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2D signal estimation for sparse 
distributed target photon counting 
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Matthew Hayman 1*, Robert A. Stillwell 1, Josh Carnes 1, Grant J. Kirchhoff 2, 
Scott M. Spuler 1 & Jeffrey P. Thayer 2

In this study, we explore the utilization of penalized likelihood estimation for the analysis of sparse 
photon counting data obtained from distributed target lidar systems. Specifically, we adapt the 
Poisson Total Variation processing technique to cater to this application. By assuming a Poisson noise 
model for the photon count observations, our approach yields denoised estimates of backscatter 
photon flux and related parameters. This facilitates the processing of raw photon counting signals 
with exceptionally high temporal and range resolutions (demonstrated here to 50 Hz and 75 cm 
resolutions), including data acquired through time-correlated single photon counting, without 
significant sacrifice of resolution. Through examination involving both simulated and real-world 
2D atmospheric data, our method consistently demonstrates superior accuracy in signal recovery 
compared to the conventional histogram-based approach commonly employed in distributed target 
lidar applications.

Photon counting is employed in a variety of optical detection applications where extremely low light detection is 
required, or applications leveraging optical quantum information1. The detection technique has been leveraged 
in optical communications2, medical imaging3, 3D imaging4, astronomy5 and much more. Photon counting is 
commonly employed in distributed target (typically atmospheric or bathymetric) lidar where photon fluxes are 
low. This arises from various factors, including the range of the volume under interrogation, inefficient scattering 
or collection mechanisms, and limitations imposed by instrument parameters (e.g. low pulse energy, small collec-
tion aperture, size, weight, and power restrictions and low efficiency detection processes). In these applications, a 
crucial step is estimating the amplitude of the backscatter optical signal—a key intermediary of any derived lidar 
variable where errors in the backscatter estimation problem can only compound and propagate to the derived 
variables. Traditionally, backscatter estimation is performed by placing observed photon counts into histograms 
of fixed range and time resolution. The selection of bin widths, and consequently time and range resolutions, are 
determined based on resolvable signal levels. Larger bin width allows for greater noise suppression but comes 
at the cost of reduced resolution—a trade-off that must be carefully considered.

The standard approach to processing lidar data treats these histogrammed photon counts as the true backscat-
ter signal. This assumption is typically valid under two conditions: (1) backscatter photon counts in a bin are high, 
resulting in minimal shot noise, and (2) when the instantaneous photon arrival rate is small throughout the bin 
interval (negligible nonlinear detector effects are present). In this work, we focus on addressing cases where the 
first condition (1) is invalid due to significant shot noise. This situation occurs when we aim to observe structure 
at high resolution, a relative term indicated by the relationship between the capture time of a bin and its associated 
mean photon flux. Consequently, the absolute photon counts in any given bin becomes relatively small. While 
the second condition (2) is also important, some issues related to nonlinear effects have been addressed for hard 
target lidar in previous works6,7. We leave it to future investigations to adapt these approaches for distributed 
target lidar. However, it should be pointed out that there are ample instances in atmospheric lidar where non-
ideal detector behaviors are not significant, particularly for low peak-power lidar systems. For example, the water 
vapor retrievals obtained from the MicroPulse DIAL (the instrument used for this study) are exclusively limited 
to linear/ideal detection regimes with significant success8,9.

In placing photon counts in a histogram, the expected number of observed photons αi in a bin i is given by
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where ρn(t) is the photon flux at time-of-flight t for laser shot n, the bin number is defined by the interval 
[ti , ti +�t) and �t is the histogram bin width in time-of-flight. A total of N laser shots are acquired per histo-
gram. In this work we let t be time-of-flight relative to the most recent emitted laser pulse.

The standard approach to estimating backscatter amplitude is to place photon arrivals in a histogram (either 
immediately or during post-processing) and the observed photon counts in a bin is a Poisson random variable

Given these photon count observations, the ubiquitous standard estimator for the backscatter amplitude is

or if the photon flux is desired

Because the photon counts in the histogram bin are Poisson distributed, the standard deviation in the observed 
counts is σyi =

√
αi  . If the signal-to-noise (SNR) is defined as the signal mean divided by standard deviation, 

then for a given bin

where ρ̄i is the mean photon flux over the acquisition interval of the histogram defined

Operating under the assumption that the photon flux remains constant in the region of observation (although this 
assumption may not strictly hold for many operational remote sensing observations), it becomes evident that the 
precision of the standard estimator is directly linked to the histogram bin size. This connection demonstrates the 
problem of applying the standard estimator to high-resolution photon count data, where the reduction in SNR 
resulting from the use of small histogram bins and short integration times can only be mitigated by increasing 
the photon flux. Conventionally achieving higher photon flux entails employing higher laser power and larger 
collection apertures. However, this will tend to increase instrument cost, size, weight, and power (SWaP) require-
ments, make systems more complex. Additionally, it can push photon fluxes into nonlinear detection regimes, 
potentially compromising data accuracy and reliability.

It is important to recognize that as we push for higher resolutions, the precision of the standard estimator 
diminishes. However, it is equally important to recognize that the high-resolution data has no less information 
than that at coarser resolutions; in fact, the converse is true. When we bin data into coarser resolution information 
is lost. Moreover, the information content of high-resolution data is increasingly contained in the spatial cluster-
ing of those counts instead of the histogram count values. This limitation of the standard estimation approach 
becomes especially critical when dealing with sparse data, where the ability to leverage clustering information 
is essential for accurately estimating the backscatter signal.

For the purposes of this work, a sparse scene is characterized by instances in which αi < 1 , or equivalently 
ρ̄i < 1/(N�t) , such that the probability of zero photon counts is relatively high and the probability of more than 
one photon count is relatively low. Thus sparse data can be the product of very high-resolution data acquisition 
or very low photon flux, but the distinction is not critical for the applications of this work.

Time-tagged data acquisition, sometimes referred to as Time Correlated Single Photon Counting (TCSPC), is 
a high resolution approach to acquiring and storing photon counting detector output10. In this mode of acquisi-
tion, photon counts registered from a detector are stored as time stamps, recording time-of-flight relative to the 
time of the transmitted laser pulse. This information is typically stored on a shot-by-shot basis. The technique 
was originally developed for measuring florescence decay functions11. However it has since expanded into a 
number of applications where high timing resolution is required . Time-tagging is frequently employed in hard 
target lidar applications12–14. The acquisition range resolution is determined by the precision of the onboard clock 
measuring the time-of-flight, enabling the captured range resolutions to be extremely high (down to centimeters 
or millimeters). In principle, when range capture resolution is infinitely fine, this approach avoids any information 
loss during the acquisition step. This ideal scenario represents an extreme case where all information content is 
carried in the clustering of the observed photon counts, with no information carried in the count quantity itself. 
While this time-tagged acquisition avoids any loss of information, we should acknowledge that it also introduces 
practical challenges when implemented in regular operations. One of the main challenges is the substantial data 
volumes generated by high-resolution data capture. This often requires large data storage to archive data and high 
data transfer rates to move the raw data off the lidar device or platform. This becomes particularly significant for 
instruments that run continuously for long time periods.

Seminal work in using time tag data for atmospheric lidar, a common application of distributed target lidar, 
was demonstrated in15 and more recently16. These instruments have captured atmospheric backscatter data at 
unprecedented resolutions. Consequently, they have the potential to provide important insights into the highly 
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dynamic and heterogeneous nature of many atmospheric targets. The influence of heterogeneous and dynamic 
targets on lidar data product accuracy have received relatively little attention, but there is some growing evidence 
that these factors can adversely affect remote sensing data. For instance, one study has shown that averaging over 
heterogeneous cloud structures can bias CALIOP backscatter and depolarization data products17. Additionally, 
heterogenous cloud structure has been found to produce errors in estimates of cloud microphysical properties 
from passive satellite-based retrievals18. The ability to acquire high-resolution lidar data is an important step 
toward gaining a better understanding of these often ignored errors in real atmospheric scenarios.

Exploring high-resolution interrogation of the atmosphere is an important and largely unexplored scientific 
domain. However, it is important to note that the current products of the aforementioned instruments still repre-
sent an incomplete solution to investigate this domain. Although these works demonstrate high resolution capture 
of photon count data, a key distinction lies between the resolution at which data is captured and the resolutions 
actually supported by the information content. In essence, these instruments may simply be oversampling a noisy 
signal. While the time-tagging approach seems to offer unprecedented resolution in the capture of atmospheric 
structure, the remaining challenge lies in actually recovering lidar signal estimates while still leveraging the 
benefits of the acquisition mode. In both works mentioned, the high-resolution time-tagged data is eventually 
placed in histograms, and the standard estimation approach is employed to suppress shot noise and recover 
an estimated signal with acceptable precision. However, this requires significant reductions in resolution, and 
therefore largely negates the benefit of the high-resolution acquisition approach employed by these instruments.

Quantum Parametric Mode Sorting (QPMS) is a lidar technique often employing time tagging. It leverages 
mode matching criteria in nonlinear photonic crystals to improve the SNR in the optical signals reaching the 
detectors, as outlined in19,20. While this technique may enable much better noise rejection, it comes at the cost 
of significantly lower total photon flux on the detectors due to the tightly constrained mode selection criteria. As 
a result, lidar profiles generated using QPMS in time-varying scenes will almost inevitably be sparse. It’s worth 
noting that published works on this subject tend to refrain from providing details on the integration times com-
pared to standard approaches and appear to largely focus on very close-range hard-targets characterized by high 
backscatter. This forces us to speculate regarding the possible fluxes expected in distributed target lidar. While 
most experiments with QPMS have focused on laboratory demonstrations with static targets, the possible and 
proposed applications for the technology have included environmental sensing problems from moving remote 
platforms where distributed target lidar would necessarily be employed (e.g. see21).

When developing sensors and data processing techniques for environmental sensing it’s crucial to acknowl-
edge that the scenes under interrogation are rarely static. This challenge becomes further compounded when 
the sensor is on a moving platform. It is important to note that laboratory demonstrations are able to interrogate 
static scenes over time scales that do not accurately reflect many of the proposed real-world applications. And 
in the instance of16 high range resolution atmospheric backscatter estimates were achieved, but at the apparent 
expense of time resolution. The highly dynamic nature of the clouds under investigation means that integration 
in time will smear out the image in range and largely negate the benefit of the sub-meter range resolution in 
the acquisition system. To remain fundamentally true to the notion of high-resolution distributed target lidar, 
it is essential to perform an accurate retrieval from sparse photon counting data that accounts for variations in 
both time and range. In order to maximize signal resolution, more advanced signal processing techniques are 
needed to recover useful signals from sparse photon counting data and non-stationary scenes without dramati-
cally sacrificing the signal resolution in either axis. This is where Maximum Likelihood Estimation (MLE), and 
adaptations of it, can be employed to improve lidar data products by attempting to more efficiently leverage the 
information content, constraints, and uncertainties in the lidar signals.

The benefit of adopting an MLE based approach is that it potentially enables signal recovery by leveraging both 
the photon counts and their clustering to generate a signal estimate. MLE can thus be applied to time-tagged data 
directly, or similarly, to sparse and noisy histograms. This approach represents a realistic means of achieving bet-
ter observations, rather than degraded ones, as we capture, and subsequently process, data at higher resolutions. 
While the raw observations appear noisy at high resolutions, the recovered signal estimates can still have low 
noise contamination, and more accurately reproduce the target structure compared to lower-resolution histo-
gram estimator methods, which prioritize noise reduction at the expense of capturing accurate structure details.

The concept of applying MLE based techniques to process images dominated by Poisson noise is not new. 
Solutions have been, and continue to be developed, for a variety of applications including medicine22–24, 
communications25, astronomy26 and ranging27. Prior works on sparse photon counting problems in lidar have 
almost exclusively focused on single point target (hard target) ranging28,29. However, this does not directly trans-
late to challenges posed by volumetric (distributed) target scenarios, where the backscatter amplitude serves as 
the parameter, or intermediate parameter, of interest and is nonzero throughout the range profile. Such scenarios 
include the sensing of the atmosphere, snow characterization, and more. The distinctive contribution of this 
work lies in addressing the specific challenges posed in distributed target lidar systems and therefore fulfills the 
signal processing needs of the environmental sensing techniques described above.

Poisson Total Variation (PTV) is a penalized likelihood estimator for processing distributed target lidar data. 
The technique is inspired by signal processing approaches originally developed for medical imaging23,24 and has 
been demonstrated for atmospheric lidar in prior works8,9,30 where the focus is on retrieving data products at 
resolutions typical to atmospheric lidar, and photon counts are not sparse. In those studies, there was no con-
certed effort to evaluate the impact of processing raw data at higher resolutions than were already typical of the 
standard processing approach. Sparse data scenarios were intentionally avoided.

In this research endeavor, we show how a modified version of PTV can effectively process sparse data charac-
terized by high temporal and range resolution. In this case we obtain backscatter estimates from the MicroPulse 
DIAL at resolutions as fine as 0.02 s × 0.75 m. This raw lidar data includes but is not limited to time-tagged data. 
Through simulations and analysis of actual atmospheric lidar data, we demonstrate that PTV is able to provide 
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more accurate estimates of photon arrival rate at a higher resolution than the standard histogram approach. This 
demonstrates its utility for processing time-tag and other high-resolution sparse photon counting data. By achiev-
ing this, PTV can serve as a useful tool for studying the atmosphere’s heterogeneous and dynamic structure and 
its resulting impact on lidar data product accuracy. Importantly, our work completes the necessary components to 
leverage hardware described in15,16. Our results indicate that sparse retrievals result in more accurate backscatter 
estimates than those achieved using PTV at lower resolutions, suggesting that nearly all atmospheric lidar data 
is over-averaged. However, the full impact of this over-averaging is still not known, highlighting the need for 
further investigations using this signal processing tool.

Poisson time tag noise model
Photon arrival times are described by a Poisson point process parameterized by the photon arrival rate ρ(s) where 
s is the continuous time dimension (without reference to a laser shot event). As such, a sequence of photon detec-
tion times {si}Ii=1 (assuming an ideal detector), where a total of I photon counts are detected, will be described 
by the probability distribution function (PDF) for a heterogeneous Poisson point process31

In the equation above, we describe the detection process as a 1D time series, where in a lidar, there may be 
periodic laser firing. As such, there may be a desire to leverage correlation in the target structure across multiple 
laser shots. We can accordingly rewrite equation (7)

where xn refers to the absolute time of the nth laser shot and we let x1 = 0 for simplicity. If the data is acquired 
over many laser shots, we assume that the second integral term in the exponential (a residual accounting for the 
time between the last observed photon and the end of the image) is negligible. Using this approximation, we can 
rewrite equation (8) as a 2D image estimation problem where we replace the absolute time variables si with time 
stamps relative to the most recent laser shot ti = si − xn (for xn ≤ ti < xn+1 ) resulting in

where �tRR is the repetition period of the laser ( �tRR = xn+1 − xn ) and ρn(t) is now a 2D variable with continu-
ous dimension in time-of-flight t and discrete dimension in laser shot index n.

To employ MLE, we seek to find an estimate ρ̃n(t) that minimizes the negative log-likelihood (NLL) of the 
detection noise model. This is the optimization loss function that effectively evaluates how well the estimate 
ρ̃n(t) fits the observed time tag data

Equation (10) represents the generalized fit loss for estimating a photon arrival rate ρ̃n(t) from observations of 
time tag data. This provides a direct mechanism for evaluating the accuracy of candidate solutions for ρ̃n(t) . Any 
variety of basis functions may be used to perform this estimate. For example, polynomial and spline functions 
would be reasonable options depending on the specific description of the problem of interest. Later in this work, 
we will employ PTV, where the basis functions are a set of piecewise constant functions. This is also a natural 
description of the standard histogram approach where each bin is treated as a constant over the bin width. 
Piecewise constant functions will additionally enable further simplification of the NLL.

As is the case in prior works8,30, ρ̃n(t) may also be a forward modeled function of other retrieved variables 
in order to obtain denoised estimates of the derived data products rather than the photon arrival rate itself. In 
this work, we focus on recovering the photon arrival rate because it is an essential component of any quantita-
tive estimate (the retrieved quantity that maps directly onto observations), and therefore many of the concepts 
covered here broadly apply to a number of lidar architectures and applications.

Poisson total variation
Poisson Total Variation is a signal processing approach that draws inspiration from medical imaging 
techniques23,24. The technique was first applied to lidar data for High Spectral Resolution Lidar (HSRL) retriev-
als of backscatter and extinction coefficients30 and later adapted to obtain denoised retrievals of water vapor 
profiles from MicroPulse DIAL (MPD) data8. Under the PTV approach, variables are represented as images 
consisting of discrete pixels, which we assume can be reasonably approximated using a basis of piece-wise con-
stant functions. This solution basis is imposed by applying total variation regularization to the estimated lidar 
signal, which is a penalty for each change in value between pixels (i.e. increase in complexity) in the estimated 
image. In concept, this forces the optimizer to prefer simpler images, where responding to a change in signal 
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must produce a sufficient gain in fit quality to overcome the penalty of the change. Under this framework, the 
minimized objective function becomes a sum of the noise model and the total variation regularization

where f (x) is the forward model that maps the estimated variable image x to a photon flux image ρ̃ , y are the 2D 
photon count observations, η is a scalar tuning parameter that sets the amount of total variation penalty for the 
2D image x consisting of I rows and J columns, and || · ||TV is the l1-based, anisotropic total variation defined32

In order to minimize the objective function, we employ a version of Sparse Poisson Intensity Reconstruction 
Algorithm (SPIRAL), SPIRAL-TV23,24, in combination with Fast Iterative Shrinkage/Threshold Algorithm 
(FISTA) (specifically fast gradient projection–FGP–in32). Each optimization step is calculated

where τk is effectively the gradient descent step size and determined using SPIRAL-TV. The acceptance criteria 
of each step is similarly determined using SPIRAL-TV.

The determination of the optimal total variation penalty η is achieved using holdout cross validation which 
is described in more detail in the subsection below.

When we employ PTV, the estimated variable is approximated as a set of piecewise constant functions and 
requires an assumed discrete grid for the solution basis. As a result, the solution is defined for discrete intervals 
of index p in time-of-flight, and q in laser shots, such that ρ̃n(ti) = ρ̃p,q when tp ≤ ti < tp+1 and q ≤ n < q+ 1 . 
Given the discrete solution, the time tag loss function in equation (10) simplifies for PTV to

where there are P time-of-flight bins in the estimated backscatter, with bin width �tp , Q total laser shot bins, 
and yp,q are the number of photon counts that fell into the (p, q) grid point as defined by its arrival time tp and 
laser shot n.

Note that the loss function in equation (14) is effectively the loss function employed for a Poisson random 
number where y is a histogram of photon counts. Because of the discretization in the PTV solution basis, there 
is no practical reason to retain the time tag data in its raw form. In applying PTV, raw time tag data is naturally 
arranged into histograms defined by the resolution of the retrieved image ρ̃ . However, this PTV histogram resolu-
tion can be much finer than would be typical if we aimed to estimate ρ̃ directly from histogram bin counts. This 
very fine histogram resolution is thus also flexible in responding to the observed scene.

For general instances of time tag estimation using continuous parametric fitting (such as polynomials or 
splines), the time tag loss function in equation (10) can be employed to avoid loss of information caused by 
binning the photon counts in a histogram. However, because PTV requires that we select a solution grid size to 
define the basis image, under the assumption that ρ̃ is constant within a grid point, there is no practical advan-
tage to processing the raw time tags. Instead, we will use equation (14) when performing PTV retrievals in the 
next sections.

We will show, however, that data can be recovered at much higher resolutions and more accurately using 
PTV than when employing standard histogram methods. The best retrievals from PTV will be obtained from 
very sparse histogram data that otherwise has no immediately discernible signal using the standard approach 
at the same resolution.

Holdout cross validation
The total variation penalty η is effectively a constraint on the amount of complexity allowed in the estimate 
of x . Small values of η allow for more variation in the estimate, and can thus respond to rapid changes in the 
state variable but are also more likely to fit noise. By contrast large values will tend to suppress variations in 
the estimate. The optimal value for η will vary based on signal-to-noise and the variability of the scene under 
investigation. As a result, in the PTV framework, η is optimized on a scene-by-scene basis. In order to achieve 
this optimization, we employ holdout cross validation, where the solution obtained for a particular value of η 
is compared to independent identically distributed (i.i.d.) holdout data. The evaluation of η is conducted using 
the same loss function as during the fitting process L (ρ̃; yv ,Nv) where now the observed data is the held-out 
validation data. Lower values of the loss function indicate a better fit and more optimal total variation penalty. 
In this work we obtain the optimal value of η by evaluating a series of values and selecting the value that gives 
the smallest validation loss (if the minimum is an end point, we extend the search space).

For photon counting, there are two methods for obtaining the holdout cross-validation data yv . In each case, 
data from the total observed signal must be split into separate fit (used for estimation) and validation (used for 
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optimizing η ) datasets to ensure independence. In the case of Poisson distributed observations, fit and validation 
data can be split directly from the original dataset using Poisson thinning24. In the case of histograms, Poisson 
random data is split using a binomial random number generator as described in33. Thinning time tag data result-
ing from a Poisson point process is also possible using a Bernoulli random number generator for each time tag. 
Each time tag is placed into a set according to the outcome of its corresponding Bernoulli trial (e.g. 0—fit data, 
1—validation). We should note that the process of thinning will reduce the amount of signal available for direct 
processing, but we have found that signal processing that is analytically optimized for the scene seems to always 
produce better results than the alternative.

In this work, we employ “manual” thinning to generate a fit and validation datasets. In this approach, data 
from alternating laser shots is stored in separate fit and validation datasets. This is a reasonable approach to 
achieving i.i.d. fit and validation data because the laser sample rate (in this case 8 kHz) is much higher than the 
resolvable variations in the observed scene (in this case on the order of 10–100 s of Hz). However, this highlights 
the potential drawback of manual thinning if the scene is not oversampled by the laser, i.e. from fast-moving 
platforms, in highly dynamic scenes or lower repetition rate lasers. The benefit of the manual thinning approach is 
that it allows us to apply holdout cross-validation even when the noise model is not Poisson, which is potentially 
an important eventual application for the methods described here. For instances of analog detection or where 
detector nonlinear effects result in non-Poisson photon counts, manual thinning still presents a viable option 
for holdout cross-validation.

Coarse‑to‑fine
Directly processing fine-resolution (sparse) photon count data with PTV does not tend to produce a reliable solu-
tion. In30 it is noted that zero-value histogram bins result in non-unique solutions in PTV retrievals. In previous 
work, we leveraged a technique termed coarse-to-fine (PTV-CF) in order to obtain more accurate water vapor 
retrievals over large time intervals8. Here we show that a similar approach can be leveraged in order to obtain 
high-resolution estimates of backscatter structure even when the photon counts are small (typically one) and 
sparse (most bins are zero) at the retrieved resolution.

We term this high-resolution coarse-to-fine version of PTV as PTV-CF-HR. Simply stated, this processing 
approach starts with coarse images that have been binned at a low enough resolution to have non-zero photons 
in all pixels. That first estimate is used as the initial condition for the next estimate at a finer resolution, and 
the process is repeated. This approach is described by the flow diagram in Fig. 1. In the figure, key variables are 
set in color and the arrows define the flow of those variables into each processing step. Blue corresponds to the 
backscatter photon flux estimate, yellow is the resolution and the photon counts are red. We start with a set of 
photon count time tags and an inverse ordered set of integer multipliers that define the coarse-to-fine resolution 
steps relative to the base resolution of the final image. The photon counts are manually thinned by laser shots 
and binned into a separate fit and validation data set at the finest (final) processing resolution (In the case of 
the MPD instrument, we allow this to be defined by the rate of the optoelectric switch used to change between 
transmitting online and offline laser wavelengths).

Figure 1.   Flow diagram of the high-resolution PTV-CF-HR algorithm.
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The initial estimate of the backscattered photon flux is set to a constant (generally 1 kHz). For each successive 
finer resolution, the fit photon counts are binned from the raw time tags to the new finer resolution. In addition, 
the initial condition for PTV is the previous solution resampled to the new resolution. The solution obtained 
from PTV is evaluated against the validation photon count data by first upsampling the solution to the finest 
(final) resolution and comparing it (using the NLL) to the validation data similarly binned at the finest base 
resolution. This final estimate is a refined version of the initial estimate where significant high-resolution features 
are allowed to persist while noise is largely ignored via total variation regularization.

In8, coarse-to-fine was performed incrementally only on the water vapor field. The water vapor estimate was 
resampled to project onto a base resolution of 1 min by 37.5 m data. In this work, we adjust the resolution of the 
photon count histogram and the retrieved photon arrival rate ρ̃ . In addition, instead of incrementally decreasing 
bin size (which would require significantly more coarse-to-fine steps), in this work, we typically decrease bin 
size by a factor of two at each step.

Simulation
In this section, we provide a demonstration of PTV-CF-HR on a simple simulation of randomly generated 
rectangular patches (where there is overlap, their arrival rates are summed). This enables us to demonstrate the 
concept and establish the use of the validation NLL as a metric for evaluating the method on actual atmospheric 
data in the next section. This is important because on actual observations no truth is available for computing 
root-mean-square error (RMSE). The simulated scene is sampled using a 10 kHz laser repetition rate. Photon 
arrivals are simulated as time tagged but then binned to a base resolution of 1 ns (approximately 0.15 m) for 
PTV processing. In order to create a validation data set, photon counts from every other laser shot is held out for 
cross-validation and optimization of the total variation regularizer η . An example of the simulated true photon 
flux is shown in the top left panel of Fig. 2. The fit photon count data is processed at a variety of resolutions which 
are integer scales of the base resolution (applied to both range and time). The fit photon count data is placed in 
a histogram at the same scaled resolution.

To perform the PTV-CF-HR estimate, we employ the coarse-to-fine solution described in Fig. 1. In this 
approach, the data is first processed at low resolution using PTV and the solution from that processing step is 
the initial condition for the next higher-resolution step. This helps ensure that the solution converges in cases of 
sparse photon count observations where the optimization problem is not strictly convex.

Figure 2 shows the simulated true photon flux along with estimates of the photon flux using a variety of 
histogram resolutions (reported as multipliers relative to the base resolution) and the result of PTV-CF-HR at 
10x the base resolution. As expected, estimates of photon flux are quite noisy when histogram bins are small. 
As we increase the bin sizes, the noise is suppressed and the photon flux estimates improve in the histogram 
approach. However, at larger bin sizes, the ability to resolve sharp edges in the image is diminished, resulting in 
the smearing of the actual structure. As a result, errors begin to increase beyond a bin resolution of 200x. This 
may be understood as a result of features in the actual image poorly aligning with the predefined histogram grid, 
or having structure that is finer than the grid. By contrast, PTV-CF-HR, is largely able to resolve the fine-scale 
features and edges at 10x resolution, while simultaneously suppressing random noise throughout the image.

We analyze the retrieved estimates of the photon flux using both PTV-CF-HR and the standard histogram 
approach by calculating the RMSE—which is only possible because we have access to absolute truth in simula-
tion—and the validation negative log-likelihood—which can be applied in actual atmospheric measurement 
cases as long as we have hold out data. These error metrics are shown in Fig. 3 for both estimation approaches 
at a variety of resolutions (shown as scale factors relative to the base resolution). In the case of the validation 
NLL, the actual values are adjusted so the minimum point (which is negative) is at 1, allowing us to display the 
result on a log axis.

Note that both the RMSE (top panel) and validation NLL (bottom panel) show similar trends. This demon-
strates how validation NLL can be a useful analytical proxy for error in lidar retrievals where we usually lack a 
truth reference. We should note some caveats, however. The validation NLL is only accurate if the noise model 
used to calculate the NLL is an accurate representation of the detection statistics, and the noise is uncorrelated 
between fit and validation observations. Also, this error is only reflective of how well the retrieval estimate 
represents the observations. It cannot account for errors in calibration or inaccuracies in the assumed physical 
model of the instrument.

The PTV-CF-HR and histogram approach to estimating photon flux have nearly identical errors at low reso-
lutions (above a scale factor of 400). For the histogram approach, the lowest RMSE and validation NLL occur 
at a scale factor of 200 where the two processing approaches have begun to diverge. At an even finer resolution, 
PTV-CF-HR continues to become more accurate, due to its improved ability to resolve sharp features in the 
image, while the histogram approach becomes noisier at finer resolution, and due to this noise, errors begin to 
increase. We also note that below a scale factor of 20, there is little additional improvement in the PTV-CF-HR 
retrieved signal. This appears to be the performance limit of the retrieval for the given observations.

This analysis shows that by applying a penalized likelihood estimator like PTV, we can achieve lower error at 
a higher resolution than the standard histogram processing approach.

Atmospheric data
To further demonstrate PTV-CF-HR, we applied it to atmospheric lidar data and used the validation NLL for 
evaluation. The NSF-NCAR MicroPulse DIAL (MPD)34 was operated with a custom time-correlated single 
photon counting (TCSPC) module with 5 ns time-of-flight resolution. The laser repetition rate is 8 kHz (3 µ J 
per pulse) with the DIAL system switching between online and offline water vapor channels at a period of 50 
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Hz. As a result of this hardware design, to avoid blank laser shots, we chose to bin the data for processing to the 
finest base resolution of 20 ms (80 shots per wavelength channel) in time and 5 ns (0.75 m) in time-of-flight.

Here we examine data from August 19, 202135 over a small altitude and time period (approximately 1.9–3.3 
km for 5 minutes). During this time we observe falling ice, the melting layer, and subsequent falling rain, which 
presents an interesting backscatter target for analysis. All of the photon arrival rates from this scene appear to 
be well below the nonlinear regime of the single photon avalanche photodiode detector (with a dead time of 
approximately 25 ns).

In order to estimate the atmospheric backscatter signal, we employ a forward model that encapsulates the 
background counts and laser pulse width. Thus the detected photon arrival rate is

where L(t) is the square laser pulse (0.625 µ s or 93.75 m) and b̂n is the background counts estimated using 
PTV-CF-HR on high altitude photon counts near 18 km (which are assumed to contain negligible atmospheric 
backscatter signal). In the results we consider here, the solutions ρ̂ are shown in the images, but the validation 
NLL is still evaluated based on the forward model ρ̃ . In this way, the relatively long square laser pulse can be 
deconvolved from the atmospheric signal to obtain structure at a much finer resolution.

In performing this analysis, we consider a few different coarse-to-fine paths, where data is initially binned 
at different resolution ratios in time and range relative to the base resolution dictated by time of flight resolu-
tion (5 ns) and online-offline sampling period (20 ms). At each up-sampling step, the pixel size was reduced in 

(15)ρ̃n(t) = L(t) ∗ ρ̂n(t)+ b̂n

Figure 2.   True image (top left) compared to histogram estimates of photon flux for incrementally increasing 
bin size (indicated as multipliers of the base 1 ns range and 0.1 ms time resolution). At fine resolution, the 
histograms are noisy while at coarse resolution, images smear out. The lowest error of the histogram approach is 
at 200x bin size. The bottom right image shows the result obtained by PTV-CF-HR at a resolution of 10x.
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both dimensions by a factor of two, thus each resolution step is a power of two relative to the base resolution. 
The validation NLL of each up-sampled step is shown for each of these time:range processing cases as a func-
tion of time and range resolution in Fig. 4. The processing result that achieves the lowest validation NLL is 8:1 
(bottom row, second from the right, marked with the white x). At present, we cannot definitively claim to know 
the reason for this (and therefore have prior knowledge of the best processing option), though it does appear to 
correspond to the case where the vertical and horizontal pixel dimensions are close to the same. We compare the 
final validation NLL of all these processing cases and include the optimal standard approach (Hist.) as shown in 
Fig. 5. In order to perform this comparison, we determined the optimal MCS bin resolution based on that which 
produces the lowest validation NLL. We note that all of the PTV-CF-HR cases produce a lower validation NLL 
than the optimal histogram approach.

The results of all of these backscatter estimates ρ̂ are shown in Fig. 6 which includes the optimal histogram 
solution (10.24 s × 48 m) and the raw photon time tags as well. Notably, the optimized histogram solution still 
retains noise in low signal regimes and significantly degrades the ability to resolve high-resolution structure in 
higher signal regimes. We know from the validation NLL in Fig. 5, that this solution has higher error than the 

Figure 3.   Evaluation of PTV processing approach compared to histogram method as a function of data 
resolution. RMSE was calculated using the true backscatter flux of the simulation (top). Adjusted validation NLL 
(bottom) is calculated relative to one plus the minimum NLL. Resolution is reported as multipliers of the base 1 
ns range resolution and 0.1 ms time resolution (larger values indicate coarser resolution).

Figure 4.   Map of validation negative log-likelihood for coarse-to-fine trajectories relating to different 
time:range bin ratios of the raw photon count data. The white x indicates the lowest validation NLL of the 
candidate solutions.
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PTV-CF-HR solutions, but Fig. 6 makes it visually clear that the standard processing approach results in a lower 
quality (higher noise, lower resolution) estimate of the lidar backscatter signal.

The average PTV processing times for each coarse-to-fine step in the above analysis are shown as a function 
of pixel count in Fig. 7. PTV is expected to take longer to achieve convergence when processing larger images, 
which is clearly reflected in the data. The coarsest resolutions (smallest images) complete in minutes while the 
finest resolutions (largest images) took nearly 12 h to complete. Note that the rate of increase starts to diminish 
just below 106 pixels. In general we would expect the processing time to continue to increase with pixel count, 
but because each coarse-to-fine instance is initialized by the result of the previous step, it is likely this roll-off is 
a product of the initial condition being near the final solution.

The processing times required for PTV-CF-HR are clearly much larger than that for the standard histogram 
method. However this presents somewhat of a false comparison, as the histogram method cannot produce 
signal reconstructions at resolution and accuracy comparable to PTV-CF-HR. Thus if high resolution products 
are the objective, increased computational cost is inevitable. While the processing times shown here are clearly 
not sufficient for real time processing, they still enable scientifically useful study of heterogeneous structure in 
atmospheric targets in a way that was not previously possible with standard processing approaches.

There may be opportunities to increase the processing speed of PTV-C2F-HR. Better tuning of stopping 
criteria in the Spiral-TV instance would ensure that the optimization routine does not run for extended periods 
of time while achieving small improvements in the estimate. Also, the PTV software used in this work relies 
on a CPU based implementation. More recent developments in GPU based PTV processing may produce a 
substantial increase in processing speed9.

While the 8:1 coarse-to-fine path produces the best final result, there is still potential to process the data at 
finer temporal resolution. To evaluate the impact of this, we performed coarse-to-fine in only the time dimension. 
Figure 8 shows this analysis applied to all of the cases where we already obtained a minimum in-range resolu-
tion (75 cm) as dictated by the acquisition clock. In this scene, the validation NLL continues to decrease at finer 
temporal resolution for all of the considered cases. This suggests that there may be benefits in processing the data 
at still finer than 20 ms resolution. However, the impact if this final coarse-to-fine processing is relatively small. 
The order of performance remains the same as with the original time:range bin resolutions. In most cases, this 
remains true when comparing the worst and best cases. For example, note that the 8:1 solution before processing 
at higher temporal resolutions still has a lower validation NLL than the next best solution (4:1) even at its high-
est temporal resolution. This suggests that the initial condition remains an important parameter in obtaining 
the best possible solution image. It further emphasizes that, while all of the PTV-CF-HR cases provide superior 
retrievals to the standard method, more work is needed to determine the optimal initial coarse-to-fine resolution.

It is important to recognize that throughout the analysis of the scene presented here, the validation NLL 
continues to decrease as the data product resolution becomes finer. As we move to progressively finer resolu-
tions, we should eventually expect to see the validation NLL cease to improve (or perhaps even become slightly 
worse) when information captured in the observational data is no longer sufficient to provide higher-resolution 
observations. That this does not happen, suggests that the information content captured in this scene supports 
much higher resolutions than are typically associated with atmospheric lidar data. That is, in effect, standard lidar 
resolutions are over-averaging photon counting data. For the relatively low power MPD, typical time resolutions 
are 1 minute with a range resolution of 37.5 m. However, the power of the lidar (and the noise sensitivity of its 
final data product) will tend to scale the supported resolutions so that higher power systems operating at 1-second 
resolution, could still be significantly over-averaging as well. Ultimately, over-averaging is driven by two factors, 

Figure 5.   Comparison of final estimate validation log-likelihood based on different time:range bin ratios. Also 
compared is the optimal histogram binning solution representing the best-case standard approach.
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Figure 6.   Comparison of PTV-CF-HR estimated photon arrival rate based on the relative raw data binning 
(time:range) compared to the base resolution of 0.02 s × 0.75 m. Based on validation NLL, the 8:1 case is the best 
result. Also shown is the optimal histogram solution representing the best-case standard approach and a scatter 
plot of the raw photon time tags.
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the spectrum of dynamic/heterogeneous structure in the scene under investigation (potentially extremely high 
for clouds) and the ability of the captured signals of that structure to rise above noise limits.

Conclusion
In this study, we have demonstrated a novel approach for applying maximum likelihood estimation to sparse, 
distributed target data obtained from photon-counting lidar systems. We have specifically focused on using a 
coarse-to-fine methodology coupled with Poisson Total Variation, termed PTV-CF-HR, to achieve high-reso-
lution retrievals of atmospheric backscatter. This was accomplished using low-power lidar instrumentation with 
raw TCSPC data binned to a minimum temporal resolution of 0.02 s and a range resolution 0.75 m.

Our findings show that PTV-CF-HR outperformed the standard histogram approach to estimating lidar back-
scatter signals as shown in both the simulated and atmospheric processing. Notably, our results reveal that retriev-
als applied to higher-resolution data have improved validation performance, compared to coarser resolutions. 
This result suggests that atmospheric lidar data may generally be over-averaged at resolutions more typical of 
atmospheric lidar, although further investigations are needed to understand its impact on data product accuracy.

While the research presented here has primarily focused on retrievals of backscatter photon arrival rate, it 
can also be leveraged for atmospheric data products. This capability has been demonstrated with PTV at much 
lower resolutions where the data is not sparse8,30. Combining the forward model retrieval approach with PTV-
CF-HR could be useful for processing low signal-to-noise lidar observations; such as recovering the fine-scale 
structure of polar mesospheric clouds and sodium layers in the upper atmosphere. Additionally, it may prove 

Figure 7.   Average processing time of PTV routine as a function of pixels in the image.

Figure 8.   Comparison of finest temporal resolution estimates based on initial coarse-to-fine time:range bin 
ratios. Processing at finer temporal resolution further improves the validation NLL.
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beneficial for retrievals leveraging Quantum Parametric Mode Sorting (QPMS) architectures in environmental 
sensing where captured signals are likely to be sparse over dynamically evolving scenes.

In addition, PTV-CF-HR serves as a tool for investigating lidar sensor performance and errors resulting from 
coarse-resolution acquisition and analysis on observational data collected from dynamic scenes. The effect of 
averaging lidar signals over heterogeneous cloud structures is rarely discussed in the literature, and there has been 
very limited investigation of its potential impact. Some analysis has suggested that space-based lidar products 
may be biased by heterogeneous scenes17 and there are similar indications for other remote sensors as well18, 
but there is currently very limited ability to investigate this effect directly. Combining PTV-CF-HR with high-
resolution acquisition systems (as described in previous works15,16 and implemented on the MPD here) offers a 
pathway to gaining further understanding of remote sensor performance and accuracy.

While this work shows the potential for estimation techniques derived from Maximum Likelihood Estimation 
(MLE) applied to lidar data processing, we also highlight the need for further research. In particular, we focused 
on cases where non-ideal detector behavior can be reasonably neglected. Given that likelihood estimators rely on 
an accurate statistical model of the detection process, achieving accurate recovery of tropospheric cloud structure 
requires a noise model that can properly account for the non-ideal aspects of the detection processes. Further, the 
highest performance result obtained from PTV-CF-HR depended on the initial coarse-to-fine resolution selected. 
While it is possible to systematically evaluate a range of possible initial resolutions, this can be computationally 
expensive. Additional work that allows us to avoid this step would enhance the practicality of PTV-CF-HR.

Data availability
The data used to generate this paper is archived and publicly available37. Atmospheric data is from raw MPD 
instrument which is publicly available35. Analysis code used for this publication is available at https://​github.​
com/​NCAR/​Signal-​Estim​ation-​Sparse-​Data.
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