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Glaucoma detection using 
non‑perfused areas in OCTA​
Julia Schottenhamml 1,2*, Tobias Würfl 2, Stefan Ploner 2, Lennart Husvogt 2, 
Robert Lämmer 1, Bettina Hohberger 1, Andreas Maier 2 & Christian Mardin 1

Multiple ophthalmic diseases lead to decreased capillary perfusion that can be visualized using optical 
coherence tomography angiography images. To quantify the decrease in perfusion, past studies 
have often used the vessel density, which is the percentage of vessel pixels in the image. However, 
this method is often not sensitive enough to detect subtle changes in early pathology. More recent 
methods are based on quantifying non-perfused or intercapillary areas between the vessels. These 
methods rely upon the accuracy of vessel segmentation, which is a challenging task and therefore 
a limiting factor for reliability. Intercapillary areas computed from perfusion-distance measures are 
less sensitive to errors in the vessel segmentation since the distance to the next vessel is only slightly 
changing if gaps are present in the segmentation. We present a novel method for distinguishing 
between glaucoma patients and healthy controls based on features computed from the probability 
density function of these perfusion-distance areas. The proposed approach is evaluated on different 
capillary plexuses and outperforms previously proposed methods that use handcrafted features for 
classification. Moreover the results of the proposed method are in the same range as the ones of 
convolutional neural networks trained on the raw input images and is therefore a computationally 
efficient, simple to implement and explainable alternative to deep learning-based approaches.

Optical coherence tomography (OCT)1 is a non-invasive, three-dimensional imaging technique that allows 
in-vivo visualization of tissue on a micrometer scale. OCT angiography (OCTA), an extension of OCT, can 
display blood vessels by visualizing signal changes caused by moving particles, in this case erythrocytes in the 
blood. Since OCTA is computed from OCT scans, it shares the same positive properties as OCT as an imaging 
technique. Because of these characteristics, OCT and OCTA are in widespread use in ophthalmic settings, where 
their depth resolution enables separate analysis of the retinal plexuses. This enables new possibilities to study 
disease pathogenesis and progression and aid in the diagnosis, since previous ophthalmic imaging modalities 
were limited to two-dimensional images, where deeper plexuses are either merged with more superficial ones, 
or not visible at all.

An eye disease that attracts continued attention in ophthalmology is glaucoma. This group of neurodegen-
erative eye diseases manifests by a degeneration of retinal ganglion cells in the peripapillary retinal nerve fibre 
layer and specific alterations of the optic disc. Glaucoma is among the leading causes of irreversible blindness 
worldwide2. However, the onset and progression can be slowed down or even stopped if diagnosed and treated 
early enough. Up to this date, the pathogenesis of glaucoma is not completely understood. Since glaucoma 
manifests in these structural changes of the retinal tissue, most of the research focuses on detection and quan-
tification of structural alterations in OCT scans. Recent studies found a link between the onset and progression 
of glaucoma and reduced ocular blood flow3–5.

This reduced blood flow can be visualized using OCTA. A widely used biomarker is the vessel density (VD), 
which has been extensively studied in different regions and plexuses with varying degrees of success6–12. Schot-
tenhamml et al.13 demonstrated that it is possible to use small 3× 3 mm macular scans to distinguish glaucoma 
patients and healthy controls. They showed that deep learning methods can achieve state-of-the-art perfor-
mance and outperform classical features like the vessel density. However, deep learning methods are black-box 
approaches and the features computed by neural networks are challenging to interpret for humans. In order to 
study the areas that the network uses to detect glaucoma, the authors used attention maps14 to highlight areas in 
the image that influence the decision of the network for disease classification. Their visual results indicated that 
the network concentrates on areas with a reduced perfusion. This observation implies that these regions are a 
very good biomarker for detecting glaucoma but that the VD is not sensitive enough to detect smaller changes.
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A more sensitive feature that can be used to measure reduced vascular perfusion are non-perfused or inter-
capillary areas which have been investigated in other retinal diseases15–17. These approaches quantify the areas 
between the vessels. This is assumed to be more sensitive since even if only some small vessels are not visible on 
OCTA images anymore, the area of these non-perfused areas can change notably, while the vessel density will 
not be influenced as much. However, in order to quantify intercapillary areas, a very accurate segmentation of 
the vascular network is needed, because small errors and gaps in the segmentation will affect the results in an 
equally strong manner.

A more robust alternative to using intercapillary areas is the usage of the perfusion distance. This approach 
computes the distance from any pixel to its next vessel pixel and is consequently not as sensitive to smaller errors 
in the vessel segmentation. Lauermann et al.18 found a statistically significant difference in this length between 
patients suffering from diverse ischemic diseases and a healthy control group. Chen et al.19 transformed these 
perfusion distances into perfusion deficit areas by thresholding all pixel that are further away from the next vessel 
pixel than a pre-defined distance. Afterwards they used these areas to compute the geometric perfusion deficit 
percentage, which is the total perfusion deficit area divided by a total reference area and showed a statistically 
significant difference of this metric between diabetic retinopathy patients and healthy controls.

However, all these more sensitive features have never been evaluated for the task of distinguishing glaucoma 
patients from a healthy control group.

We propose novel features based on the probability density function of the perfusion deficit areas computed 
from the perfusion distance. We train a support vector machine (SVM) to distinguish between glaucoma patients 
and a healthy control group and show that it outperforms other handcrafted features like the vessel density, 
intercapillary areas and the geometric perfusion deficit percentage. Moreover, the results of a convolutional 
neural network are in the same range as the presented method, making the proposed features a computationally 
efficient, simple to implement, and explainable alternative.

Methods
Our proposed method computes features of the probability density function of the intercapillary or non-perfused 
areas based on the perfusion distance instead of the vessel segmentation directly, which makes the approach 
more robust. An algorithmic overview of the steps and related methods is given in  Fig. 1.

In a first step, the histogram of the input image is matched with the histogram of a reference image. As refer-
ence image, a good-quality scan of a healthy volunteer without artifacts was chosen. This compensates for possibly 
different illumination in the acquisitions and facilitates further processing steps since the same hyperparameters 
fit better on different scans. Afterwards the image is contrast enhanced using a contrast limiting adaptive histo-
gram equalization (CLAHE). In order to highlight the vessel structure, a Frangi vesselness filter is employed and 
the image is subsequently binarized using hysteresis thresholding. The vessel segmentation is post-processed by 
using morpholocial operations to fill small holes and bridge gaps.

From this binary vessel map, the vessel density (VD) can directly be computed as the ratio of vessel pixels to 
the total sum of pixels in the image. Moreover, the intercapillary or non-perfused areas can be determined. To 
this end, the image is inverted and the connected components are identified. Each connected component then 
resembles one intercapillary or non-perfused area.

Our method uses the segmentation to first create a perfusion distance map. It is computed as the Euclidean 
distance transform of the segmentation using the efficient algorithm of Maurer et al.20. Each pixel now has the 
value of the Euclidean distance to the next vessel pixel and can be used to obtain the perfusion distance values 
as used by Lauermann et al.18.

The resulting perfusion distance map can be binarized by only keeping pixels that have a higher distance than 
a given threshold and setting all other pixels to zero, leading to the perfusion deficit areas. This binarized map 
can be used to compute the geometric perfusion deficit area percentage by computing the ratio of the perfusion 
deficit area pixels to all the pixels in the reference area as described by Chen et al.19.

We propose to determine individual perfusion deficit areas, as in the case of the intercapillary areas, by 
identifying connected components. Again, each connected component contains the information for one perfu-
sion deficit area. We compute the area of these regions and summarize them by a probability density function. 
Subsequently, this distribution can be represented by features like the maximum, mean, standard deviation or 
kurtosis. This approach is depicted for a healthy control and a glaucoma patient in Fig. 2.

The proposed algorithm can be expected to be more sensitive to smaller changes than the vessel density 
since the perfusion distance areas directly increase when vessels are not visible on OCTA images anymore due 
to a reduced perfusion. Moreover, by using the perfusion distance map and computing the areas from that, it 
should simultaneously be more robust than the intercapillary areas computed directly from the vessel segmen-
tation, because the influence of segmentation errors is reduced. This is illustrated in  Fig. 3. Since the proposed 
features describe the probability density function of area of diffusion deficit to a certain extent, this should also 
theoretically contain more information than the geometric perfusion deficit percentage, which combines this 
information into a single value.

Evaluation
In order to evaluate the performance of the proposed features, they were used to distinguish between glaucoma 
patients and a healthy control group. The results were compared to methods using the vessel density, the inter-
capillary areas, the perfusion distances, the geometric perfusion deficit percentage and convolutional neural 
networks in a five-fold cross validation for four different retinal OCTA projections.
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Data
352 eyes of 244 patients of the Department of Ophthalmology, University of Erlangen-Nürnberg and the Erlanger 
Glaucoma Registry (Erlangen Glaucoma Registry, ISSN 2191-5008, CS-2011; NTC00494923) were recruited for 
the present study: 154 eyes from 110 healthy control subjects and 198 eyes from 132 glaucoma patients.

All subjects received a standardized ophthalmological examination including fundus photography, standard 
white-on-white full-field perimetry (Octopus 500, G1 protocol, Interzeag, Schlieren, Switzerland) and measure-
ment of intraocular pressure (IOP) by Goldmann applanations tonometry. The latter was measured twice and 
corrected for the central corneal thickness (CCT) according to Kohlhaas et al.21. CCT was measured using the 
central ultrasonic pachymetry (Pachymeter SP-100)).

The patients in each group were selected based on the following inclusion criteria. The control cohort was 
defined as eyes showing no systemic disease with ophthalmological involvement or ophthalmological dysfunction 

Figure 1.   Visualization of the algorithmic workflow. A vessel segmentation is obtained by matching the 
histogram of the input image to the one of a reference image and equalizing the resulting histogram followed by 
a Frangi vesselness filter and a subsequent hysteresis thresholding operation. From this segmentation the vessel 
density can be directly computed as relative frequency. Moreover the intercapillary areas can be obtained by 
identifying the connected components. For the proposed method, a perfusion distance map is computed from 
which the perfusion distance values can be obtained. This perfusion distance map is subsequently binarized. 
From these binarized perfusion deficit areas, the geometric perfusion deficit percentage can be calculated. 
Moreover, the distinct perfusion deficit areas can be identified using connected components. Information about 
those regions can be summarized using features of the probability density function of their areas.
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neither having had any ophthalmic surgery. The glaucoma data consisted of 47 eyes from glaucoma suspects 
and 151 eyes from glaucoma patients. Glaucoma suspects were defined as having a normal visual field, and an 
elevated IOP (above 21 mmHg, ocular hypertension, OHT) or showed additiv glaucomatous optic disc damage 
classified by Jonas et al.22 (pre-perimetric glaucoma). Glaucoma patients showed perimetric field defects and 
alterations of the optic nerve head according to Jonas22. This group was further subdivided into 116 eyes from 
patients having an elevated IOP (above 21 mmHg) and 35 eyes from those not having an increased IOP (normal 
tension glaucoma). Exclusion criteria were an age below 18 years and any further eye disorders and/or systematic 
disorders with ocular involvement at the time of enrolement.

Figure 2.   The first row shows the input OCTA image of a healthy control on the left and a glaucoma patient 
on the right, while the middle row visualizes the corresponding identified perfusion deficit areas overlayed over 
these scans. The last row presents the histogram of the logarithm of the area of the perfusion deficit areas.
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From the eyes of the control cohort, 70 were male and 84 were female with an average age of 63,38 ± 13,10 
years. The glaucomatous eyes consisted of 104 male and 94 female eyes with an average age of 65,04 ± 11,69 
years. The visual field testing yielded a mean defect of 2.04± 1.96 dB and a loss variance of 6.52± 8.60 dB

2 for 
the glaucoma suspects, 7.33± 4.71 dB and 50.39± 40.72 dB

2 for the normal tension glaucoma group and of 
8.36± 5.89 dB and 38.60± 30.64 dB

2 for the rest.
En face OCTA imaging was done using Heidelberg Spectralis II OCT (Heidelberg, Germany). Images were 

recorded with a 15×15◦ angle and a lateral resolution of 5.7 µm/pixel, resulting in a retinal section of ∼3× 3 mm . 
Acquisitions consisted of 512 A-scans per B-scan and 512 consecutive B-scans in the macular region. OCTA en 
face projections of the superficial vascular plexus (SVP), the intermediate capillary plexus (ICP), deep capillary 
plexus (DCP), and the whole retina (retina = SVP + ICP + DCP) were automatically segmented and computed 
using the manufacturer’s software (Heidelberg Eye Explorer Version 1.12.1.0). All images were visually reviewed 
by an ophthalmology expert who excluded images that the expert considered to be of insufficient quality for 
use in clinical routine.

The study has been approved by the ethics committee of the university of Erlangen-Nuremberg and performed 
in accordance to the tenets of the Declaration of Helsinki. Informed written consent was obtained from each 
participant.

This data was split into 60% training set, 20% validation set and 20% test set, with all eyes from one patient 
belonging exclusively to only one set. This leads to a distribution of approximately 211 projections in the training, 
71 in the validation and 71 in the test set.

Experiments
For the vessel density, intercapillary area and perfusion distance methods, features were extracted and a support 
vector machine (SVM) was trained on these features. The vessel density (VD) and the geometric perfusion deficit 

Figure 3.   Visualization of the influence of segmentation errors on the intercapillary areas and the perfusion 
distance. In this example when the segmentation is correct, there are two distinct intercapillary areas. However, 
even if there are only small errors, both distinct areas merge to one with a much larger area. This will distort 
the features computed from these areas. In contrast to that, the perfusion distance is barely influenced by small 
segmentation errors.
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percentage (GPDP) are scalar values and were used as the sole inputs to the SVMs. In case of perfusion distances 
(PD) the maximum, mean, standard deviation and kurtosis of their distribution were computed and these four 
features used as input to the SVM. For the intercapillary areas (IA) and the perfusion deficit areas (PDA) the area, 
measured in pixel, for each identified connected component was measured and the same four features as for the 
PD of their distribution computed and used as input for the SVM. An overview of the different features used per 
method is given in Table 1. Different SVM hyperparameter settings were trained on the training set and their 
performance evaluated on the validation set. As a performance measure, the area under the receiver operating 
characteristics (AUROC) and the F1-score were used. For parameter selection, the SVM setup that yielded the 
highest AUROC metric on the validation set was chosen for the final evaluation on the test set.

For the convolutional neural network (CNN) no features needed to be extracted as the network learns them 
automatically. As architecture a DenseNet16123 and a WideResNet-101-224 were chosen for the retina, SVP, DCP 
and the ICP projection respectively since Schottenhamml et al.13 evaluated in their paper that these architectures 
performed best from their evaluated architectures on 3× 3 mm en face projections acquired with a Heidel-
berg Spectralis II OCT. Also the training parameters were chosen as described in their paper. As for the other 
approaches, the network was first trained on the training set and then evaluated on the validation and test sets 
with the AUROC as performance metric.

In this study, a five-fold cross validation was performed, where it was made sure that the eyes of one patient 
exclusively belonged to one set and were not split across sets. Consequently, each eye belonged once to the vali-
dation and once to the test set. Moreover, each capillary plexus (SVP, ICP and DCP) and the retina projection 
(Retina) were evaluated separately since they can be affected differently by the disease.

Results
The performance, as measured with the AUROC and F1-scores, for each fold and the mean over all folds of the 
five-fold cross validation for the different methods and plexuses on the test set are shown in  Table 2. It shows that 
for most plexuses, the CNN shows the best performance closely followed by our proposed approach using the 
perfusion deficite areas. In the ICP our proposed method yields even higher AUROC and F1-scores. However, 
our proposed method has the highest scores among the handcrafted features. The worst performance over all 
plexuses is shown by the intercapillary areas approach, followed by the vessel density. Also the F1-scores show 
for most cases the same tendency as the AUROC values.

Discussion
The weak performance of the intercapillary areas approach can be explained by limitations of the segmentation 
algorithm when applied to our data. As can be seen in  Fig. 1 the segmentation of the vascular network shows 
several gaps and the resulting non-perfused areas are very large, combining regions that are very likely multiple 
intercapillary areas in reality. Consequently the features computed from these areas are distorted and do not 
reflect pathologic changes very well. These results demonstrate the low robustness of the algorithm and the need 
for a very accurate segmentation in order to yield meaningful results. The segmentation algorithm used in this 
paper is rather basic and the segmentation results can probably be improved by using e.g. neural networks to 
perform this task. This however, would lead to a need for sufficient training data for a segmentation network 
which is very time-consuming and labour-intensive. Moreover, even though the segmentation can be improved, 
even neural networks will likely not provide a sufficiently accurate segmentation. So the problem with errors in 
the segmentation could be reduced but not completely eliminated.

The results of the SVM trained on the vessel density are in the same range as reported in the paper by Schot-
tenhamml et al.13. This approach is able to detect changes between glaucoma patients and the healthy control 
group, however it is not very sensitive to smaller changes in early stages of the disease. But it is more robust and 
less influenced by segmentation errors than the intercapillary areas, leading to a better performance than the IA 
approach. Since the vessel density is the fraction of vessel pixel in a projection and it can be assumed that en face 
projections from healthy controls are affected in the same way as projections from glaucoma patients by segmen-
tation errors, the overall performance of this feature will probably not increase much with a better segmentation.

The SVMs trained on the perfusion distance features and the geometric perfusion deficit percentage show 
similar results and occupy the third and fourth places. They are performing better than the aforementioned 
features and are apparently more sensitive to smaller changes in the pathology while being more robust to 
segmentation errors. This is to be expected as explained in  Fig. 1. However, both approaches have so far only 

Table 1.   Overview of the inputs to the classification algorithm used per method in the evaluation of this study. 
CNN convolutional neural network, VD vessel density, GPDP geometric perfusion deficite percentage, IA 
intercapillary areas, PD perfusion distance, PDA perfusion deficite areas.

Approach Input to classification

CNN Image

VD Percentage

GPDP Percentage

IA Maximum Mean Standard deviation Kurtosis

PD Maximum Mean Standard deviation Kurtosis

PDA Maximum Mean Standard deviation Kurtosis
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been evaluated for distinguishing ischemic retinal diseases (diabetic retinopathy, central and branch retinal vein 
occlusion, hypertensive retinopathy, and occlusive retinal vasculitis in sarcoidosis for the perfusion distances 
and diabetic retinopathy for the geometric perfusion deficit percentage) to a healthy control cohort and never 
for the task of distinguishing glaucoma patients from the healthy control cohort. Consequently the results from 
this study show, that both also provide acceptable biomarkers for the latter task.

Using the features of the area probability density function of the perfusion deficit areas outperforms the other 
feature-based machine learning approaches. This indicates that it is more sensitive to a decreased perfusion and 
can also pick up cases with subtler changes. Moreover, it apparently also captures more information than the 
perfusion distances and the geometric perfusion deficit percentage, both methods which also rely on the more 
robust perfusion deficit area segmentation. For the geometric perfusion deficit percentage this is not surpris-
ing, since this approach relies on the same information but condenses them into a single scalar value while the 
method presented in this study uses multiple features.

The CNN performs best which is not surprising as in many medical fields the deep learning methods are 
reported to outperform traditional machine learning approaches. However, neural networks are computation-
ally more expensive and more complicated to implement and understand. Moreover the previous study suggests 
that the CNNs also seem to focus on the non-perfused regions. Consequently, the intention of this study was to 
investigate biomarkers that capture the same regions of interest as the previously reported convolutional neu-
ral network and therefore obtain a similar performance while being computationally more efficient, simple to 
implement and more explainable in comparison to the black box approach where the internal decision making 
is not comprehensible for humans.  Figure 4 shows visual examples for regions highlighted by the Grad-CAM 
algorithm applied to the CNN and the thresholded perfusion distance maps of glaucoma patients. This com-
parison shows a close correspondence between the two approaches. Moreover, the results in  Table 2 obtained by 
the CNN and the perfusion deficit area approach presented in this study are in the same ballpark. Consequently, 
the proposed features can be an explainable alternative, since the performance is not much lower than the deep 
learning approach. This is still very relevant if the method is used as a tool for clinicians to support them in their 
decision-making process since it offers a clearer reasoning about the decision.

Table 2.   AUROC values and F1-scores for each fold and the mean over all folds of the five-fold cross 
validation for the different methods. For each plexus the methods are sorted according to their mean AUROC 
performance in descending order. The proposed features are highlighted in bold. (CNN convolutional neural 
network, PDA perfusion deficite areas, GPDP geometric perfusion deficite percentage, PD perfusion distance, 
VD vessel density, IA intercapillary areas) and plexuses (Retina retina, SVP superficial vascular plexus, ICP 
intermediate capillary plexus, DCP deep capillary plexus) on the test set.

Plexus Method

Fold1 Fold2 Fold3 Fold4 Fold5 Mean

AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Retina

CNN 0.89 0.86 0.93 0.86 0.78 0.68 0.95 0.86 0.85 0.72 0.88 0.79

PDA 0.86 0.82 0.92 0.83 0.72 0.62 0.91 0.83 0.87 0.73 0.86 0.766

GPDP 0.85 0.77 0.89 0.76 0.61 0.59 0.85 0.76 0.85 0.75 0.81 0.726

PD 0.85 0.79 0.89 0.83 0.60 0.56 0.86 0.76 0.85 0.80 0.81 0.748

VD 0.76 0.69 0.74 0.65 0.57 0.56 0.83 0.75 0.78 0.69 0.74 0.668

IA 0.67 0.63 0.58 0.58 0.58 0.51 0.66 0.56 0.69 0.58 0.64 0.572

SVP

CNN 0.96 0.85 0.92 0.82 0.90 0.79 0.94 0.89 0.95 0.86 0.93 0.842

PDA 0.93 0.89 0.90 0.81 0.86 0.78 0.94 0.87 0.92 0.82 0.91 0.834

PD 0.91 0.86 0.90 0.86 0.81 0.73 0.93 0.83 0.89 0.75 0.89 0.806

GPDP 0.88 0.79 0.91 0.80 0.75 0.65 0.92 0.79 0.89 0.79 0.87 0.764

VD 0.83 0.70 0.85 0.72 0.76 0.72 0.92 0.87 0.85 0.76 0.84 0.754

IA 0.76 0.77 0.88 0.79 0.80 0.73 0.82 0.77 0.84 0.70 0.82 0.752

ICP

PDA 0.83 0.75 0.90 0.75 0.85 0.70 0.92 0.83 0.89 0.79 0.88 0.764

CNN 0.87 0.73 0.90 0.75 0.76 0.68 0.90 0.79 0.89 0.80 0.86 0.750

PD 0.84 0.76 0.91 0.74 0.72 0.70 0.92 0.82 0.87 0.77 0.85 0.758

GPDP 0.83 0.73 0.89 0.72 0.73 0.68 0.90 0.79 0.81 0.72 0.83 0.728

VD 0.73 0.70 0.78 0.75 0.66 0.61 0.90 0.82 0.81 0.72 0.78 0.720

IA 0.64 0.58 0.52 0.55 0.66 0.63 0.77 0.69 0.58 0.49 0.63 0.588

DCP

CNN 0.82 0.70 0.97 0.87 0.82 0.75 0.92 0.86 0.82 0.72 0.87 0.780

PDA 0.80 0.75 0.94 0.87 0.71 0.68 0.88 0.82 0.75 0.70 0.82 0.764

GPDP 0.73 0.63 0.93 0.79 0.64 0.59 0.90 0.83 0.71 0.62 0.78 0.692

PD 0.80 0.73 0.86 0.79 0.65 0.61 0.84 0.73 0.71 0.69 0.77 0.717

VD 0.60 0.59 0.82 0.66 0.64 0.61 0.80 0.72 0.61 0.61 0.70 0.638

IA 0.52 0.48 0.62 0.59 0.57 0.48 0.57 0.51 0.53 0.48 0.562 0.508
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Figure 4.   Visual examples for the regions highlighted by the Grad-CAM algorithm (left column) and the 
corresponding thresholded perfusion distance maps (right column) for glaucoma patients showing a close 
correspondence between the two methods.
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The features have also been evaluated on different plexuses and the retina projection. This makes sense since 
in the retina projection, larger non-perfused areas in one plexus can be partitioned into multiple by vessels from 
other plexuses at the same position. Consequently if one plexus is more affected by the disease than others this 
can be hidden when using the projection over all plexuses. When looking at the performance of the different 
approaches across the different plexuses they resemble the ones previously published. The SVP seems to be the 
best suited plexus for the task of distinguishing glaucoma patients from the healthy control cohort.

So far only the areas of the perfusion deficit areas has been used for the probability density function. An 
interesting future direction is to investigate whether features describing the shape instead of the area of regions 
of perfusion deficit provides additional information.

Moreover, in this study only the distinction between a healthy control group and glaucoma patients was 
considered. So further studies are necessary to evaluate this novel approach for different glaucoma subtypes 
to see from which level of glaucoma damage onwards a distinction between glaucoma patients and the healthy 
controls can be detected. However, more data from these subtypes needs to be acquired in order to enable a 
reasonable training and evaluation.

Summary and conclusion
In this study we have presented and evaluated new features based on the probability density function of the 
perfusion deficit areas and evaluated their performance with existing features from literature and convolutional 
neural networks. The evaluation showed that it is more robust and sensitive than existing handcrafted features 
when distinguishing between glaucoma patients and healthy controls. While there is a small remaining gap com-
pared to the performance of the best evaluated deep learning models, they are computationally more efficient, 
simple to implement and more explainable and therefore more useful in supporting clinical decision-making.

Data availability
The dataset analysed during the current study is not publicly available due to general data privacy regulations 
but is available from the corresponding author on reasonable request.

Received: 25 August 2023; Accepted: 28 April 2024

References
	 1.	 Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).
	 2.	 Tham, Y.-C. et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and 

meta-analysis. Ophthalmology 121, 2081–2090 (2014).
	 3.	 Bonomi, L. et al. Vascular risk factors for primary open angle glaucoma: The Egna-Neumarkt study. Ophthalmology 107, 1287–1293 

(2000).
	 4.	 Galassi, F., Giambene, B. & Varriale, R. Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glau-

coma. Investig. Ophthalmol. Vis. Sci. 52, 4467–4471 (2011).
	 5.	 Tobe, L. A. et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients 

with open-angle glaucoma over an 18-month period. Br. J. Ophthalmol. 99, 609–612 (2015).
	 6.	 Takusagawa, H. L. et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. 

Ophthalmology 124, 1589–1599 (2017).
	 7.	 Lommatzsch, C., Rothaus, K., Koch, J., Heinz, C. & Grisanti, S. Octa vessel density changes in the macular zone in glaucomatous 

eyes. Graefes Arch. Clin. Exp. Ophthalmol. 256, 1499–1508 (2018).
	 8.	 Rao, H. L. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glau-

coma. Am. J. Ophthalmol. 171, 75–83 (2016).
	 9.	 Rao, H. L. et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomog-

raphy in primary open angle glaucoma. PLoS ONE 12, e0173930 (2017).
	10.	 Rao, H. L. et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary 

angle closure glaucoma. Am. J. Ophthalmol. 177, 106–115 (2017).
	11.	 Yip, V. C. et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. 

J. Glaucoma 28, 80–87 (2019).
	12.	 Akil, H., Huang, A. S., Francis, B. A., Sadda, S. R. & Chopra, V. Retinal vessel density from optical coherence tomography angi-

ography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE 12, e0170476 (2017).
	13.	 Schottenhamml, J. et al. Glaucoma classification in 3 x 3 mm en face macular scans using deep learning in different plexus. Biomed. 

Opt. Express 12, 7434–7444 (2021).
	14.	 Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proc. IEEE interna-

tional conference on computer vision, 618–626 (2017).
	15.	 Schottenhamml, J. et al. An automatic, intercapillary area based algorithm for quantifying diabetes related capillary dropout using 

oct angiography. Retina (Philadelphia, Pa) 36, S93 (2016).
	16.	 Sawada, O. et al. Comparison between wide-angle oct angiography and ultra-wide field fluorescein angiography for detecting 

non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 256, 
1275–1280 (2018).

	17.	 Parravano, M. et al. Appearance of cysts and capillary non perfusion areas in diabetic macular edema using two different octa 
devices. Sci. Rep. 10, 1–9 (2020).

	18.	 Lauermann, P. et al. Distance-thresholded intercapillary area analysis versus vessel-based approaches to quantify retinal ischemia 
in octa. Transl. Vis. Sci. Technol. 8, 28–28 (2019).

	19.	 Chen, S., Moult, E. M., Zangwill, L. M., Weinreb, R. N. & Fujimoto, J. G. Geometric perfusion deficits: A novel oct angiography 
biomarker for diabetic retinopathy based on oxygen diffusion. Am. J. Ophthalmol. 222, 256–270 (2021).

	20.	 Maurer, C., Qi, R. & Raghavan, V. A linear time algorithm for computing exact Euclidean distance transforms of binary images in 
arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25, 265–270. https://​doi.​org/​10.​1109/​TPAMI.​2003.​11771​56 (2003).

	21.	 Kohlhaas, M. et al. Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch. Oph-
thalmol. 124, 471–476 (2006).

	22.	 Jonas, J. B., Gusek, G. C. & Naumann, G. O. Optic disc morphometry in chronic primary open-angle glaucoma: I. Morphometric 
intrapapillary characteristics. Graefe’s Arch. Clin. Exp. Ophthalmol. 226, 522–530 (1988).

https://doi.org/10.1109/TPAMI.2003.1177156


10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10306  | https://doi.org/10.1038/s41598-024-60839-4

www.nature.com/scientificreports/

	23.	 Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In: Proc. IEEE conference 
on computer vision and pattern recognition, 4700–4708 (2017).

	24.	 Zagoruyko, S. & Komodakis, N. Wide residual networks. Preprint at arXiv:​1605.​07146 (2016).

Author contributions
J.S.: Conceptualization, Methodology, Software, Writing- Original Draft ; T.W.: Validation, Writing- Reviewing 
and Editing; S.P.: Writing- Reviewing and Editing; L.H.: Writing- Reviewing and Editing; R.L.: Data Curation, 
Writing- Reviewing and Editing; B.H.: Data Curation, Writing- Reviewing and Editing, Supervision; A.M.: Writ-
ing- Reviewing and Editing, Supervision; C.M.: Data Curation, Writing- Reviewing and Editing, Supervision; 
All authors discussed the results and their presentation, and contributed to the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare the following competing interests: B.H. and C.M. have received research subsidies from 
Heidelberg Engineering. All other authors have no competing interest.

Additional information
Correspondence and requests for materials should be addressed to J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://arxiv.org/abs/1605.07146
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Glaucoma detection using non-perfused areas in OCTA​
	Methods
	Evaluation
	Data
	Experiments

	Results
	Discussion
	Summary and conclusion
	References


