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Segmentation of liver CT images 
based on weighted medical 
transformer model
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Deep convolutional neural networks have made significant strides in the field of medical image 
segmentation. Although existing convolutional structures enhance performance by leveraging 
local image information, they often lose the interdependence information between contexts. 
Therefore, the article utilizes the multi-attention mechanism of the Transformer structure to more 
comprehensively express relationships between contexts and introduced the Transformer network 
architecture into the field of medical image segmentation. Most models based on this Transformer 
structure typically require large datasets for training. However, in the medical field, the limited size 
of datasets makes training models with the Transformer structure challenging. To address this, the 
article propose a Weighted Medical Transformer (WMT) model that imposes low requirements on 
dataset quantity. The weighting mechanism in the WMT model aims to improve the issue of inaccurate 
relative positional coding when dealing with small medical datasets. Additionally, a coarse-grained 
and fine-grained segmentation mechanism is introduced, focusing on both the detailed aspects 
within image blocks and the boundary information connecting blocks. Experimental results on a liver 
dataset demonstrate that the model achieves F1 and IoU scores of 88.48% and 79.41%, respectively. 
Results on the MoNuSeg dataset show comparable high F1 and IoU scores of 79.58% and 66.19%, 
respectively. The model’s accuracy surpasses that of U-Net++ and U-Net models. Compared to other 
models, this approach is applicable to scenarios with limited datasets, exhibiting high execution 
efficiency and accuracy.

In the past few decades, the field of medicine has witnessed a world-renowned technological revolution, in which 
medical imaging plays an important role in medical diagnosis, disease monitoring, and treatment planning. Du 
et al.1 point out that the main components of medical imaging systems, including ultrasound (US), x-ray, and 
nuclear magnetic resonance (NMR), are widely used in clinical practice. These emerging medical imaging tech-
nologies are able to provide real-time, detailed lesion information to physicians in a non-invasive, non-invasive 
manner by combining image processing techniques, enabling physicians to more intuitively understand the 
patient’s condition and improve their grasp of disease trends and physical therapy options. This intuition enables 
doctors to more accurately formulate treatment plans and improve the accuracy of surgery, which has a positive 
impact on early disease detection, optimization of treatment plans and monitoring of patient recovery, and also 
reduces the risk of patients in treatment.

Image segmentation involves a wide range of fields and is one of the most important aspects of medical image 
analysis, which is mainly used for segmenting and studying the interested parts of medical images to provide a 
strong technical guarantee for the diagnosis of diseases. Huang et al.2 proposed that image segmentation is a fun-
damental task in computer vision, and its main purpose is to extract meaningful and coherent regions from the 
image input. In recent years, a wide variety of techniques have been developed in the field of image segmentation, 
including those based on traditional methods, as well as utilizing convolutional neural networks (CNN)3 of the 
latest image segmentation techniques. With the development of deep learning, more deep learning algorithms4 
have also been applied to image segmentation tasks.

Initially medical image segmentation used the U-Net model based on convolutional neural networks, which 
was developed by Ronneberger et al.5 A U-shaped network was first proposed, which has a structure similar to 
the letter “U” and consists of symmetric encoding (downsampling) and decoding (upsampling) paths. Each step 
in the encoding path contains convolution and pooling operations to gradually reduce the spatial resolution. The 
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decoding path contains upsampling and convolution operations to gradually restore the resolution. At each step 
of the decoding path, the features at the same level of the previous encoding path are connected to the features at 
the current decoding level to form a jump connection. Zhou et al.6 creatively constructed Unet++, a multi-scale 
convolutional neural network, by modifying the jump connection layer of Unet. Its uniqueness lies in extracting 
and fusing features at different levels in a superposition manner by connecting jump connections of all layers. The 
advantage of this design is that it enhances the network’s ability to perceive and synthesize multi-scale informa-
tion. Valanarasu et al.7 To overcome the complexity of computing affinity, self-attention is decomposed into two 
self-attention modules. The first module performs autocorrelation on the height axis of the feature map and the 
second module operates on the width axis, resulting in the Axial Attention U-Net.

Zhang et al.8 proposed that although the U-Net model uses a convolutional neural network as its backbone, 
it still suffers from some inductive bias in local modeling and lacks adequate explanation of long-term image 
correlation. Due to this limitation, it is not possible to establish global modeling with coherent contextual 
information, and is less sensitive to segmentation of lesion regions that contain large variations. The Transformer 
model9 has an innate global self-attention advantage, making it excellent in dealing with long-range dependencies 
and global context modeling. Due to the parallelism of the self-attention mechanism, the training and inference 
process of the Transformer model can be carried out more efficiently, relative to recurrent neural networks 
(RNN)10 Transformer has better computational efficiency compared to sequential models such as Recurrent 
Neural Networks (RNN). However, most Transformer-based models usually require large-scale datasets for 
training, and in the medical field, this increases the challenge of the training process due to the relatively small 
sample size of the dataset, for this reason, a Weighted Medical Transformer (WMT) model is proposed, which 
is a weighting mechanism that can improve the relative position coding inaccuracies.

Results
Data sets and data preprocessing
The experimental data in this study consists of CT datasets and the MoNuSeg dataset. The dataset includes 420 
CT liver image data and 51 MoNuSeg datasets. To facilitate the experimental comparison,200 CT images are 
subjected to fine-grained segmentation with axial attention mechanism with weights,150 CT images are subjected 
to coarse-grained segmentation with axial attention mechanism with weights, and the remaining 70 CT images 
are used as the test set for comparison. Liver tissues have clearer contours compared to other tissues and are 
less prone to problems such as tissue crossover. Labeled images are generated by labeling in the software. The 
MoNuSeg dataset utilizes stained tissue images captured at a 40× magnification level. This dataset comprises 
images from various organs and patients. The training dataset includes 40 images, and the test dataset contains 
11 images. The article resized all images to 512 × 512 for experimentation.

Experimental environment and parameter settings
The experimental environment of this paper is as follows: computer configured with win11 operating system, 
processor Intel corei7-12700H, graphics card GeForce RTX 3060 GPU computing platform. The programming 
language is Python and the deep learning framework is PyTorch11. The size of the input image is 128 pixels × 128 
pixels, the epoch of the model is 400 times, the initial learning rate is 1e-3, the learning rate descent is used, and 
the binary cross-entropy loss function is used to calculate the loss.

Evaluation criteria
F1 Score12 is the harmonic mean of Precision and Recall, which is used to measure the performance of a binary 
classification problem. Precision indicates the proportion of samples predicted by the model to be in the positive 
category that are actually in the positive category. Recall indicates the proportion of samples that are actually 
positive categories that are predicted by the model to be positive categories. As shown in formula (1):

IoU Score13 A common metric used to evaluate the performance of image segmentation models. It measures 
the degree of overlap between the region predicted by the model and the real label. Where Intersection denotes 
the area of the overlap between the region predicted by the model and the real region, and union denotes the area 
of the union between the region predicted by the model and the real region. As shown in formula (2):

Acc is also one of the metrics used to evaluate the performance of a classification model. It measures the 
proportion of samples correctly predicted by the model on the entire dataset. Where “Number of Correct 
Predictions” is the number of samples correctly predicted by the model and “Total Number of Predictions” is 
the total number of samples predicted by the model. As shown in formula (3):

(1)F1 = 2×
Precision× Recall

Precision+ Recall

(2)Iou =
Intersection

Union

(3)Acc =
Number of Correct Predictions

Total Number of Predictions
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Results and Analysis
Liver experimental results comparison
Figure 1 shows the Loss with the number of training rounds (epoch)14 It can be seen that the training Loss value 
decreases as the number of training rounds increases and approaches 0 when the number of training rounds 
reaches 400; therefore, the number of training rounds in this paper is set to 400.

In this paper, the model performs optimization of liver segmentation accuracy by increasing the weighting 
mechanism and coarse-grained fine-grained segmentation mechanism in order to optimize the problem of 
small amount of data in medical images and the problem of intra-block details during segmentation as well as 
the dependency information between the blocks. For quantitative analysis of different models they are evalu-
ated using F1, IoU and ACC scores, for CT liver dataset the segmentation performance of having axial attention 
mechanism module is better, this is due to changing the segmentation of the whole 2D image into two axial up to 
1D segmentation, as can be seen from the details in the red box the peripheral details of this paper’s model have 
to be handled better, this is due to the inclusion of coarse and This is due to the addition of coarse-grained and 
fine-grained mechanisms, the peripheral detail information mainly comes from the coarse-grained segmentation. 
The internal details mainly come from the addition of fine-grained segmentation, and the method achieves F1 
scores and IoU as high as 88.48% and 79.41% on the individual dataset, with a higher model accuracy than many 
other existing methods. Based on the comparison details in Fig. 2 and the data in Table 1, The method does not 
require a large dataset as compared to other methods and it has high execution efficiency.

Figure 1.   Trend of Loss with the number of training rounds during the training process.

Figure 2.   Comparison graph of segmentation performance of different methods.
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Comparison of experimental results on the MoNuSeg dataset
Table 2 presents comparative data for different segmentation methods on the MoNuSeg dataset. For the MoNuSeg 
dataset, our model exhibits the highest accuracy, attributed to the combined effects of coarse and fine-grained 
mechanisms, optimizing cellular edge details.

Loss function
The model uses a binary cross-entropy loss function15 to compute the loss, which is generally used to measure 
the difference between two probability distributions, and in particular to assess the discrepancy between the 
probabilities predicted by the model and the actual target. As shown in formula (4):

where w and h are the dimensions of the image, p(x, y) corresponds to the pixels in the segmented image. 
p̂(x, y) represents the prediction output at a specific location, denoted as (x, y) . This loss function is used for loss 
calculation in the Weighted Medical Transformer model.

Ablation experiments
Ablation experiments16 are commonly used to assess the robustness of the model and to understand the sensitiv-
ity of the model to the input features. When targeting the CT liver image dataset, the red boxes are labeled with 
segmentation details. In this ablation experiment, each module is added to the U-Net segmentation model and 
experimental comparisons of each module are performed. The first step replaced all the convolutional layers in 
the U-Net encoder using the axial attention layer to form the U-Net + axial attention mechanism model, and 
the second step gave the addition of the weighted axial attention mechanism to form the U-Net + weighted axial 
attention mechanism, which optimizes the effect of the error in the relative position encoding. The third step 
adds the coarse-grained and fine-grained fusion methods to U-Net for training to form the U-Net + Fine-grained 
Coarse-grained Fusion Mechanism model, and finally the improved Weighted Medical Transformer model is 
trained. According to the details marked in the red box in Fig. 3 and the experimental results of F1 scores, IoU 
criteria and Acc criteria in Table 3 the model is indeed optimized and improved.

Discussion
This study proposes a model focused on medical image segmentation, incorporating the axial attention mecha-
nism, which significantly enhances the computational efficiency of the model. On top of the axial attention 
mechanism, a weighted attention mechanism is introduced to regulate the model’s impact on smaller medical 
datasets. The primary objective of this mechanism is to address the insufficient accuracy of relative positional 
coding, introducing a weighted mechanism on top of the original relative positional coding to enhance accuracy. 
Finally, the article conducted coarse-grained and fine-grained segmentation on the images, with fine-grained 
segmentation focusing more on the details within blocks, while coarse-grained segmentation primarily handles 
boundary cross-information between blocks. This technology holds the potential to assist physicians in accurate 
diagnosis, extracting key information, and supporting the determination of optimal treatment plans. In the 
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Table 1.   Comparison of segmentation performance of different methods.

Model F1 score/% IoU fraction/% ACC score/%

U-Net 74.12 58.43 94.36

U-Net++ 82.79 75.02 97.02

Axial attention U-Net 75.15 60.97 96.53

Gated axial U-Net 86.91 76.85 97.83

nn-Unet 88.24 79.12 98.15

Weighted medical transformer 88.48 79.41 98.49

Table 2.   Comparison of segmentation performance of different methods.

Model F1 score/% IoU fraction/%

U-Net 79.43 65.99

U-Net++ 79.49 66.04

Res- U-Net 79.49 66.07

Gated axial U-Net 76.44 62.01

nn-Unet 79.56 66.15

Weighted medical transformer 79.58 66.19
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future, the article plans to integrate the proposed segmentation model into medical image processing platforms, 
aiming to enhance the accuracy and efficiency of computer-aided diagnosis.

Methods
The authors declare that all the methods in this article were performed in accordance with the relevant guidelines 
and regulations in the editorial and publishing policies of Scientific Reports. Lanzhou University of Technology 
confirmed the experimental approval of CT liver image segmentation. Confirm that all participants and informed 
consent has been obtained.

self‑attention mechanisms overview
Input a CT feature image x ∈ RCin×H×W , where the height is H, the weight is W, and the number of channels is Cin 
. After projecting the input, the output of self-attention is computed as y ∈ RCout×H×W . As shown in formula (5):

Figure 3.   Comparative results of ablation experiments with different modules.

Table 3.   Comparative results of ablation experiments with different modules table.

Model F1 score/% IoU fraction/% ACC score/%

U-Net 74.12 58.43 94.36

U-Net + Axial Attention 75.15 60.97 96.53

U-Net + weighted axial attention 81.55 68.97 97.31

U-Net + fine-grained coarse-grained fusion mechanism 81.99 69.84 97.63

Weighted medical transformer 88.48 79.41 98.49



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9887  | https://doi.org/10.1038/s41598-024-60594-6

www.nature.com/scientificreports/

where q = WQx , k = WKx , v = WVx are projections computed from input X. qij , kij , vij denote queries, and the 
keys and values at arbitrary positions are i ∈ {1, ...,H} and j ∈ {1, ...,W} , respectively. The projection matrices 
WQ , WK , WV are learnable and he belongs to RCin×Cout.

Using the self-attention mechanism11 to capture non-local information across the entire feature map may 
lead to a very high computational cost. The size of the feature map affects computational complexity, and as the 
dimension of the feature map increases, the computational cost rises sharply. Therefore, directly applying the 
self-attention mechanism to large-scale images is impractical. The self-attention mechanism does not incorporate 
positional information when computing non-local contextual information, unlike convolutional layers, which 
leverage relative positional information through the use of shared-weight filters12. In image processing, positional 
information is often crucial for capturing object structure and relationships, but the self-attention mechanism is 
insensitive to positional information by default.

Axial attention mechanisms overview
Local constraints proposed by independent models of self-attention significantly reduce computational cost 
in visual tasks, making it possible to construct fully self-attentive models. However, such constraints, while 
helping to maintain local connectivity, limit the range of attentional perceptions to that of a deep convolution 
with the same kernel size. Furthermore, local self-attention performs within a localized square region with 
a complexity proportional to the size of the region and introduces another hyperparameter for the trade-off 
between performance and computational complexity.

To overcome the computational complexity, the autocorrelation mechanism is decomposed into two 
autocorrelation modules. The first module performs autocorrelation on the height axis of the feature map and 
the second module performs autocorrelation on the width axis. This is shown in Fig. 4, This is referred to as axial 
attention17. Therefore, by applying axial attention in both height and width directions, the original self-attention 
mechanism is successfully modeled and higher computational efficiency is achieved. In order to add positional 
bias to the computation by in the self-attention mechanism, a positional bias term is added to make sensitive to 
positional information. Such position bias terms are generally referred to as relative position encodings. These 
encodings can usually be learned through training and have been shown to be effective in capturing the spatial 
structure of an image. Using them for all for Q, K, and V. This additional positional bias in Q, K, and V has been 
shown to capture long-distance interactions with precise positional information. For any given input feature 
map x, the self-attentive mechanism for updating the position encoding with an axial attention mechanism can 
be written as shown in (6):

(5)yij =

H
∑

h=1

W
∑

w=1

softmax
(

qTij khw
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vhw
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Q
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Figure 4.   Diagram of axial attention mechanism.
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where rQ, rK , rV ∈ RW×W corresponds to the axial attention model along the width, and similarly, the axial 
attention model at the height is similar. The aim is to split the 2D image segmentation into two 1D axial seg-
mentations and it does not lose some necessary feature information and it is computationally efficient.

Axial attention mechanism with weights
Benefits of the proposed axial attention mechanism for image processing in axial attention. Specifically, the 
proposed axial attention possesses excellent computational efficiency to efficiently compute non-local contextual 
information, successfully incorporates positional bias coding into the mechanism, and implements coding of 
remote interactions in the input feature map. However, the above model is trained on large-scale datasets and 
the axial attention mechanism is better able to compute the positional bias, but when experimented on small-
scale datasets, such as medical image datasets, the positional bias is difficult to learn. Therefore there is some 
inaccuracy in handling the encoding of long distance interactions. When the relative position coding is not 
learned accurately enough, applying it to the corresponding Q, K and V may lead to performance degradation. 
So an improved axial attention block is proposed that can control the effect of positional bias when coding 
non-local contexts. By adding the weight parameter to the original one, The improvements are shown in Fig. 5, 
the formula of the axial attention mechanism with weights is expressed as (7):

CQ , CK , CV1 , CV2 Is a learnable parameter, Together, they form a weighting mechanism to regulate the 
impact of learned relative positional encoding on non-local contextual encoding. in for the position deviation 
coding accuracy of the part will increase the weight, the accuracy of the part will reduce the weight, weight 
coefficients in this way to control the position deviation is not accurate enough to bring the impact on the 
context information.

Coarse‑grained fine‑grained segmentation fusion mechanisms
A coarse-grained feature selection module is built, and based on the small blocks selected by the fine-grained 
module, the semantic and positional relationships between the blocks are mined, so as to obtain coarse-grained 
diversity features that provide complementary information for the fine-grained blocks. Research experiments 
show that the Weighted Medical Transformer model on fine-grained faster training, but if all fine-grained train-
ing is difficult to complete the image segmentation training task, so that the information between the blocks 
and their dependencies will be lost, in order to increase the understanding of the information between the 
blocks and dependencies as well as to improve the accuracy of fine-grained image recognition methods. So this 
paper proposes a fusion mechanism of coarse-grained segmentation and fine-grained segmentation. In coarse-
grained segmentation, the whole image is divided into large chunks, which has the advantage of not ignoring 
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Figure 5.   Diagram of axial attention mechanism with weights.
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the information between chunks. In fine-grained segmentation, the chunking operation can be set very small, 
feed-forward operation is performed on each small chunk and the output feature map is resampled according 
to its position to generate the final output feature map. As shown in Fig. 6, The original image is I Fine-grained 
segmentation is done using I/4× I/4 size of 16 chunks and coarse-grained segmentation is done using I/2× I/2 
size of 4 chunks, the output feature maps of coarse-grained segmentation and fine-grained segmentation are 
summed and passed through the 1 × 1 convolutional layer in order to generate the output segmentation mask. 
The advantage of this fusion mechanism is that fine-grained segmentation can better capture intra-block infor-
mation, while coarse-grained segmentation is effective in preserving inter-block boundary information. Using 
only fine-grained segmentation would neglect the inter-block boundary information.

Data availability
This study’s liver dataset can be obtained online at https://​github.​com/​Kaele​ss/U-​Net-​liver. This study’s MoNuSeg 
dataset can be accessed online at https://​monus​eg.​grand-​chall​enge.​org/​Data/. The data used to support the find-
ings of this study are available from the corresponding author upon request.
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