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cancer classification
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Interpretability in machine learning has become increasingly important as machine learning is 
being used in more and more applications, including those with high-stakes consequences such as 
healthcare where Interpretability has been regarded as a key to the successful adoption of machine 
learning models. However, using confounding/irrelevant information in making predictions by deep 
learning models, even the interpretable ones, poses critical challenges to their clinical acceptance. 
That has recently drawn researchers’ attention to issues beyond the mere interpretation of deep 
learning models. In this paper, we first investigate application of an inherently interpretable 
prototype-based architecture, known as ProtoPNet, for breast cancer classification in digital 
pathology and highlight its shortcomings in this application. Then, we propose a new method that 
uses more medically relevant information and makes more accurate and interpretable predictions. Our 
method leverages the clustering concept and implicitly increases the number of classes in the training 
dataset. The proposed method learns more relevant prototypes without any pixel-level annotated 
data. To have a more holistic assessment, in addition to classification accuracy, we define a new metric 
for assessing the degree of interpretability based on the comments of a group of skilled pathologists. 
Experimental results on the BreakHis dataset show that the proposed method effectively improves 
the classification accuracy and interpretability by respectively 8% and 18% . Therefore, the proposed 
method can be seen as a step toward implementing interpretable deep learning models for the 
detection of breast cancer using histopathology images.

The use of artificial intelligence (AI) in computer-aided diagnosis (CAD) systems has the potential to improve the 
accuracy and efficiency of cancer diagnosis, leading to better patient outcomes. AI has shown great potential in 
analyzing and interpreting histopathology images, including breast cancer analysis1 which has been identified as 
one of the most prevalent and dangerous cancers among women worldwide. AI models aim to accurately classify 
different types of benign (B) and malignant (M) cancers, assisting pathologists in making timely and accurate 
diagnoses2. CAD systems can help overcome some of the disagreements among pathologists in the classification 
of different types of cancer3. However, to have an effective influence on clinical pathology, existing models should 
go beyond their “black box” behavior of solely predicting image labels and provide explainable results to help 
pathologists better understand and interpret the model’s predictions.

Interpretability is a crucial factor in the adoption and acceptance of AI-based systems, particularly in domains 
such as medical diagnosis where the consequences of errors can be severe. Physicians and other end-users need 
to be able to understand how an AI-based CAD system arrives at its decisions or recommendations to trust 
and effectively utilize it in their work4. The absence of interpretability in such models can lead to a lack of trust 
and discourage their adoption, even if they exhibit high levels of accuracy5. The research community is actively 
working to address this challenge by developing and implementing interpretability techniques that make ML 
models more transparent.

The majority of prior studies on interpretability for histological image classification are based on using 
visualization techniques to highlight the regions of the image that the model is using for classification, such 
as heatmaps or saliency maps4,6–9. Another well-known approach is to locally mimic the model predictions 
using linear classifiers with Local-Interpretable Model-Agnostic Explanations (LIME)10,11. In the field of 

OPEN

1Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran. 2Cellular and Molecular 
Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 
Iran. 3Department of Pathology, Faculty of Medicine, Urmia University of medical sciences, Urmia, Iran. 4School of 
Computer Science, Carleton University, Ottawa, Canada. *email: mo.valizadeh@urmia.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60743-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10341  | https://doi.org/10.1038/s41598-024-60743-x

www.nature.com/scientificreports/

digital pathology, there are some studies that use the pathological features for interpretability by evaluating the 
dependency of specific histomorphological to the model predictions features12 and producing an explanatory 
tumor histology feature map13. There are also some use cases of feature-specific heatmaps for visualizing deep 
features extracted by a model14,15. Revealing the learned pattern by displaying the modifications applied to the 
input image to change the model’s prediction16, and highlighting the contributions of cell nuclei in the model 
decision by using the graph convolutional neural networks17 are another examples of the studies in interpretable 
histopathological image classification.

The importance of interpretability in deep learning models has led to the development of different 
approaches to achieve it. Studies on interpretability can be roughly divided into two main categories: Post-hoc 
interpretability methods are applied after a model has been trained and are used to explain its predictions18–20. 
Inherently interpretable models, on the other hand, which are designed to be transparent from the outset21–25. 
Post-hoc methods, however, do not provide a complete understanding of the network’s reasoning process. 
Saliency maps, for example, just highlight some image regions without expressing what the model computes 
with the corresponding image pixels26,27 and therefore they may even explain false reasoning. On the other 
hand, interpretable-by-design methods create and employ models that make decisions through a human-
understandable process. One of the popular interpretable-by-design approaches is based on case-based reasoning 
which relies on the storage and retrieval of past cases (i.e. input samples)28.

Among case-based reasoning approaches, Prototypical Part Network (ProtoPNet)29 is particularly interesting 
because it is able to provide part-based reasoning, even though it only requires image-level labels for training. 
The method has been shown to achieve competitive performance on several benchmark datasets while providing 
interpretability, indicating its potential usefulness in real-world applications. In the clinical domain, ProtoPNet 
has been applied to digital mammography, where it is adopted to classify mass lesions of mammogram images30–32. 
In another application, it has been applied to the brain MRI scans for Alzheimer’s disease classification33. In 
addition, there are other studies that use variants of ProtoPNet in medical applications such as diagnosing 
COVID-1934, pneumonia using chest X-ray images35, and breast cancer whole-slide classification36.

The architecture of ProtoPNet consists of three parts: a backbone network and a prototype layer followed by 
a linear layer. The backbone network extracts feature maps from an input image. The prototype layer consists of 
a set of prototypes, where each prototype corresponds to a “part” of an image that is indicative of a specific class 
in the dataset. The prototype layer produces an interpretable representation of the input image based on the 
similarity of the input patched to the learned prototypes. The linear layer combines evidence from the prototypes 
to make a final classification, and the weights of the linear layer reflect the importance of the corresponding 
prototypes for the network’s decision. The reasoning process is quite similar to that of pathologists, where an 
input image is identified as malignant if the pathologist finds image parts that are similar to the malignant images/
sub-images that they have seen before. The model’s decision can be traced back to the relevant part prototypes, 
making the reasoning process transparent and easy to interpret. This makes the model suitable for AI-based 
CAD tools by assisting pathologists to judge the model’s output with greater confidence.

Instead of employing the information that practitioners may utilize in practice, neural networks may learn 
shortcuts and look at irrelevant information to solve various tasks37. This is known as confounding, which 
happens when a model generates accurate predictions based on misleading information that is not causally related 
to the task. Failing to address the confounding issue, can have serious consequences, especially in applications 
such as healthcare or finance. As a result, creating new training schemes for safeguarding ML models against 
confounding has drawn a lot of attention. One popular approach is to guide the model’s attention to the relevant 
regions through data augmentation techniques38 or combat confounders by extracting features that account for 
the inherent relation between the confounders and predictions but are invariant to the confounder factors39. 
Other approaches rely on a human expert to interactively review the generated attention maps and correct them 
during the training phase40.

Despite its inherent interpretability and competitive performance on various classification tasks, it has been 
shown that ProtoPNet suffers from the confounding issue, too. Barnett et al.30 demonstrated that when ProtoPNet 
is applied to mammography images, it tends to declare a sample as malignant based on the surrounding healthy 
tissue (i.e. irrelevant background information) rather than the lesion. To address the issue, they proposed 
IAIA-BL30 which uses predefined masks for some training images, each containing the radiologist’s pixel-level 
annotations of where medically relevant information is in the corresponding image. IAIA-BL penalizes prototype 
activations on medically irrelevant regions of radiologist-annotated training mammograms. Our experiments 
on histopathological images confirmed that the same problem applies to histopathological images. However, 
adopting such an approach for histopathological images is challenging because, (1) the size of these images is 
very large, making pixel-level annotation a cumbersome and time-consuming task2, (2) for a histopathology 
image there may be numerous small and large medically relevant regions, and since the model may base its 
decision on any of these regions, or their combinations, pathologists need to specify “all” of these regions, which 
is laborious and largely impractical.

In this paper, we propose a new training mechanism based on the ProtoPNet architecture to address the 
confounding issue in the context of digital pathology applications. The proposed method will be referred to as 
Pseudo-Class Part Prototype Networks (PCPPN). The proposed method leverages the clustering concept, brings 
out the structural similarities among the training samples within each class, and assigns them to some sub-groups 
(i.e. clusters). The resulting sub-groups are then considered Pseudo-classes and used to reassign labels to the 
data. In this way, the number of image classes is implicitly increased. The proposed method, though conceptually 
simple, improves the classification accuracy and interpretability of ProtoPNet by 8% and 18%, respectively on the 
BreakHis dataset41, a widely-used breast histopathological dataset. It is composed of microscopic biopsy images 
of breast tumors including benign and malignant types. It is considered a challenging dataset due to its large 
size, high variability, staining artifacts, and varying image quality. The proposed mechanism leads ProtoPNet to 
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learn more medically relevant prototypes, effectively alleviating the confounding issue, without any pixel-level 
human annotation. To the best of our knowledge, our approach is the first attempt to address the confounding 
issue of ProtoPNet without relying on pixel-level human annotations. This potentially makes it suitable for other 
real-world clinical applications where explainability is crucial but obtaining pixel-level annotated is difficult.

Since the proposed PCPPN implicitly increases the number of classes, we perform additional experiments to 
investigate the effect of the number of classes on the confounding issue of ProtoPNet. To this end, we used the 
CUB-200-2011 dataset42 which includes images of 200 bird species. The results showed that the confounding 
issue is more severe when the number of classes in the dataset is small, and it disappears when there is a large 
number of classes. This observation is consistent with the superior results of PCPPN on the BreakHis dataset 
where the number of classes is implicitly increased through a clustering step.

Contributions to the paper are as follows:

•	 We investigated the application of ProtoPNet on digital pathology for breast histopathological images 
classification and demonstrated its shortcomings in this field. We realized that it suffers from confounding 
issue, using irrelevant information for inference.

•	 To tackle the confounding issue, we proposed a new training scheme PCPPN, which enables ProtoPNet 
to learn more medically relevant prototypes through the training step, hence making more precise and 
interpretable predictions. The proposed scheme leverages the clustering concept to force the network to learn 
medically relevant prototypes and reduce the confounding.

•	 The proposed PCPPN method does not require any pixel-level annotation of medically relevant regions 
(fine-grained data), which are rare and challenging to obtain in practice. This makes the proposed method 
distinct from IAIA-BL and other prior work.

•	 We employed the pathologists’ expertise as a golden standard in our interpretability evaluations and defined 
a new metric, named ‘Relevancy’, calculated based on the pathologists’ scores for the amount of medically 
relevant information the learned prototypes contain.

•	 Due to the existence of disagreement between the physicians about the relevancy value of an image’s region, 
we used the comments of a team of pathologists to have more precise evaluations.

•	 We evaluated the performance of our proposed method from both classification and interpretability 
perspectives. The proposed PCPPN effectively improves the accuracy and interpretability respectively by 
8% and 18%, compared to ProtoPNet.

Materials and methods
Data
In this study, we use the BreakHis dataset41, a widely-used breast histopathological dataset. It consists of 
microscopic biopsy images of breast tumors including benign and malignant types. All images were gathered 
from samples of 82 patients between January 2014 and December 2014 in the P &D Laboratory, in Brazil. It is 
composed of 7909 RGB images (with 8 bits per color channel) in four different magnifications: 40×, 100×, 200× , 
and 400× (i.e. objective lens 4×, 10×, 20×, and 40× , respectively), each with the size of 700× 460 pixels. Based 
on the pathologists’ comments about the magnification factor that is practically more informative and helpful 
for diagnosis, we used the images captured in the lowest ( 40× ) magnification. From the existing 1995 images 
of this magnification, 625 images belong to the benign class and the remaining 1370 images belong to the 
malignant class.

Proposed approach
Through our experiments, we found that as the number of classes of the dataset increases, the confounding issue 
of the ProtoPNet model29 decreases (more detail on this is provided in the Result section). However, the number 
of classes is often dictated by the application in hand and the corresponding dataset. Many medical diagnosis 
applications often are in the form of a binary classification task or involve only a few classes. Motivated by the 
above observation, we propose a method that aims to artificially increase the number of classes by creating a 
set of new classes, which we term pseudo-classes. The proposed PCPPN approach is composed of three main 
components: clustering, a part prototype network, and remapping. The clustering step generates pseudo-classes. 
The part prototype network29 assigns input samples to the pseudo-classes. Finally, the remapping part retrieves 
the actual class from the predicted pseudo-class. Figure 1 shows the block diagram of the proposed PCPPN 
method. In the following, each component will be described in detail.

Generating pseudo‑classes using clustering
To increase the number of classes, we obtain a set of pseudo-classes through clustering. Clustering is done 
separately for the data of each class. Samples within each class are divided into K clusters, each represents a 
pseudo-class. Let q be the number of original classes, so there will be a total of K × q pseudo-classes, i.e. K 
pseudo-classes for each original class. Hence, for a binary classification of malignant versus benign, there will 
be a total of 2K pseudo-classes.

Data clustering algorithms, at their core, rely on a notion of distance or dissimilarity. Distance, in turn, is tied 
to feature space which in the simplest case could be the original space where raw data are situated. For example, 
the K-means clustering algorithm43 uses Euclidean distance. However, clustering with Euclidean distance 
on raw pixels is ineffective on most image datasets44. The common practice is to first map the original high-
dimensional data to an appropriate low-dimensional space and then apply clustering. To tackle this problem for 
high-dimension histopathology images, the proposed method first tries to classify the training data using a black 
box classifier based on a deep neural network structure, and then map each data sample into its corresponding 
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point in the learned latent space of the network. Due to its performance on the general real-world images, in 
this work we adopt the ResNet-18 model45, pre-trained on the ImageNet dataset46 as the black box structure. 
The output of the last layer before the fully connected layer of ResNet-18 is used to obtain a lower dimensional 
representation of the input images.

Given the pre-processd and augmented dataset, D = {X,Y} , with images X and corresponding labels 
Y ∈ {B,M} , the proposed scheme first trains the ResNet-18 model to classify this dataset. The resulting network 
is then used as a feature extractor that maps images to their corresponding points in the resulting latent space. 
Then K-means clustering is applied separately to the data points of each class. After clustering, all images in the 
dataset are re-labeled based on the index of their corresponding cluster as new labels, i.e. pseudo-classes. The 
relabelled dataset is then augmented once more so that data samples have a balance distribution among the 2K 
pseudo-classes for the training process in the next stage.

Part prototypical network
We train a Part Prototypical structure29 to classify the input images to the 2× K pseudo-classes obtained from 
the previous step. In this network, each input image x is first passed through a convolutional neural network 
(CNN) denoted by f, which has the same structure as the CNN mentioned earlier with the addition of two more 
1× 1 convolutional layers at the end. The convolution layers output a feature map, z = f (x) , with a shape of 
7× 7× 128 (for input image of size 224× 224× 3 ). It is composed of 7× 7 vectors of size 1× 128 , each of them 
represents a region of the input image in the latent space and is named a patch. In this work we used VGG-1947 
architecture pre-trained on ImageNet as the CNN base structure.

The CNN layer f is followed by a prototype layer which consists of M prototypes {pj}Mj=1 . Each pseudo-class 
is associated with a set of prototypes. Each prototype is represented by a vector of length 128 in the latent space, 
i.e. same size with a 1× 1× 128 patch. Prototypes are first initialized randomly with a uniform distribution 
between 0 and 1, and then learned during the training process. Each prototype, after a projection step, can be 
seen as a representation of an image’s region in the training set. Generally, for q× K pseudo-classes, there will 
be M

q×K  prototypes in each. In prototype layer, for a specific input image x(i) and a prototype pj , an activation map 
of similarity scores is created based on the similarity of pj to all patches in z(i) = f (x(i)) . The activation map of 
similarity scores has a shape of 7× 7 , each entry represents the amount of presence of the prototype pj in the 
image’s region corresponding to the compared patch. A single similarity score s(i)j  is then obtained per prototype 
by applying max pooling to the activation map of similarity scores (i.e. the value of the entry with larger similarity 
score). s(i)j  takes a large value whenever there exists a region in image x(i) whose patch in the latent space is close 
to the prototype pj . s(i)j  is inversely related to d(i)j  , the distance between the j-th prototype and the closest patch 
of image x(i) , and is calculated as s(i)j = log(d

(i)2

j + 1)/(d
(i)2

j + ǫ) , where ǫ is a constant value equal to 1× 10−4 . 
In our experiments, we used Euclidean distance. The prototype layer is followed by a fully connected layer and 
then a softmax layer, collectively denoted as h, with parameters Wh.

The training process of different parts of the model is separately accomplished. First, we freeze Wh and train 
the CNN and Prototype layers of the model using cross-entropy loss CE and two other terms as follows:

where P is the set of all prototypes, W c denotes the CNN parameters, and si represents the set of M similarity 
scores. The first term minimizes the cross-entropy loss between the predicted and the true pseudo-class label of 
i-th image, ỹi . The second term encourages x(i) to have some latent patches that are close to a prototype associated 
with its true pseudo-class. The third term pushes latent patches of x(i) away from the prototypes associated with 
other pseudo-classes. �1 and �2 are hyperparameters of the model that are set as 0.8 and 0.08, respectively.
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Figure 1.   Block diagram of the proposed method.
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After training the CNN and prototype layers for few epochs (10 epochs), all learned prototypes are replaced 
with the embedding of their nearest patch from training images of the same class. Doing so, each prototype is a 
region of a training image which is well representative for the corresponding class. Next, the trained parameters 
W c and P are kept frozen and the fully connected layer parameters Wh are trained for 20 iterations. This training 
process continues for a predefined number of training epochs (30 epochs in this study). For more details about 
the Part Prototypical structure and related hyperparameters’ settings please refer to the ProtoPNet paper in29.

Remapping Pseudo‑classes to the original classes

During inference, the model predicts a pseudo-class for each test sample. Since we run a separate clustering 
on each of the original classes, each pseudo-class is already associated with an original class. Therefore, during 
inference, the predicted pseudo-class is remapped to its associated original class. An overview of the proposed 
method is represented as pseudo-code in Algorithm 1.

Algorithm 1.   Pseudo-code of the proposed method

Experiments and results
Data preparation
Dealing with the 40× images of the BreakHis dataset, three pathologists were asked to verify the validity of the 
images’ labels of the BreakHis dataset. Pathologists reviewed the data carefully and they all identified 426 images 
to be mislabeled (113 images of the benign set and 313 images of the malignant set). To establish more confident 



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10341  | https://doi.org/10.1038/s41598-024-60743-x

www.nature.com/scientificreports/

experiments, we remove these images from the original dataset. We use the standard five folds provided by the 
dataset for train/test splits. See41 for more information. Removing the mislabeled images from each fold, the 
remaining data have class distributions in the ratio of 63–70% to 27–30% for train and test sets, respectively. All 
histopathology images are first normalized and resized to 300× 300× 3 . Due to the small number of training 
images and also the imbalanced distribution between benign and malignant classes, in each fold we first balance 
the number of images per class by oversampling the minority class so that there are 1200 images per class, then 
we augment the training data four times with random rotation, skewing, sheering, and distortion. So, there is 
an augmented dataset with 4800 images per class for model training.

Evaluations
To evaluate the performance of the proposed PCPPN method, two metrics including accuracy and relevancy 
are used for tracking the classification ability and effectiveness in handling the confounding issue, respectively. 
The simulations are established through five different distributions of data, then the average values of metrics are 
reported. Moreover, the comments of three experienced pathologists are employed for interpretability evaluation. 
First, the process of making decisions by ProtoPNet structure is briefly explained to them so that they are 
familiar with the concept of prototypes, then they are asked to rate the relevancy level of the highlighted parts 
of the shown image for the determined class. To make our evaluations more reliable, the scoring processes 
of pathologists are independent of each other, they also do not know the relation between prototypes and 
experiments to avoid bias.

Inspired by the surge of adopting humans in model interpretability evaluations48, we try to follow this 
concept up clinically and use the pathologists’ comments as a gold standard for establishing a human-centric 
evaluation. Similar to our study, in Ref.30 the authors asked the radiologists to provide some fine annotated data 
by defining a mask per image, then they used the provided masks to direct the attention of the network to the 
relevant parts and evaluate the interpretability of the model by calculating the intersection between highlighted 
image parts by model and corresponding masks. For diagnosing breast cancer, however, providing such a mask 
for histopathology images is quite challenging. Besides, considering the issues of users’ prior knowledge and 
confirmation bias faced with the distinction and agreement criteria in HIVE48, we do not exploit them here 
because the real-world end users of the provided CAD system are the pathologists, i.e. domain experts. On 
the other hand, since the reasoning process of ProtoPNet is all based on looking for the learned patterns, i.e. 
prototypes related to each class among the input image regions, the interpretability evaluation of the model can 
be effectively established based on the learned prototypes.

Therefore, we propose a novel ‘Relevancy’ metric, based on the pathologists’ assessments of the prototypes 
from the confounding perspective. To this end, each learned prototype is visualized (as in section 2.3 of Ref.29) 
and shown to the pathologists accompanied by its corresponding activation map, then the pathologists were 
asked to rate the relevancy level of the highlighted parts from 0 to 3. They choose the prototype’s relevancy score 
from 0: Not relevant at all, (1) Slightly relevant, (2) Somewhat relevant, and (3) Completely relevant. In this 
study, to facilitate the rating process and make the pathologists’ evaluations more convenient and accurate, a 
graphical user interface (GUI) was designed to display the prototypes to physicians and gather their evaluations 
of the prototypes’ relevancy.

Let v(i)j  be the relevancy score for the jth prototype, specified by the ith pathologist, in this case, the new 
evaluation metric Relevancy, which measures the amount of medically relevant information contained in the 
learned prototypes, is calculated as

where, M and P are the numbers of prototypes and pathologists present in the experiments, respectively.

Results
Accuracy
To evaluate the classification performance of our PCPPN method we train the original ProtoPNet and our model 
with different numbers of clusters on 5 different splits of the dataset as mentioned. The obtained classification 
accuracies of benign and malignant test data for all experiments are averaged and reported in Table 1. Besides, 

(2)Relevancy =
1

M × P

P
∑

i=1

M
∑

j=1

(
v
(i)
j

3
)× 100

Table 1.   Classification accuracy (in % ) for ProtoPNet and the proposed PCPPN method for different numbers 
of clusters. The best-performing interpretable method is highlighted in bold. Italic entry stands for the second-
best method.

Method Benign accuracy Malignant accuracy Average accuracy

ResNet-18 (black box) 68.23 ± 11.55 93.58 ± 4.30 84.87 ± 4.08

Original ProtoPNet 76.78 ± 11.98 83.41 ± 7.27 80.93 ±m 7.30

PCPPN (K = 2) 83.24 ± 8.76 91.26 ± 6.36 88.27 ± 4.60

PCPPN (K = 4) 78.30 ± 8.74 91.07 ± 6.69 86.55 ± 5.47

PCPPN (K = 8) 74.63± 11.84 89.67± 8.30 84.22± 4.18
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the resulting confusion matrices (averaged over five folds) of the black box model, ProtoPNet, and proposed 
PCPPN method are shown in Fig. 2. As can be seen, for any number of clusters considered, proposed method 
achieves higher average accuracy than the original ProtoPNet structure (4–8% improvement), and it achieves 
the best classification accuracy among others for setting K = 2 clusters with a relatively low standard deviation 
throughout different folds. The second rank also belongs to the PCPPN with K = 4 clusters. Besides its superiority 
in benign class detection accuracy, our PCPPN method is significantly more accurate in detecting the malignant 
class, which is very important for pathologists in practice. Moreover, comparing the performance of PCPPN 
with the black box base structure (ResNet-18) we can see that our interpretable method outperforms the black 
box model, too.

Relevancy
Evaluating the interpretability functionality, we conduct a human-centric study composed of experienced 
pathologists. For each experiment, pathologists are asked to rate the medically relevant information carried by 
the trained model prototypes, then the percentage of relevancy for benign and malignant classes’ prototypes 
is calculated separately using Eq. (2). The resulting relevancies are averaged among 5 folds and presented in 
Table 2. 8–18% increment of the average relevancy metric, the proposed PCPPN method has been proven to 
be significantly efficient in interpretability improvement. The PCPPN method with K = 8 clusters achieves 
the best relevancy value on average and especially in malignant class. With K = 2 it provides the second most 
medically relevant prototypes for both benign and malignant classes, while the most relevant benign prototypes 
are achieved by setting K to 4. Besides, considering the standard deviation values for relevancy reported in 
Table 3, it can be seen that our method with two clusters provides the second-best value of average relevancy with 
the lowest variation among five different experiments, and hence it could be viewed as the most reliable setting.

Disagreement of pathologists
As the employed interpretability metric in this work is established directly based on the pathologists’ rating, it 
is worth pointing out that there is an inherent disagreement between the comments of different pathologists in 
practice. So, diving deeper into the interpretability evaluation, besides the relevancy metric another assessment is 

Figure 2.   Confusion matrices produced by (a) ResNet-18 (black box model), (b) ProtoPNet, (c) proposed 
PCPPN with K = 2, (d) K = 4, and (e) K = 8 clusters (averaged over five folds). B: benign, M: malignant.

Table 2.   Interpretability performance (in % ) for ProtoPNet and proposed PCPPN method for different 
numbers of clusters. The highest relevancy is highlighted in bold.

Method Benign relevancy Malignant relevancy Average relevancy

Original ProtoPNet 63.61 ± 10.73 55.00 ± 29.6841 59.30 ± 20.2071

PCPPN (K = 2) 71.94 ± 9.79 75.00 ± 4.05 73.47 ± 7.24

PCPPN (K = 4) 73.33 ± 5.93 62.50 ± 18.81 67.92 ± 14.34

PCPPN (K = 8) 71.39 ± 13.49 83.89 ± 8.82 77.64 ± 12.60

Table 3.   Disagreement of pathologists when rating the relevancy of prototypes provided by different methods. 
The lowest disagreement value in each column is highlighted in bold, while the italic text indicates the method 
with the second-lowest disagreement.

Method Benign disagreement Malignant disagreement Average disagreement

ProtoPNet 0.8007 0.5386 0.6696

PCPPN (K =2) 0.5699 0.5036 0.5368

PCPPN (K =4) 0.6555 0.5567 0.6061

PCPPN (K =8) 0.7187 0.4076 0.5632
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required for more confidence. Notably, among different methods with higher medically relevant prototypes, the 
method that leads to the most consensus between pathologists will be more reliable and acceptable. Therefore, 
we choose to use the standard deviation of pathologists’ rates. For every benign and malignant prototype, the 
standard deviation of different pathologists’ ratings is calculated and then averaged among different experiments 
and reported as the disagreement value in Table 3. As it can be seen, compared to ProtoPNet, the proposed 
method learns medically relevant prototypes with higher consensus between pathologists, generally. Particularly, 
with 2 clusters it achieves the minimum disagreement (most consensus) of pathologists.

Repeatability
From the interpretability perspective, one method can be trustworthy whose performance does not change much 
when it is trained at different times with the same architecture i.e. intra-architecture repeatability49. To investigate 
the repeatability we trained the same structure three different times and evaluate the interpretability of learned 
prototypes each time. For different sets of learned weights, the relevancy values of the original ProtoPNet and 
the proposed method with two clusters are reported in Table 4. The superiority of interpretability of PCPPN has 
been proven due to its highest relevant learned prototypes for all sets of learned weights. It significantly improves 
the relevancy of learned prototypes of both benign and malignant classes on average. Despite that, the obtained 
relevancy values of the proposed method have much smaller standard deviations in different experiments 
compared to the ProtoPNet, and thus its relevancy is considerably more repeatable compared to the ProtoPNet. 
Moreover, the resulting average accuracies in the last column of Table 4 validate the effectiveness of our method 
for accuracy improvement.

Reproducibility
We investigated the performance using different backbone network architectures. This indicates if the amount of 
the model’s interpretability is architectures-dependent or architectures-agnostic. Table 5 represents the resulting 
relevancy values of ProtoPNet and PCPPN with two clusters for three different base architectures Vgg-19, 
ResNet-18, and DenseNet-12150. As we can see, the proposed method achieves a higher relevancy value of all 
learned prototypes for every base structure, meanwhile, the calculated standard deviations of resulting relevancy 
values through different base architectures for our method are much smaller than ProtoPNet, hence it has 
higher reproducibility compared to ProtoPNet. Moreover, from the last column of Table 5 it can be seen that the 
PCPPN method outperforms the original ProtoPNet in terms of the test accuracy on average, particularly in 
the case of malignant class. Besides, our method effectively increases the test accuracy on average, particularly 
for malignant class.

From pathologists’ point of view, the most accurate CAD system is not necessarily the most desirable one, 
and they prefer the one that offers a good balance of accuracy and interpretability. Considering the accuracy and 
relevancy criteria, and also concepts of the disagreement between pathologists, repeatability, and reproducibility, 

Table 4.   Repeatability analysis for interpretability of ProtoPNet and proposed PCPPN method over three 
different sets of learned weights (W1, W2, and W3). The lowest standard deviation values (most repeatable 
method) also the best relevancy and accuracy values are highlighted in bold. The last column represents the 
average test accuracy over different sets of learned weights.

Method B/M W1 W2 W3 Avg relevancy std relevancy Avg Acc

ProtoPNet B 66.67 75.00 93.75 78.47 13.87 74.34

PCPPN (k=2) B 70.83 81.25 89.58 80.56 9.39 80.49

ProtoPNet M 4.16 62.50 70.83 45.83 36.32 89.34

PCPPN (k=2) M 79.17 70.83 83.33 77.78 6.36 89.64

ProtoPNet all 35.12 68.75 82.29 62.15 24.12 83.42

PCPPN (k=2) all 75.00 76.04 86.46 79.17 6.34 87.55

Table 5.   Reproducibility analysis for interpretability of ProtoPNet and the proposed PCPPN method over 
three different base architectures. The lowest standard deviation over different base architectures (most 
reproducible method) and the best average relevancy are shown in bold. Also, the average test accuracy over 
different base architectures is reported in the last column.

Method B/M Vgg-19 ResNet-18 DenseNet-121 Avg relevancy std relevancy Avg Acc

ProtoPNet B 87.50 91.67 97.92 92.36 5.24 74.34

PCPPN (k=2) B 89.58 93.75 91.67 91.67 2.08 73.22

ProtoPNet M 4.17 81.25 70.83 52.08 41.82 89.34

PCPPN (k=2) M 83.33 91.67 87.50 87.50 4.17 96.90

ProtoPNet all 45.83 86.46 84.38 72.23 22.88 83.42

PCPPN (k=2) all 86.46 92.71 86.58 89.58 3.12 87.56
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it was shown that by leveraging the PCPPN method with K = 2 clusters we achieve the most accurate and reliable 
prototype-based interpretable CAD system for the digital pathology application.

Performance of ProtoPNet in digital pathology
To get an overview of the performance of ProtoPNet in the digital pathology application, we conducted an 
experiment on fold 1 in the dataset. We investigate the characteristic of the learned prototypes when different 
numbers of prototypes are considered in the ProtoPNet structure. Figure 3 shows the first learned prototypes 
for the benign and malignant breast cancers along with the corresponding activation maps—which indicates 
the contribution of images’ pixels in the prototype—for different number of prototypes per class (1, 2, and 10). 
Although the model has a fairly high test accuracy score of around 85%, with just 1 prototype per class, it can 
be seen that the learned prototype for the malignant class is not appropriate and it uses quite irrelevant medical 
information for making correct predictions. Also, when we use 2 prototypes per class, 3 out of the 4 learned 
prototypes are irrelevant and only one prototype of the benign class is meaningful, and yet the test accuracy 
is fairly high. Increasing the number of prototypes to 10 per class leads to the same results for accuracy, but 
from the interpretability perspective, we found that most of the learned prototypes, (8 prototypes per class), 
are duplicated and there are only 2 unique prototypes for each class. However, the prototypes of the malignant 
class are still irrelevant. Hence, it was concluded that the ProtoPNet fails to deal with histopathology images, in 
particular images of the malignant class which are more important. Overall the results were deemed unacceptable 
by pathologists since the provided explanations reveal that the model exploits mostly irrelevant information in 
the reasoning process. Thus, the necessity of managing the confounding issue is quite obvious for ProtoPNet to 
be integrated into real-world breast cancer classification CADs for digital pathology.

Effect of the number of classes on ProtoPNet
In order to further validate the motivation behind the proposed method for improving the confounding issue 
of the ProtoPNet, and also to have a better insight into what causes this issue, we investigated the effect of the 
number of classes on the performance of ProtoPNet in a real-world application. To this end we choose the 
application of the bird species classification, i.e. UB-200-2011 dataset42, where there are a large number of classes 
(200 bird species), and hence it enables studying the effect of the number of classes.

Figure 4 shows the learned prototypes for the first 2 classes corresponding to the bird species named ’Black-
Footed-Albatross’ and ‘Laysan-Albatross’, through the image classification of three different subsets of CUB-
200-2011 dataset42, including the first 2, 10, and 50 classes of the dataset. From the first row of Fig. 4, we can see 
that when ProtoPNet is dealing with just 2 classes, it considers quite irrelevant parts of the images for making its 
predictions. When the model is trained for classifying 10 species, the learned prototype of class 1 is fairly relevant 

Figure 3.   Learned prototypes by ProtoPNet for histopathology image classification when a different number 
of prototypes are used. (a) first prototype of the class benign and (b) its activation map, (c) first prototype 
for the class malignant, and (d) the corresponding activation map. The learned prototypes are highlighted by 
yellow boxes in the corresponding training images. Symbols � and x denote respectively medically relevant and 
irrelevant as determined by pathologists.
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(middle row). Interestingly, from the last row of Fig. 4, we see that increasing the number of classes to 50 leads to 
quite relevant prototypes. Moreover, to investigate the effect of the number of classes in the duplicated prototypes, 
we increased the number of prototypes per class in the two experiments with 2 and 50 classes. We realized when 
classifying 2 bird species, there are only two unique prototypes per class (which are irrelevant of course) and the 
rest are duplicates. However, when classifying 50 species all learned prototypes are unique and fairly relevant.

From these observations, we can conclude some key findings including (1) The number of duplicate learned 
prototypes decreases as the number of classes increases, thus the model can efficiently use the potential of 
employing more prototypes to catch more information from the learning dataset and improve its performance. 
(2) Increasing the number of classes makes the learned prototypes more meaningful. Dealing with a small 
number of classes, ProtoPNet finds some irrelevant regions of the image like the background as discriminative 
features. This fact comes back to the nature of the optimization problem of the model which forces the model 
to correctly map each sample of the training data to the corresponding label as much as possible. Through this 
process what the model utilizes is only the error signal obtained from the difference between its predictions and 
the true labels, and there is no supervision of what features the model should learn or what parts of the image it 
should pay attention to. So, when the classification task has a small number of classes and the variety of images 
in each class is not so high, the ProtoPNet model finds the simplest discriminative features between classes that 
are usually some irrelevant parts of images like the background. But, on the contrary, when there are a large 
number of classes in the dataset or the images have a wide variety per class, the problem gets more complicated 
and those irrelevant parts will not be discriminative for classes anymore, hence ProtoPNet is forced to find more 
meaningful features. As a result, we noticed that the ProtoPNet architecture cannot extract meaningful prototypes 
in applications with a small number of classes, which in turn limits its use in many medical applications where the 
number of classes is often small. Inspired by these findings, we proposed a novel training method that implicitly 
increases the number of classes by producing some pseudo-classes.

Implementation details
The model is trained in three distinct stages. First, training the convolutional layer and the prototypes in which 
the model aims to provide a clustering-like embedding space for facilitating the classification based on the l2 
distance. To this end, the weights of the convolution layer W and prototype layer are learned through the training 
set D = {(xi , yi)}

n
i=1 to solve the Eq. (1). In the second stage, each prototype is replaced by the nearest training 

patch in latent space. Eventually, the weights of the fully connected layers are adjusted so that they minimize the 
equation (1) accompanied by a regularization term which forces them to take near-zero values for links between 
each prototype and output neuron of opposite classes (see29 for more details). Throughout our experiments, in 
the clustering stage, the Resnet-18 structure, pre-trained on ImageNet, was trained on the train images of the 

Figure 4.   Examples of learned prototypes by ProtoPNet for bird species classification among subsets of the 
CUB dataset with different numbers of classes. (a) first learned prototype for class 1 and (b) corresponding 
activation map, (c) first learned prototype for class 2, and (d) corresponding activation map. The learned 
prototypes are highlighted by yellow boxes in the corresponding training images. Signs � and x stand for 
relevant and irrelevant information, respectively.
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BreakHis dataset independently and used to form a suitable latent space. The training process is done using 
the stochastic gradient descent (SGD) method with Adam optimizer and the initial learning rate of 0.001. By 
clustering the training data of each class, they are re-labeled with 2× K pseudo-classes. Dealing with a categorical 
classification problem with 2× K  classes, the original structure of ProtoPNet29 with the pre-trained VGG-19 
as its convolutional backbone was used. All other hyper-parameters were set to their default values following29. 
The training data of each pseudo-class were augmented such that the training samples of each main class reach 
4800 images in total. Then the model was trained for 30 epochs. Finally, after the model converged, the network’s 
outputs were remapped to the benign and malignant classes.

Conclusion
In this paper, we adopted the well-known interpretable prototype-based network, ProtoPNet, for breast 
cancer diagnosis via digital histopathology images of the BreakHis dataset. We demonstrated its failure in this 
application, arising from the confounding issue of the model. Dealing with the confounding issue, we proposed 
PCPPN. It is based on the clustering concept and does not need pixel-level annotated data. It first brings out 
the existing hidden structures of the training data and then re-labels the images to some new pseudo-classes 
within each class. In this way, the proposed method implicitly increases the number of classes and forces the 
model to use more relevant regions of the images in its decision-making. For evaluation, in addition to the test 
accuracy, we defined a new relevancy metric by exploiting the comments of a team of specialists to assess the 
level of interpretability. Experimental results confirmed the effectiveness of the proposed method in improving 
both the classification accuracy and interpretability, respectively, by 8% and 18% compared to the ProtoPNet.

Data availibility
The breast cancer histopathological images (BreakHis dataset) and the bird species images (CUB-200-2011 
dataset) used in the current study are available at https://​www.​kaggle.​com/​datas​ets/​ambar​ish/​break​his and 
https://​www.​vision.​calte​ch.​edu/​datas​ets/​cub_​200_​2011/, respectively. The implementation code is available at 
https://​github.​com/​MA-​Chouk​ali/​PCPPN.
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