggests that the addition of adulter-
ants influenced not only their genotypic properties but also, their phenotypic property thus, making them less 
identifiable. Majority of the studies28–30 focused on discriminating Maca from different locations, based on their 
macamide presence and content, using chromatographic and magnetic resonance techniques. The high average 
prediction and recognition accuracies recorded also prove LDA as robust method in the classification of maca 
regardless of color, even when adulterants are introduced.

From Fig. 3(C), model performance parameters for the classification of pure maca cultivars were all higher 
than 0.8 (80%). Although model performance parameters were also higher than 0.5 (50%) when the cultivars 
were adulterated, it can be observed from Fig. 3(D) that all the performance parameters decreased with the 
introduction of adulterants. The most affected parameters were the sensitivity of the model for classifying black 
maca which decreased from 1 (the optimum value) to 0.5 and the precision of the model for classifying red maca. 
Sensitivity is an absolute quantity, the smallest absolute amount of change that can be detected by a measurement 
while precision describes the reproducibility of the measurement.

Figure 2.   Preprocessed spectra of yellow Maca with soy (A), yellow Maca with maize (B), Red Maca with 
soy (C), Red Maca with maize (D), Black Maca with soy (E) and Black Maca with maize (F), at different 
concentrations.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10426  | https://doi.org/10.1038/s41598-024-61220-1

www.nature.com/scientificreports/

Classification of soy and maize in yellow Maca
From Fig. 4(A) and (B), all the different concentration levels were classified and well separated for the discrimina-
tion of 0, 10, 20, 30, 40, and 50% w/w soy (Fig. 4A) and 0, 10, 20, 30, 40, and 50% w/w maize (Fig. 4B) in yellow 
maca although slight overlaps could be observed. In all cases, pure yellow maca was distinctively separated from 
the adulterated maca samples.

From Fig. 4(C), model performance parameters for the classification of soy in yellow maca powder showed 
that sensitivity, specificity and precision were all 1 (100%, optimum) except for the classification of 30% adul-
terated samples which had a sensitivity of 0.67 and 40% adulterated which had a precision of 0.75. Sensitivity, 
specificity and precision were all 1 (100%, optimum) for the model developed to classify 0, 10, 20, 30, 40, and 
50% w/w maize.

Overall, there was an average recognition accuracy of 100% and prediction accuracy of 96.33% for the dis-
crimination of 0,10, 20, 30, 40, and 50% w/w soy in yellow Maca (Fig. 4A). Concentrations, 0, 10, 20, 30, 40, and 
50% w/w soy could all be classified with 100% correct accuracy after cross-validation. Confusion matrices can 
be viewed in the supplementary sheet Table S3.

For the detection of maize adulteration in yellow Maca, there was an overall average recognition accuracy of 
100% and prediction accuracy of 95.23% for the discrimination of 0, 10, 20, 30, 40, and 50% w/w maize in yellow 
Maca (Fig. 4B). All the different concentrations of Maca could be classified with 100% correct accuracy after 
cross-validation except concentration 40% w/w which was misclassified as concentration 50% w/w. Confusion 
matrices can be viewed in the supplementary sheet Table S4.

Figure 3.   Classification of only pure Yellow, Red, and Black Maca (A), classification of Red, and Black 
containing soy and maize as adulterants (B), model performance parameters for the classification of only pure 
Yellow, Red, and Black maca (C) and model performance parameters of Yellow, Red, and Black maca containing 
soy and maize as adulterants (D).
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Generally, 0, 10, 20, 30, 40, and 50% w/w maize in yellow Maca could be classified with higher accuracy 
compared to 0, 10, 20, 30, 40, and 50% w/w soy in yellow Maca. The classification accuracies in the confusion 
matrixes confirmed the overlaps observed in the plot.

Red maca adulteration
From Fig. 5, some overlapping could be observed in both plots for the discrimination of 0, 10, 20, 30, 40, and 
50% w/w soy (Fig. 5A) and 0, 10, 20, 30, 40, and 50% w/w maize (Fig. 5B) in red Maca. The overlapping was 
more pronounced in Fig. 5(B) than in Fig. 5(A). Similar chemical constituents between maize and red Maca 
compositions could lead to overlapping clusters in the PCA plot. If the chemical profiles of maize and red Maca 
are more similar compared to soy and red Maca, it can result in less distinct separation between the adulterated 
red Maca with maize concentrations. In all cases, however, pure red Maca was distinctly separated from the 
adulterated red Maca samples. From Figs. 5(C) and (D), sensitivity, specificity and precision were all above 0.67. 
Lower concentrations of 0, 10, and 20% w/w/ adulterants had optimum sensitivity, specificity and precision of 1.

Overall, there was an average recognition accuracy of 93.52% and prediction accuracy of 88.94% for the 
discrimination of 0, 10, 20, 30, 40, and 50% w/w soy in red Maca (Table S5). Only pure red Maca (0% w/w) and 
10% w/w soy in red Maca could be classified with 100% correct accuracy after cross-validation. All the other maca 
concentrations showed misclassifications. Confusion matrices can be viewed in the supplementary sheet Table S5.

For the detection of maize adulteration in red Maca, there was an overall average recognition accuracy of 
96.30% and a prediction accuracy of 88.94% for the discrimination of 0, 10, 20, 30, 40, and 50% w/w maize in 
yellow Maca (Fig. 5B). Thus in average, 88.94% of the instances belonging to each class of concentrations were 
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Figure 4.   Classification plot for the discrimination of 0, 10, 20, 30, 40, and 50% w/w soy (A) and 0, 10, 20, 30, 
40, and 50% w/w maize (B) in yellow Maca and and model performance parameters for the classification of soy 
in yellow Maca (C).
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correctly classified.Only pure red Maca (0% w/w) and 20, 40, and 50% w/w soy in red maca could be classified 
with 100% correct accuracy after cross-validation. All the other Maca concentrations showed misclassifications. 
Confusion matrices can be viewed in the supplementary sheet Table S6.

Generally, 0, 10, 20, 30, 40, and 50% w/w maize in red maca could be classified with higher accuracy compared 
to 0, 10, 20, 30, 40, and 50% w/w soy in red Maca. The misclassification accuracies in the confusion matrixes 
confirmed the overlapping observed in the plot. And this could be due to the much distinct similarity in the 
chemical composition of the various Maca types. The high accuracy suggests that the LDA model was effective in 
distinguishing between the different concentrations of adulterated Maca varieties and making correct predictions.

Black maca adulteration
From Fig. 6(A), all the different concentrations of 0, 10, 20, 30, 40, and 50% w/w soy in black Maca could be 
distinctively visualized. Some overlapping could, however, be observed in Fig. 6(B) for 0, 10, 20, 30, 40, and 50% 
w/w maize in black Maca. Overlapping was more pronounced in Fig. 6(B) than in Fig. 6(A). In all cases, how-
ever, pure red Maca was distinctly separated from the adulterated red Maca samples. From Fig. 6(C) and (D), 
sensitivity, specificity and precision were all above 0.67. Better model parameters were achieved for the model 
developed to classify maize in black than the one developed to classify soy.

Overall, there was an average recognition accuracy of 99.08% and prediction accuracy of 94.44% for the 
discrimination of 0,10, 20, 30, 40, and 50% w/w soy in red Maca (Fig. 6A). Only pure red Maca (0% w/w) and 
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Figure 5.   Classification plot for the discrimination of 0, 10, 20, 30, 40, and 50% w/w soy (A) and 0, 10, 20, 30, 
40, and 50% w/w maize (B) in red Maca, model performance parameters for the classification of soy (C) and 
maize (D) in red maca.
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10, 40, and 50% w/w soy in red maca could be classified with 100% correct accuracy after cross-validation. 
Concentrations 20 and 30%w/w soy showed some misclassification. Confusion matrices can be viewed in the 
supplementary sheet Table S7.

For the detection of maize adulteration in black Maca, there was an overall average recognition accuracy of 
accuracy of 100% and prediction accuracy of 98.16%. For the discrimination of 0, 10, 20, 30, 40, and 50% w/w 
maize in yellow Maca (Fig. 6B). Pure black Maca (0% w/w) and all the other concentrations could be classified 
with 100% correct accuracy after cross-validation except for concentration 40% w/w soy in black Maca. Confu-
sion matrices can be viewed in the supplementary sheet Table S8.

Generally, 0, 10, 20, 30, 40, and 50% w/w maize in black Maca could be classified with higher accuracy com-
pared to 0, 10, 20, 30, 40, and 50% w/w soy in black Maca.

All LDA classification results with adulterants (maize, soybean), regardless of Maca color, show a similar 
pattern with work by31, who coupled NIRS with chemometric techniques in the detection of radish and turnip 
powder adulteration in Maca. When discriminant analysis was performed, a 100% classification accuracy was 
achieved in this study. Though the color of the adulterated Maca was not specified, the classification accuracies 
obtained conferred on NIRS-LDA as very accurate in discriminating pure Maca from adulterated.
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Figure 6.   Classification plot for the discrimination of 0, 10, 20, 30, 40, and 50% w/w soy (A) and 0, 10, 20, 30, 
40, and 50% w/w maize (B) in black Maca and model performance parameters for the classification of soy (C) 
and maize (D) in black maca.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10426  | https://doi.org/10.1038/s41598-024-61220-1

www.nature.com/scientificreports/

PLSR results of NIRS analysis
PLSR results of NIRS analysis on pure maca
Table 1 shows the best pretreatment results which were obtained from the different pretreatment combinations 
on the raw spectra for the prediction of pure Maca.

After all the tested 18 pretreatments, Savitzky-Golay smoothing with filters 17 and 19 yielded the best accu-
racy for predicting pure Maca with an R2

CV of 0.9528 respectively and RMSECV of 6.81 w/w pure Maca powder 
respectively (Fig. 7).

The R2 value is a ratio, which represents the coefficient of determination of the calibration model32, and is 
always preferred to be close to 1, which indicates that a good model is produced. The farther it is away from one 
indicates that is a poor model or not robust. This applies to both the training and cross-validation data sets. RMSE 
represents the root mean square errors that occur during data processing. The lower the RMSE, the better the 
model because it indicates the stability of the training and cross-validation model. Higher RMSEs indicate that 
many errors occurred during data processing and hence the formation of a bad model33. RDP represents the ratio 
of deviation of performance of the model. RDP presents a good model when values are close to 3 or greater34. 
RPDs for all the models in our study were greater than 3. The preferred model was chosen depending on these 
three main parameters, choosing the pretreatment method that provided the lowest RMSE for both training 
and cross-validation data while at the same time giving the highest R2 value. The model built for predicting and 
cross-validating Maca adulteration with soy recorded higher precision of R2

CV and lower RMSEC than that for 
predicting and cross-validating Maca adulteration with maize. From the different pre-treatments liaised with 
PLSR, it was easier to detect, predict, and cross-validate adulteration of soy in the various forms of Maca than 
detecting maize in the three forms of Maca. Overall, the best model which produced the least RMSEC, RMSECV, 
and RPD while producing the highest R2 and R2

CV was taken into consideration. This was the model achieved 
with Savitzky-Golay smoothing pretreatment (filters 17 and 19).

Conclusion
When only pure yellow, red, and black Maca were discriminated against, there was an average recognition 
accuracy of 96.38% and prediction accuracy of 94.12%. Lower average recognition of 74.10% and an average 
prediction of 65.53% were obtained for discriminating the different Maca cultivars containing adulterants. From 
the different pre-treatments liaised with PLSR, it was easier to detect, predict, and cross-validate adulteration 
of soy in the various forms of Maca than detecting maize in the three forms of Maca. Overall, the best model 
which produced the least RMSEC, RMSECV, and RPD while producing the highest R2 and R2

CV was taken into 
consideration. This was the model achieved with Savitzky-Golay smoothing pretreatment (filters 17 and 19). 
Other pretreatment techniques could also be tested in further studies. The study proved the potential of NIR 
spectroscopy combined with chemometric analysis for the authenticity and quality control of Maca powder prod-
ucts. Larger sample sizes may be tested for deeper industrial application if required. Plastic bags with properties 
that are similar to LDPE bags could so be tested in the future.

Table 1.   Partial least square regression values obtained from the best pre-treatment combinations on the raw 
spectra for the prediction of pure maca using leave-one-sample-out cross-validation at a wavelength range of 
950–1500 nm. R2, R2

CV, Coefficient of determination of model building and validation. RMSE, RMSECV, Root 
mean square error of calibration and validation.

Preprocessing R2 RMSE(%w/w) R2
CV RMSECV(%w/w) RDP

sgol@2–17-0 0.959 6.273 0.952 6.811 4.602

sgol@2–19-0 0.959 6.277 0.952 6.812 4.602

sgol@2–17-0_snv 0.935 8.160 0.922 8.938 3.613

sgol@2–19-0_snv 0.933 8.227 0.920 8.990 3.557

sgol@2–17-0_msc 0.929 8.414 0.916 9.151 3.459

sgol@2–19-0_msc 0.928 8.428 0.916 9.162 3.455

sgol@2–17-0_deTr 0.948 7.098 0.938 7.771 4.026

sgol@2–19-0_deTr 0.947 7.151 0.937 7.808 3.996

sgol@2–17-0_deTr_snv 0.935 8.015 0.923 8.720 3.588

sgol@2–19-0_deTr_snv 0.934 8.025 0.923 8.716 3.612

sgol@2–17-0_deTr_msc 0.931 8.228 0.920 8.910 3.544

sgol@2–19-0_deTr_msc 0.932 8.219 0.920 8.886 3.554

sgol@2–19-0_sgol@2–19-1 0.944 7.294 0.934 7.940 3.916

sgol@2–19-0_sgol@2–19-2 0.951 7.086 0.939 7.883 4.086

sgol@2–17-0_sgol@2–17-1 0.945 7.228 0.934 7.913 3.918

sgol@2–17-0_sgol@2–17-2 0.949 7.190 0.935 8.109 3.953

sgol@2–19-0_sgol@2–19 1_deTr 0.942 7.654 0.931 8.345 3.816

sgol@2–17-0_sgol@2–17-1_deTr 0.952 7.026 0.943 7.658 4.197



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10426  | https://doi.org/10.1038/s41598-024-61220-1

www.nature.com/scientificreports/

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
The underlying code for this study [and training/validation datasets] is not publicly available for proprietary 
reasons.

Received: 8 February 2024; Accepted: 2 May 2024

References
	 1.	 Loyer, J. The social lives of superfoods. Soc. Sci. Res. 60, 45–60 (2016).
	 2.	 Wootton-Beard, P. C. & Ryan, L. Improving public health?: The role of antioxidant-rich fruit and vegetable beverages. Food Res. 

Int. 44, 3135–3148 (2011).
	 3.	 Tafuri, S. et al. Chemical analysis of Lepidium meyenii (Maca) and its effects on redox status and on reproductive biology in stal-

lions (†). Molecules 24, 1981 (2019).
	 4.	 Stojanovska, L. et al. Maca reduces blood pressure and depression, in a pilot study in postmenopausal women. Climacteric 18, 

69–78 (2014).
	 5.	 Mehta, K. et al. Comparison of glucosamine sulfate and a polyherbal supplement for the relief of osteoarthritis of the knee: a 

randomized controlled trial [ISRCTN25438351]. BMC Complement. Altern. Med. 7, 34 (2007).
	 6.	 Chen, J.-J., Zhao, Q.-S., Liu, Y.-L., Zha, S.-H. & Zhao, B. Identification of maca (Lepidium meyenii Walp.) and its adulterants by a 

DNA-barcoding approach based on the ITS sequence. Chin. J. Nat. Med. 13, 653–659 (2015).
	 7.	 Zhou, Y. et al. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the 

neuroprotective study on its active ingredients. Sci. Rep. 7, 44660 (2017).
	 8.	 Yang, S., Sun, X., Gao, Y. & Chen, R. Differentiation of Lepidium meyenii (Maca) from different origins by electrospray ionization 

mass spectrometry with principal component analysis. ACS Omega 4, 16493–16500 (2019).
	 9.	 He, Y. et al. Authentication of the geographical origin of Maca (Lepidium meyenii Walp.) at different regional scales using the stable 

isotope ratio and mineral elemental fingerprints. Food Chem. 311, 126058 (2020).
	10.	 Pan, Y., Zhang, J., Li, H., Wang, Y.-Z. & Li, W.-Y. Characteristic fingerprinting based on macamides for discrimination of maca 

(Lepidium meyenii) by LC/MS/MS and multivariate statistical analysis. J. Sci. Food Agric. 96, 4475–4483 (2016).
	11.	 Karoui, R. Food authenticity and fraud. Chemical Analysis of Food 579–608 at https://​doi.​org/​10.​1016/​b978-0-​12-​813266-​1.​00013-9 

(2020).
	12.	 Raypah, M. E. et al. Integration of near-infrared spectroscopy and aquaphotomics for discrimination of cultured cancerous cells 

using phenol red. Chemom. Intell. Lab. Syst. 227, 104611 (2022).
	13.	 Wang, Z., Ren, P., Wu, Y. & He, Q. Recent advances in analytical techniques for the detection of adulteration and authenticity of 

bee products – A review. Food Addit. & Contam. Part A 38, 533–549 (2021).
	14.	 Mendes, E. & Duarte, N. Mid-infrared spectroscopy as a valuable tool to tackle food analysis: A literature review on coffee, dairies, 

honey, olive oil and wine. Foods (Basel, Switzerland) 10, 477 (2021).

Figure 7.   Optimized (Savitzky-Golay smoothing with filter) PLSR plot for predicting soy and maize 
adulteration in red, yellow, and black Maca powder.

https://doi.org/10.1016/b978-0-12-813266-1.00013-9


12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10426  | https://doi.org/10.1038/s41598-024-61220-1

www.nature.com/scientificreports/

	15.	 Raypah, M. E., Zhi, L. J., Loon, L. Z. & Omar, A. F. Near-infrared spectroscopy with chemometrics for identification and quanti-
fication of adulteration in high-quality stingless bee honey. Chemom. Intell. Lab. Syst. 224, 104540 (2022).

	16.	 Tan, S. H. et al. Physicochemical analysis and adulteration detection in Malaysia stingless bee honey using a handheld near-infrared 
spectrometer. J. Food Process. Preserv. https://​doi.​org/​10.​1111/​jfpp.​15576 (2021).

	17.	 Zeng, M.-N. & Zheng, S.-Y. Near infrared spectroscopy combined with chemometrics to detect and quantify adulteration of maca 
powder. J. Near Infrared Spectrosc. 29, 108–115 (2021).

	18.	 De Carvalho Rodrigues, H., Da Silva Paulino, H. F., Valderrama, P. & Março, P. H. The use of chemometrics to discriminate sample 
adulteration in different levels: The case of peruvian maca. Brazilian J. Anal. Chem. 8, 107–115 (2021).

	19.	 Wu, X., Chen, W., Li, L., Xu, B. & Guo, Y. Qualitative Identification and Semi-Quantitative Comparison of Sucrose in Maca 
(Lepidium meyenii) by Infrared Spectrum Analysis. Am. J. Anal. Chem. 09, 322–329 (2018).

	20.	 Ballabio, D. & Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 5, 3790–3798 (2013).
	21.	 Allegrini, F. & Olivieri, A. C. IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Anal. Chem. 

86, 7858–7866 (2014).
	22.	 Lukacs, M. et al. Near infrared spectroscopy as an alternative quick method for simultaneous detection of multiple adulterants in 

whey protein-based sports supplement. Food Control 94, 331–340 (2018).
	23.	 Joe, A. A. F. & Gopal, A. Identification of spectral regions of the key components in the near infrared spectrum of wheat grain. 

2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT) at https://​doi.​org/​10.​1109/​iccpct.​2017.​
80742​07 (2017).

	24.	 Wilde, A. S., Haughey, S. A., Galvin-King, P. & Elliott, C. T. The feasibility of applying NIR and FT-IR fingerprinting to detect 
adulteration in black pepper. Food Control 100, 1–7 (2019).

	25.	 Basri, K. N. et al. Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochim Acta Part 
A Mol. Biomol. Spectrosc. 173, 335–342 (2017).

	26.	 Sohn, S.-I. et al. Identification of amaranthus species using visible-near-infrared (Vis-NIR) spectroscopy and machine learning 
methods. Remote Sens. 13, 4149 (2021).

	27.	 Lohumi, S. et al. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. J. Agric. Food Chem. 62, 
9246–9251 (2014).

	28.	 Zhang, L., Li, G., Wang, S., Yao, W. & Zhu, F. Physicochemical properties of maca starch. Food Chem. 218, 56–63 (2017).
	29.	 Gonzales-Arimborgo, C. et al. Acceptability, safety, and efficacy of oral administration of extracts of black or red maca (Lepidium 

meyenii) in adult human subjects: A randomized, double-blind, placebo-controlled study. Pharmaceuticals (Basel). 9, 49 (2016).
	30.	 He, Y. et al. Detection of adulteration in food based on nondestructive analysis techniques: a review. Crit. Rev. Food Sci. Nutr. 61, 

2351–2371 (2020).
	31.	 Zeng, M.-N. & Zheng, S.-Y. Near infrared spectroscopy combined with chemometrics to detect and quantify adulteration of maca 

powder. J. Near Infrared Spectrosc. 29, 108–115 (2020).
	32.	 Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986).
	33.	 Karlinasari, L. et al. Discrimination and determination of extractive content of ebony (Diospyros celebica Bakh) from celebes island 

by near-infrared spectroscopy. Forests 12, 6 (2020).
	34.	 Brereton, R. G. & Lloyd, G. R. Partial least squares discriminant analysis: taking the magic away. J. Chemom. 28, 213–225 (2014).

Author contributions
JLZZ: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Resources, Data 
Curation, Writing – review and editing, Visualization, Supervision, Project Administration. ZSA: Conceptual-
ization, Methodology, Validation, Formal Analysis, Investigation, Resources, Data Curation, Writing – review 
and editing, Visualization, NMD: Conceptualization, Methodology, Investigation, Resources, Data Curation, 
Writing – original draft preparation, Writing – review and editing, Funding Acquisition ETM: Methodology, 
Validation, Formal Analysis, Investigation, Resources, Data Curation, Writing – review and editing, Visualiza-
tion, Donald Bimpong: Methodology, Validation, Formal Analysis, Investigation, Resources, Data Curation, 
Writing – review and editing, Visualization, LAM: Methodology, Validation, Formal Analysis, Investigation, 
Resources, Data Curation, Writing – review and editing, Visualization,

Competing interests 
The authors state that they have no known conflicting financial interests or personal ties that may have seemed 
to affect the work presented in this study.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​61220-1.

Correspondence and requests for materials should be addressed to J.-L.Z.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1111/jfpp.15576
https://doi.org/10.1109/iccpct.2017.8074207
https://doi.org/10.1109/iccpct.2017.8074207
https://doi.org/10.1038/s41598-024-61220-1
https://doi.org/10.1038/s41598-024-61220-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Non-invasive prediction of maca powder adulteration using a pocket-sized spectrophotometer and machine learning techniques
	Materials and methods
	Sample acquisition
	Sample preparation
	NIRS measurements
	Spectral analysis
	Linear discriminant analysis (LDA)
	Partial least square regression (PLSR)

	Ethical approval

	Results and discussion
	Spectral assessment
	Classification results
	Classification of red, black, and yellow Maca types
	Classification of soy and maize in yellow Maca
	Red maca adulteration
	Black maca adulteration

	PLSR results of NIRS analysis
	PLSR results of NIRS analysis on pure maca


	Conclusion
	References


