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Global WaterPack - the 
development of global surface 
water over the past 20 years at 
daily temporal resolution
Igor Klein  1 ✉, Soner Uereyen  1, Patrick Sogno1, andré twele1, andreas Hirner1  
& Claudia Kuenzer1,2

Open surface water across the globe is essential for many life forms and is an important source 
for human settlements, agriculture, and industry. The presence and variation in time and space is 
influenced by different natural conditions (e.g. climate, topography, geology) and human use (e.g. 
irrigation, flood protection). The information on the spatial and temporal distribution of open surface 
water is fundamental for many disciplines and is also required as an essential parameter for hydrological 
and climatological modelling. Here, we present a dataset derived from satellite earth observation, 
which is based on more than 6.3 million single MODIS products with a volume of approx. 300 TB. The 
resulting dataset reflects the situation of open surface water on a global scale for each day over the 
time period from 2003 to 2022 at a spatial resolution of 250 m. The dataset enables the analysis of the 
development of lake and reservoir surface areas, freezing cycles, and inundation areas.

Background & Summary
Water is essential to all forms of life. The rhythm of continental open surface water forms ecosystems and deter-
mines economy and industry1. Natural lakes, artificial water reservoirs, wetlands, and floodplains often undergo 
pronounced seasonal dynamics in their areal extent. The area of open water surface is essentially depending on 
climate, relief, land cover, and human intervention1. These factors can cause regular fluctuations or clear trends 
over a long period of time or, in extreme weather conditions, cause sudden, large-scale changes2. Comprehensive 
knowledge of global spatial-temporal patterns of water surfaces is of great importance for understanding differ-
ent natural and man-made processes and their effects3. Especially the decrease in freshwater around the world 
can be detected by satellites4–6. Satellite remote sensing has been a key technology to monitor and detect the state 
of open water surfaces at different temporal and spatial scales3,7–11. One of the most important aspects is to detect 
changes and variations at high temporal resolution. Optical sensors such as Advanced Very High Resolution 
Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging 
Radiometer Suite (VIIRS), Ocean and Land Colour Instrument (OLCI) with medium spatial resolution between 
250 and 1000 m provide reasonable compromise between spatial detail, global coverage and daily revisiting time 
of same region. The MODIS sensors on board of Terra and Aqua satellites were applied for global water mapping 
at 500 m and daily resolution between 2001 and 201612, at 250 m and 8-day resolution between 2000-201813 and 
for near real time (NRT) flood mapping14. Additionally, VIIRS and MODIS are used to reconstruct water vol-
ume of 164 world-wide largest reservoirs at 8-day and monthly temporal resolution15. In this context, a detailed 
recording, observation, and quantification of water surfaces is crucial for accurate modelling and also for the 
development of effective sustainability strategies, especially in light of ongoing global change16.

Observation of water dynamics with satellite remote sensing. The aim of the Global WaterPack 
(GWP) dataset is the daily worldwide mapping of open surface water. The methodology was published by Klein  
et al.17 but the entire range of datasets was not publicly available yet. So far, over 6.3 million individual images 
from the MODIS sensors between the years 2003 to 2022 have been processed (approx. 300 TB of raw data). 
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MODIS provides daily global coverage which is particularly useful for continental to global scale assessments. 
As a result of a complex, fully automatic evaluation17, the Earth’s surface is divided into two types of binary land 
cover every day: open surface water and no open surface water. By aggregating the daily results, spatial-temporal 
patterns of lakes and reservoirs become visible, and their properties can be examined and described. The GWP 
annual frequency layer shows the number of days within a year on which open surface water occurs in a certain 
place on Earth (Fig. 1). Depending on the region, drastic differences are visible. While lakes of the mid-latitudes 
hardly change over the year, the extent of open surface water of lakes and wetlands in the subtropics or in per-
mafrost areas fluctuate widely within a year. Artificial reservoirs also show significant seasonal variations. Lakes 
in northern latitudes and mountain regions, on the other hand, indicate when and for how long the water 
freezes because the water mapping methods from optical satellite imagery classify these lakes not as open water. 
Long-term means, anomalies, and trends can be obtained from the analysis of the derived time series. This ena-
bles the observation and quantification of long-term environmental changes.

When considering the entire range of GWP, one can observe the water dynamics as well as lake ice dynamics 
at a global scale. However, to distinguish lake ice additional datasets on temperature and contextual knowledge 
are required as this is not flagged in our dataset. Temporal dynamics at different scales, such as seasonal cycles 
of flood plains along large rivers or the filling and emptying of artificial reservoirs can be clearly determined and 
investigated18. Thus, this dataset provides a comprehensive basis for further quantitative and qualitative evalua-
tions of spatial-temporal water dynamics.

Improved data for various fields of science and modelling of future developments. The GWP 
offers great potential for improving global and regional climate and hydrological modelling, water-related risk analy-
sis, or assessing the human impact on various ecosystems. The dataset can also serve as a starting point for long-term 
worldwide monitoring of historical and future water surface dynamics at high temporal resolution. Furthermore, 
this enables comparative analyses between different river catchments around the world. Thus, the GWP provides an 
important input for hydrological analyses, geoscientific modelling, and water resource management. Water availabil-
ity, water demand, and extreme events such as droughts, heavy precipitation, snowmelt, and floods can be examined 
with high temporal resolution. Moreover, spatial downscaling to combine high temporal resolution information 
with higher spatial resolution satellite data such as Landsat, Sentinel-1, and −2 could provide further improvements.

Methods
The GWP was developed to automatically derive open surface water on a global scale from optical MODIS 
data and exploit the full capacity by combining both daily observations from Terra and Aqua. The dense time 
series allows for the interpolation of clouds or other data gaps while maintaining high temporal precision. The 

Fig. 1 Global WaterPack examples of dynamic water bodies.
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processing requires a high degree of automatization and consideration of different environmental situations as 
well as characteristics and quality of used input data products. Figure 2 illustrates the entire processing workflow 
of GWP which is subdivided into the following five steps: (i) data download and pre-processing, (ii) dynamic 
training and classification of individual observations, (iii) combination of results from both MODIS sensors, (iv) 
temporal interpolation and gaps filling based on closest classification with high confidence, (v) post-processing 
to avoid overestimation of water due to different environmental phenomena. All individual processing steps are 
explained in the following.

Data download and pre-processing. The main input datasets for the GWP dataset are daily surface reflec-
tances detected by the MODIS instruments aboard the Aqua and Terra satellites. We utilize the MODIS surface 
reflectance level-2 gridded products MOD09GQ and MYD09GQ (collection version 6, L2G, https://modis.gsfc.
nasa.gov/data/dataprod/mod09.php) containing the near infra-red (NIR) channel (841–876 nm) and the red chan-
nel (620–670 nm) at a spatial resolution of approx. 250 m. The MOD09GQ/MYD09GQ products are provided as 
calibrated spectral radiance values estimating surface spectral reflectance at ground level19. Additionally, we use the 
MODIS daily snow cover gridded level-3 products MOD10A1 and MYD10A1 with a spatial resolution of approx. 
500 m (collection version 6, L3G)20. These thematic datasets provide a daily estimation of snow cover, cloud cover, 
and lake ice as well as a static lake and ocean mask21. Both used datasets are provided as standardized 10° by 10° tiles 
(approx. 1,200 × 1,200 km) in Sinusoidal projection. The main global land mass excluding the pole regions (70° to 
90°) and remote islands is covered by 206 tiles which results in more than 300,000 input datasets for our process.

Extracting training pixels and classification of individual observations. We use all pixels which 
are assigned in the static inland surface water product MOD44W22 (https://modis.gsfc.nasa.gov/data/datap-
rod/mod44w.php) as potential training pixel candidates which are further filtered and reduced based on cloud 
coverage and spectral characteristics of classified days. The MOD44W is a combination between Shuttle Radar 
Topography Mission (SRTM) Water Body Data Set (SWBD) and MODIS 16-day composites (before 2009). The 
layer provides a snap-shot of water areas including transitional environments such as wetlands and estuaries 
during the operation time of SRTM (February 2000) or derived from MODIS composites. However, as water 
areas are changing over time, and also can be covered by clouds or lake ice, we have to conduct several conditional 
tests to guarantee that the extracted training pixels indeed represent surface water at the time of observation. 
Training pixel candidates which are assigned as cloud, lake ice, or snow in the MOD10A1/MYD10A1 datasets20 
are excluded. Nevertheless, it cannot be guaranteed that the remaining pixels are free from clouds (especially on 
cloud fringes) or are not affected by other distortions e.g. due to artefacts resulting from compositing processes, 
or sun glint. Therefore, further ambiguous training pixel candidates are excluded from the training set by applying 
a NIR reflectances threshold (thA) to exclude distorted and potential non-water pixels. The remaining pixels are 
used to calculate dynamic thresholds for the NIR channel and NIR-RED index for actual delineation between 
water and non-water pixels on a specific day and MODIS tile. These thresholds are calculated as 85th percentiles 
(thB) of the remained training pixel distributions. Since these daily derived thresholds are highly variable from 
day to day due to the high variability of cloud coverage and difference in data quality or distortion, we use a tem-
poral 8-day-mean moving window filter to smooth and minimize noise. In this way, the seasonal differences of 
the spectral response of water are retained, but outliers are reduced. The evaluation process of thA and thB on a 
global scale is described in detail in a previous study17. A pixel is assigned as water when it features values below 
the dynamic thresholds of both NIR and NIR-RED or if a pixel is characterized by only NIR values below the 

Fig. 2 The Global WaterPack workflow is divided into four major processing steps: (I) Training pixel selection 
and threshold extraction; (II) inclusion of auxiliary information and pre-processing; I(II) dynamic classification 
of individual images; (IV) temporal interpolation and gap-filling based on closest classification with high 
confidence.
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NIR threshold and additionally assigned as water in the static mask. The additional condition using only NIR 
threshold and the relation to the static water mask is included to avoid possible omission errors over permanent 
water bodies due to occasionally data distortions in red band. All pixels which are classified as non-water and are 
assigned as cloud or ocean within the MOD10A1/MYD10A120 products are labelled as such, remaining pixels are 
assigned as land (non-open surface water respectively). In this way, we generate a classification for each day, each 
MODIS tile, and each observation (based on Terra or Aqua) which are used for further processing.

Combination of results from both MODIS sensors. In this step, we combine both classification results 
from Terra and Aqua of the same day to create more reliable results and, at the same time, to reduce the overesti-
mation of water related to cloud shadow. In this regard, the combined result can contain the following categories: 
water detected by both sensors (water-water), land detected by both sensors (land-land), clouds detected by both 
sensors (cloud-cloud), water-cloud combination, land-cloud combination, and land-water combination. Pixels 
identified as water or land in both sensors are considered highly confident and are assigned values of 100 for open 
surface water and 0 for no open surface water. All other categories are considered ambiguous and are assigned a 
value of 50 to be further processed in the next step.

Temporal interpolation and gap filling. An important objective is the generation of a gap-free time 
series. Therefore, ambiguous pixels from the previous step undergo a temporal interpolation and gap-filling pro-
cess. We utilize the strategy of memory of preceding detection and knowledge of future detection23 to interpolate 
for gaps resulting mostly from clouds or data artefacts. The gap-filling starts with a window of 3 days centered at 
an ambiguous time step. The sum of all pixel values within the window excluding the centered pixel is divided by 
the number of pixels within the window minus one. The ambiguous pixel is then replaced by the new value. As 
long as the centred pixel has a value of 50, the window will increase by an additional time step at the beginning 
and at the end. Additionally, the classification results are improved by filtering out isolated cases, specifically 
meaning if only one time-step is classified as water or land. A case is considered an isolated day if a pixel is classi-
fied as water (land) but the time steps before and after that are classified as land (water). Such one-time cases are 
identified in the time series and re-interpreted to the class that has been detected before and after.

After filtering and filling the gaps with the above-described workflow, the output layers are characterized by 
pixel values between 0 and 100 excluding the value 50. The values can finally be used to create a binary water-no 
water mask, whereas pixels are re-labelled to land when they show values of less than 50 and to water when 
they show values higher than 50. In this way, a new cloud and gap-free output is generated. Finally, the number 
of water classifications within the time series of daily binary masks are counted for each year and each month 
resulting in annual and monthly open surface water frequency layers which represent the number of days per 
year and month where one pixel was covered by open surface water.

Post-processing. To address any overestimation due to topography, building shadows, or dark land surfaces, 
it is common to use auxiliary datasets3,24. For topographic shadows, all slopes steeper than 5° inclination based 
on a global DEM were included25. The classification of urban areas was extracted from the MCD12Q126 product 
(https://modis.gsfc.nasa.gov/data/dataprod/mod12.php). Additionally, spectrally ambiguous surfaces such as 
volcanic material were addressed by utilizing the long-term maximum temperature difference between day and 
night calculated from the ACP dataset27. A potential overestimation by burned areas is addressed by calculating 
the potential maximum surface water area using all available global products3,12. A combination of this auxiliary 
information can be applied to re-classify pixels and reduce overestimation due to ambiguous spectral reflectance. 
Pixels are re-classified to non-water where both the masks and the temporal profile indicate a high probability of 
misclassifications due to relief and building shadows, ambiguous land surfaces, and burned areas. Additionally, 
the static ocean mask from the ESA CCI Land Cover product suite28 was used to label ocean pixels within global 
mosaics because GWP was only processed over main land mass.

Data quality. Information on the quality of the GWP is provided by means of reliability and observation 
layers29,30. The observation layer is available at a daily temporal scale. This data points out if both MODIS acquisi-
tions of same day were available and had both clear view or not at global scale per pixel and day. The pixel value 0 
means no observation and a value of 1 means observation available. Furthermore, we provide reliability layers at a 
daily, monthly, and annual temporal scale. First, we calculated the reliability layer at daily scale using the number 
of available observations per pixel within a 30-day interval. In detail, this means 15 days prior to the observation 
and 15 days after the observation. The sum of available observations (not filled gaps) is then divided by the size 
of the window. Based on the daily reliability layer, the monthly and annual reliability layers are calculated as the 
average for corresponding time intervals. The reliability and observation layers only indicate valid values for 
pixels that have a water pixel in the GWP during the entire investigation period. Furthermore, land pixels are 
indicated by the value 101 and ocean pixels the value 102.

Data records
The Global WaterPack yearly31, monthly32, daily33 datasets are available at DLR’s Geoservice including Web Map 
Service (WMS) interface for visualization of yearly and monthly datasets and corresponding SpatioTemporal 
Asset Catalog (STAC) for data search and discovery (links are provided on the DOI landing pages). The file 
naming convention is:

Daily water map:GWP.OSWF.DAILY.[YYYYMMDD].v1.tif
Monthly water frequency:GWP.OSWF.MONTHLY.[YYYYMM].v1.tif
Annual water frequency:GWP.OSWF.YEARLY.[YYYY].v1.tif
Daily observation:GWP.OSWF.DAILY.[YYYYMMDD].v1.obs.tif
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Daily reliability:GWP.OSWF.DAILY.[YYYYMMDD].v1.reliability.tif
Monthly reliability:GWP.OSWF.MONTHLY.[YYYYMM].v1.reliability.tif
Annual reliability:GWP.OSWF.YEARLY.[YYYY].v1.reliability.tif

GWP: Global WaterPack
OSWF: Open Surface Water Frequency
v1: Version 1

All raster files are processed in the Sinusoidal projection inherited from original input MODIS products. For 
easy handling the final products are mosaicked to one global raster and made available in WGS84 (EPSG:4326). 
Figures 3–5 demonstrate exemplary yearly, monthly and daily development of Lake Poopo in Bolivia and under-
line high spatial-temporal variability of surface water.

technical validation
The generated daily water masks are validated based on a total of 321 Landsat reference classifications distrib-
uted across the globe covering different seasons. The generation of this reference dataset is described in detail in 
the original method paper17.

A random selection of 10,000 water pixels and 10,000 land pixels from the reference dataset was cross com-
pared to the corresponding GWP pixels. For this, the Landsat-based reference data was rescaled and reprojected 
to 250 m pixels in the MODIS coordinate reference system. Reference pixels that had been included in the defi-
nition of the GWP training thresholds (thA, thB) were excluded from validation. Further, water and land valida-
tion pixels were filtered to only feature observations with a sub-pixel class fraction of ≥50.

For 250 m pixels with a sub-pixel water fraction of 100%, the overall accuracy was 96.3% with a Kappa coef-
ficient of 93.3. For reference pixels with a sub-pixel water fraction of 75–99.9%, the overall accuracy was 90.1% 
(Kappa = 79.3). For sub-pixel water fractions of 50–74.9%, an overall accuracy of 58.7% (Kappa = 15.4) could 

Fig. 3 The Global WaterPack annual water frequency of Lake Poopo, Bolivia for the years 2003 until 2022.

https://doi.org/10.1038/s41597-024-03328-7


6Scientific Data |          (2024) 11:472  | https://doi.org/10.1038/s41597-024-03328-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

be achieved. The decrease in accuracy with decreasing sub-pixel water fractions is due to mixed pixel effects 
occurring at the medium spatial resolution of 250 m. Thus, especially narrow rivers, channels, and very small 
water bodies are underestimated which is mirrored in an elevated omission error of 72.4% for low sub-pixel 
fractions of water (50–74.9%). A summary of this quantitative accuracy assessment is given in Table 1. In regards 
to accuracy, the user has to keep in mind that presented validation approach and usage of Landsat represents the 
agreement between automatic mapping derived from MODIS sensor and manually digitalized water areas from 
higher spatial resolution Landsat data at 30 m. Even though, such cross comparisons are common, the used dig-
italized water area are a proxy for ground truth and the provided measures demonstrate the agreement between 
the water maps derived from two satellite sensors with different spatial and temporal resolutions.

Usage Notes
GWP datasets are updated yearly, however the dataset version described and peer reviewed in this manuscript 
relates to data collected from 2003–2022. The GWP dataset was developed to provide scientists and mod-
ellers with daily and continuous information over 20 years on global open surface water without requiring 
time-consuming manual delineations.

Even though for many regions reasonable accuracies are achieved, the user has to consider some limitations. 
Especially water bodies with a high ratio of mixed-pixels to total area as well as water bodies in tropical or high 
latitude regions with persistent and long-lasting cloud cover should be interpreted with care. In regions with 
long-lasting cloud cover or polar night the majority of daily results are interpolated. The time span between 
clear twice-daily MODIS data can be several months which can lead to biased results due to data gap filling. 
Furthermore, open surface water covered by vegetation or high sediment load can be classified as non-water 
due to its ambiguous reflectance in NIR and red spectrum. Water bodies which experience freezing and are 
covered by ice and snow are classified as no open surface water for these periods. Therefore, lake ice phenology 
is indirectly contained in the dataset which can be extracted by user using e.g. temperature data or contextual 
knowledge. On the other hand, additional underestimation of open surface water can occur due to increased 
fraction of mixed pixels during freezing and thawing processes.

Code availability
The generation of the GWP is conducted using multiple processing steps including data acquisition and 
preparation, classification, interpolation, as well as enhancement of overestimated pixels. Global MODIS data was 
downloaded and stored in computing environments of DLR’s Earth Observation Center. Further processing tasks 
have been performed in internal CPU and GPU clusters available at DLR’s Earth Observation Center using DLR 
proprietary software along with specialized Python (v3.8, https://www.python.org/downloads/windows/) and 

Fig. 4 The Global WaterPack monthly water frequency of Lake Poopo, Bolivia for January 2014 until March 2015.
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Fig. 5 The Global WaterPack daily water masks of Lake Poopo, Bolivia for 1st until 25th December 2014.

Sub-pixel water fraction in rescaled, 
reprojected reference dataset

100% <100% - 75% <75% - 50%

Omission error 7.8% 20.7% 72.2%

Commission error 0.5% 0.9% 13.1%

Water mapping accuracy 91.7% 78.5% 23.1%

Overall accuracy 96.3% 90.1% 58.7%

Kappa coefficient 93.3% 79.3% 15.4%

F-score 95.4% 86.6% 35.6%

Table 1. Global accuracy assessment of GWP using Landsat-based reference data sub-pixel water fractions.
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IDL (v8.0, https://www.nv5geospatialsoftware.com/Products/IDL) scripts. Due to the utilization of proprietary 
tools, it is not possible to openly disclose the implemented processing pipeline to the public. The calculation of 
the global mosaics at different temporal scales which are available for download at the Geoservice of the DLR 
Earth Observation Center were carried out using GDAL (Geospatial Data Abstraction Library v.3.6, https://gdal.
org/index.html). The corresponding scripts are available at https://download.geoservice.dlr.de/GWP/files/code/.
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