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a global dataset of terrestrial 
evapotranspiration and soil 
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Quantifying terrestrial evapotranspiration (ET) and soil moisture dynamics accurately is crucial for 
understanding the global water cycle and surface energy balance. We present a novel, long-term 
dataset of global ET and soil moisture derived from the newly developed Simple Terrestrial Hydrosphere 
model, version 2 (SiTHv2). This ecohydrological model, driven by multi-source satellite observations 
and hydrometeorological variables from reanalysis data, provides daily global ET-related estimates 
(e.g., total ET, plant transpiration, soil evaporation, intercepted evaporation) and three-layer soil 
moisture dynamics at a 0.1° spatial resolution. Validation with in-situ measurements and comparisons 
with mainstream global ET and soil moisture products demonstrate robust performance of SiTHv2 in 
both magnitude and temporal dynamics of ET and soil moisture at multiple scales. The comprehensive 
water path characterization in the SiTHv2 model makes this seamless dataset particularly valuable 
for studies requiring synchronized water budget and vegetation response to water constraints. With 
its long-term coverage and high spatiotemporal resolution, the SiTHv2-derived ET and soil moisture 
product will be suitable to support analyses related to the hydrologic cycle, drought assessment, and 
ecosystem health.

Background & Summary
Water and energy exchanges between the land and atmosphere play a critical role in shaping the climate1,2. 
Evapotranspiration (ET) serves as a crucial nexus in the intricate global water and carbon cycles3–5, not only 
maintaining water balance but also affecting surface energy balance6–8. As the primary mechanism for water 
transfer from soil to atmosphere, ET consumes over 50% of available radiation and returns 60% of annual ter-
restrial precipitation9,10. Accurate estimation of ET and its different components (i.e., plant transpiration, soil 
evaporation, and canopy interception evaporation) is thus essential for understanding global energy balance and 
water cycle, particularly when separating vegetation feedbacks in the context of a changing climate.

Terrestrial ET is theoretically governed by two terms: atmospheric demand, which determines the potential 
ability to accept water vapor11, and local water supply, which regulates the actual amount of ET12. Among var-
ious water transfer mechanisms on Earth’s surface, soil moisture plays a crucial role in impacting actual ET by 
directly representing soil water availability13,14. Consequently, accurate estimates of both ET and soil moisture 
mutually complement each other. Although process-based ET models have proven effective in quantifying ter-
restrial ET15, the majority of these models do not comprehensively integrate underlying ecohydrological pro-
cesses, such as canopy interception16, groundwater table dynamics17,18, and root water uptake19,20.
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The Simple Terrestrial Hydrosphere (SiTH) model21 integrates the eco-hydrological process with remotely 
sensed information to characterize the water pathway within the groundwater-soil-plant-atmosphere contin-
uum (GSPAC)22, which demonstrated favorable performance in modeling ET across various ecosystems23–25. 
Recent evidence has shown that groundwater table dynamics significantly affect root zone soil moisture26,27, sur-
face runoff production28,29, land-atmosphere interactions30,31, and regional climate32,33. However, most research 
focused on regional scales, while simple and effective expressions of groundwater effects on vegetation at the 
global scale have been lacking. To address this, we considered potential deeper layer recharge in soil moisture 
based on the saturated hydraulic conductivity for different soil properties34. It should be noted that root distri-
bution is important in influencing vegetation transpiration35, while existing models have predominantly focused 
on the vertical distribution of roots with relatively shallow burial depths. Meanwhile, the comprehensive effect 
of vertical root distribution and multi-layer soil water content on plant transpiration are not well represented 
in current models21. As a result, previous models with shallow root depths tend to underestimate vegetation 
drought resistance and overestimate the sensitivity of plant transpiration to water stress. Thus, the comprehen-
sive effect of vertical root distribution and multi-layer soil water content are synchronously considered in the 
updated SiTH model (SiTHv2)20. Moreover, we modified the critical parameter of soil moisture in SiTHv2 to 
better represent plant water stress by considering different vegetation heights and varied environmental condi-
tions. Notably, the SiTHv2 model uses satellite-observed vegetation status, including vegetation greenness36 and 
optical depth37, to characterize plant growth and health.

In this study, we present a novel dataset of global terrestrial ET (including different components) and soil 
moisture generated using the SiTHv2 model. This dataset provides daily estimates at a spatial resolution of 
0.1°, with seamless global land coverage. The conceptual graph of the SiTHv2 model is illustrated in Fig. 1, 
and the model description and data production procedure are presented schematically in the Methods section. 
The availability of this dataset will provide essential support and valuable insights for scientific research in the 
domains of land-atmosphere interactions, ecohydrological modeling, and global change studies.

Methods
Forcing data and preprocessing. Remote sensing data. Vegetation dynamics play a crucial role in the 
SiTHv2 model, particularly in the partitioning scheme for available energy. We utilized the leaf area index (LAI) 
from the European Geoland2/BioPar project Version 2 (GEOV2)38 based on the retrievals of the Advanced Very 
High-Resolution Radiometer (AVHRR). This product offers global LAI observations every 10 days at a 0.05° 
spatial resolution and has been proven as a reliable satellite-based product for providing long-term vegetation 
variables with global coverage. Additionally, we employed vegetation optical depth (VOD) to characterize the 

Fig. 1 The conceptual diagram of the hydrological process in the SiTHv2 model. Different cases indicate the 
groundwater table (zgw) dynamically related with potential root zone depth.
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actual vegetation water content from the VOD Climate Archive (VODCA)37. This product based on microwave 
observations in various spectral bands, provides daily VOD estimates at a 0.25° spatial resolution. We selected the 
Ku-band due to its extensive data availability. Furthermore, we used the Global Land Surface Satellite (GLASS) 
product39 to obtain surface broadband albedo and emissivity observations with 8-day intervals and a spatial res-
olution of 0.05°. Specifically, the GLASS02B03 dataset informed the black-sky and white-sky albedo, while the 
GLASS03B02 dataset contributed to broadband emissivity.

Hydrometeorological data. Hydrometeorological variables serve as essential inputs for the SiTHv2 model. 
We acquired daily air temperature and air pressure data from the Multi-Source Weather (MSWX) product40, a 
bias-corrected meteorological dataset with global coverage and a spatial resolution of 0.1° since 1979. In terms of 
radiation, we used downward shortwave radiation and downward longwave radiation from the land component 
of the fifth-generation European reanalysis data (ERA5-Land, hereafter referred as ERA5L)41. We also utilized 
skin temperature from ERA5L, combined with satellite-based broadband emissivity, to calculate upward long-
wave radiation. Moreover, to calculate the actual albedo (i.e., blue-sky albedo), we assumed the blue-sky albedo 
is linearly weighted between black-sky and white-sky albedo. The weight coefficient is the sky scattering ratio, 
derived from the mean surface direct shortwave radiation and mean surface downward shortwave radiation 
from ERA542. Consequently, global long-term seamless surface net radiation can be calculated using the balance 
equation of the four radiation components. Additionally, the precipitation data used in this study was obtained 
from the ERA5L product. It is noteworthy that the original temporal interval of ERA5 and ERA5L are hourly, 
yet their spatial resolutions differ, with ERA5 at 0.25° and ERA5L at 0.1°.

Auxiliary data. Land cover/use dynamics also significantly influence the estimation of terrestrial ET, consid-
ering different biological effects (e.g., plant height and root depth) in the parameterization scheme. Current 
satellite-based land cover products are hard to provide temporal dynamic information over a long-term period. 
Thus, we obtained annual land cover dynamics from the Historic Land Dynamics Assessment+ (HILDA+) 
product43, a long-term land cover/use product combining multiple open data streams, including remote sens-
ing, reconstructions, and statistics. Moreover, the global soil type used in the SiTHv2 model was acquired from 
the Harmonized World Soil Database (HWSD) v1.2, combining available soil information from regional and 
national institutes worldwide and offering a soil raster database with a 30-arc-second resolution44.

To reconcile the varying spatial resolutions and temporal intervals of the aforementioned multiple data 
sources in the SiTHv2 model, we uniformly resampled the spatial resolution to 0.1° using the bilinear approach 
and filled the temporal gap to the daily scale based on spline interpolation.

Validation and comparison data. We evaluated the accuracy of SiTHv2 estimates using both in-situ 
observations and grid-based ET and soil moisture products. Specifically, we validated the total ET estimates of 
SiTHv2 using latent heat flux measurements from 175 global eddy covariance (EC) stations with a daily inter-
val45,46. These EC stations encompass nine major plant functional types (PFTs) under various climate conditions, 
including croplands (CRO), deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen 
needleleaf forests (ENF), grasslands (GRA), mixed forests (MF), open shrublands (OSH), savannas (SAV), and 
wetlands (WET). Moreover, we employed pre-processing method according to previous study10 and ensure 
the surface energy closure at least above 70%47 (Figure S1). Five ET products were selected for comparison at 
both basin and global scales, including ET estimates from: (1) the Global Land Evaporation Amsterdam Model 
(GLEAM)48; (2) the calibration-free complementary relationship (CR) model49; (3) the FluxCOM product50; (4) 
the Global Land Data Assimilation System (GLDAS-Noah)51; and (5) ERA5L41. Furthermore, we utilized ET sim-
ulations from 20 Earth System Models (ESMs) in the Coupled Model Intercomparison Project Phase 6 (CMIP6)52 
to compare SiTHv2 ET estimates concerning annual variation and magnitude of total ET volume at a global level.

We generated water-balanced ET (ETwb) from the residual of the basin water balance equation (precipitation 
minus runoff and changes in total water storage) to validate SiTHv2-based ET estimates at a basin scale. A total 
of 49 basins were selected that covering a broad range of climate zones globally. The precipitation data used 
to calculate ETwb obtained from the gauge-based Global Precipitation Climatology Center (GPCC) Full Data 
Monthly Product53. However, for the Continental United States (CONUS), we used the Parameter-Elevation 
Regressions on Independent Slopes Model (PRISM) precipitation data54. Runoff observations from hydrological 
stations for the majority of basins, excluding those in the CONUS and China, were obtained from the Global 
Runoff Data Center (GRDC). Runoff data for basins within the CONUS and China were sourced from the 
United States Geological Survey and the China Sediment Bulletin, respectively. Basin-scale changes in total 
water storage were derived from Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage 
anomaly products55. To minimize uncertainties arising from noise terms in different solutions, we calculated 
the average of three GRACE products processed by the Geoforschungs Zentrum Potsdam, the Center for Space 
Research at the University of Texas, Austin, and the NASA Jet Propulsion Laboratory. For more details on the 
ETwb calculation, please refer to the authors’ previous studies56,57.

To validate the soil moisture estimated by the SiTHv2 model, we selected 12 sites from FLUXNET offering 
daily in-situ measurements of soil water content (SWC). We also compared SiTHv2-derived soil moisture with 
a global soil moisture dataset, SoMo.ml58, which is based on the Long Short Term Memory (LSTM) network 
and trained with abundant in-situ measurements from over 1,000 stations. SoMo.ml has been considered to 
perform well in both spatial distribution and temporal dynamics of soil moisture, and can serve as a benchmark 
to evaluate modelled and remotely sensed data58. Furthermore, we utilized four types of microwave-based sat-
ellite products for soil moisture comparison, comprising: L-band (1.4 GHz) products obtained from the Soil 
Moisture Ocean Salinity (SMOS) at the Barcelona Expert Centre (BEC)59 and the Soil Moisture Active Passive 
(SMAP) Level-3 products60; as well as C-band (6.9 and 7.3 GHz) products from the Advanced SCATterometer 
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(ASCAT)61 and the Advanced Microwave Scanning Radiometer 2 (AMSR2) of Japan Aerospace Exploration 
Agency (JAXA)62. These products offer a spatial resolution of 0.25°, with the exception of the SMAP L3, which 
features an enhanced spatial resolution of 9 km.

The selected validation and comparison product offers independent reference for evaluating the ET and soil 
moisture estimates derived from the SiTHv2 model. A summary of all mentioned products can be found in 
Table 1.

SiTHv2 model description. The SiTHv2 model is an updated version of the SiTH model, which is devel-
oped for modeling the water pathway within the GSPAC (Fig. 1). Evapotranspiration (ET) and soil moisture (also 
known as soil water content, SWC) are two crucial outputs generated by the model. Specifically, the total ET in 
the SiTHv2 is the sum of soil evaporation (Es), plant transpiration (Tr), and canopy interception evaporation (Ei). 
Each item is derived from different kinds of constraints from potential transpiration and evaporation for the 
canopy and soil surface, respectively.
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where n is the total number of soil layers, which is set as three in SiTHv2; the f-functions are the different con-
straints on the potential evapotranspiration for canopy (Epc) and soil surface (Eps), where the fwet is the relative 
wetness of canopy surface; the fsm is the soil moisture constraint of bare soil evaporation; the fsmv, i is the soil 
moisture constraint of plant transpiration in the unsaturated zone at ith soil layer; the fv and ft are the vegetation 
water content and temperature constraint on plant health, respectively. Notably, the characterization of poten-
tial transpiration rate (Tp) is comprised of both unsaturated and saturated layers when the groundwater table 
extends to the ith soil layer, denoted as Tps, i and Tpg, i, respectively (see different cases in Fig. 1). The calculation of 
Epc and Eps in the SiTHv2 model are based on the Priestly-Taylor equation63, while the Tp can be derived by the 
residual of Epc after intercepted consumption.
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where α is the Priestly-Taylor coefficient and set to 1.26 in this study; Δ is the slope of the saturated vapor pres-
sure curve (kPa °C−1); γ is the psychrometric constant and set to 0.066 (kPa °C−1); λ is the latent heat of evapo-
ration (MJ kg−1); Rns and Rnc are the net radiation (Rn) allocated to the bare soil and canopy surface, respectively. 
Rns is complementary with Rnc, which can be derived by the Beer law:

Product Variable Version/Type Spatial resolution Interval(3) Time span

FLUXNET2015 ET & SWC N/A In-situ Daily Vaied with sites

GLEAM ET v3.7a 0.25° Monthly 1980-

CR ET v1.0 0.25° Monthly 1982–2016

FluxCOM ET RS_METEO(1) 0.5° Monthly 2001–2013

GLDAS-Noah ET v2.0 0.25° Monthly 1982–2014

ERA5-Land ET N/A 0.1° Monthly 1950-

CMIP6 ET 20 ESMs(2) 0.5° Monthly 1979–2014

SoMo.ml SWC N/A 0.25° Daily 2001–2019

SMAP SWC Enhanced L3 9 km Daily 2015-

SMOS SWC BEC L3 0.25° Daily 2011-

ASCAT SWC v7 0.25° Daily 2007-

AMSR2 SWC JAXA 0.25° Daily 2012-

Table 1. Summary of the validation/comparison datasets used in this study. Note: (1) All the ensembled latent 
heat flux estimates of 36 members with energy balance correction; (2) Details of the 20 ESMs (historical period) 
are provided in Table S1 in Supplementary; (3) The time intervals listed in the table represent only the types 
used in this study, while some products may have a higher temporal resolution.
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where kRn is the extinction coefficient and is set to 0.6 in this study; LAI is the leaf area index. Thus, the potential 
transpiration for different soil layers (Tp, i) can be derived from the Tp by considering the vertical distributions of 
plant roots and the soil water content at different depths:
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where θs is the saturated soil water content; θi is the layer mean water content depend on the fraction of unsatu-
rated zone for each soil layer; b is a soil parameter (dimensionless) depends on soil properties21; ri presents the 
vertical root density, which is described by the linear dose response model64:
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where the depth at which 50% of the root mass is located is referred to as D50; zm, i is the bottom depth of the ith 
layer; c is the shape parameter derived from the logarithmic relation between D50 and D95, which is the depth 
at which 95% of the root mass is located. Thus, the variables Tps, i and Tpg, i can be further obtained from the Tp, i 
under different conditions of groundwater depths (zgw) and soil water content for different layers.
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In addition, the f-functions for different constraints in SiTHv2 can be calculated as follows:

χ=







⋅







f
S
T

min , 1
(12)

wet
c

p

θ θ
θ θ

θ θ
θ θ θ

θ θ

=







≤

−

−
≤ ≤

≥

f

0

1 (13)

sm

i wp

i wp

fc wp
wp i fc

i fc

f e (14)
T T T

t
[ ( ) / ]a opt opt

2
= − −

=f VOD VOD/ (15)maxv

where χ is fractional interception occurring during daytime, which is set to 0.7; Sc is the water storage capacity 
of canopy, which is defined as the product of precipitation and LAI; θfc is the soil field capacity, and θwp is the soil 
moisture at the wilting point; θi is the actual soil moisture at the ith soil layer; Ta is the air temperature (Sc); Topt is 
the optimum plant growth temperature (Sc), which can be derived from the air temperature when the multiply 
of LAI, Rn and Ta are high; VODmax is the maximum value for the annual time series of VOD retrievals.

In SiTHv2, the critical threshold of soil moisture (θc), which describes the point of the plant under water 
stress, is dynamically dependent on the plant traits and environmental conditions, rather than a static constant. 
Hence, the θc can be derived as follows65,66:
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where θfc is the soil field capacity; θwp
h  is the adjusted wilting point soil moisture by considering the canopy height 

(Hc); p is a parameter for regulating θc between θfc and θwp
h , which can be determined by potential ET (Ep) and Hc; 

w is set to 0.1 denotes the weight of Hc on the θc; k is a sensitivity index of soil water content, which can be deter-
mined as the square root of Hc. Thus, the soil moisture constraint function for potential transpiration at the ith 
layer (fsmv, i) can be calculated as follows:
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Collectively, in the SiTHv2 model, all the water and energy components are theoretically balanced. That is, all 
the consumption terms (e.g., ET, deep percolation, etc.) and input terms (e.g., precipitation, etc.) are dynamically 
balanced on the time series. Notably, the dynamic changes in soil moisture at different layers are both intermedi-
ate results of the previous time step and important variables regulating the dynamic changes in soil water stress 
in the next stage. For more detailed model structure, please refer to the authors’ previous studies20,21.

Global data generation. The SiTHv2 model was employed to estimate daily terrestrial ET and its var-
ious components at a spatial resolution of 0.1°, as well as the soil moisture dynamics across three soil layers. 
This model was implemented for each grid cell in their respective time series, driven by forcing data such as air 
temperature, pressure, net radiation, precipitation, and satellite-based observations of vegetation dynamics and 
surface albedo. To enhance computational efficiency, parallel computation was implemented at each grid cell. 
Importantly, a 100-year spin-up period was applied to achieve equilibrium states for each intermediate variable 
during the simulation. Finally, global seamless estimates of total terrestrial ET, plant transpiration, soil evapora-
tion, canopy intercepted evaporation, and three layers soil moisture were obtained by running the SiTHv2 model 
from 1982 to 2020. In addition, we also aggregated the daily estimates to provide the monthly and yearly dataset.

Data records
The dataset comprises multi-type of outputs, including the total terrestrial ET, plant transpiration (Tr), bare 
soil evaporation (Es), canopy interception evaporation (Ei), and the soil moisture dynamics across three soil 
layers at varying depths. Generated dataset is available at three temporal intervals (i.e., daily, monthly, and 
annual) and has a global spatial resolution of 0.1°. All data is stored in Network Common Data Form (NetCDF) 
files, accessible via the data repository of National Tibetan Plateau Data Center (TPDC)67. Files with differ-
ent temporal resolutions are organized in separate directories at TPDC. Filenames follow the structure “SiTH.
v2.<VV>.<XXXX>.<YYYY>.nc”, where “VV” represents the variable name (e.g., ET – Evapotranspiration), 
“XXXX” indicates the temporal resolution (e.g., Daily, Monthly, Annual), and “YYYY” denotes the four-digit 
year. Further details are provided in the global attributes of each NetCDF file.

Technical Validation
ET validation using in-situ observations. At the site scale, we employed observed latent heat flux (LE) 
from the FLUXNET2015 dataset to validate the SiTHv2-derived ET estimates. In-situ observed LE flux was con-
verted into ET values by dividing by the latent heat of vaporization. All site observations were categorized accord-
ing to their plant functional types (PFTs). Figure 2 demonstrates that SiTHv2-derived ET estimates exhibit strong 
agreement with flux observations, achieving correlation coefficients (R) of at least 0.76 across different PFTs. The 
highest R-value, approximately 0.85, is observed in grasslands (GRA), wetlands (WET), and deciduous broadleaf 
forests (DBF). In terms of root mean square error (RMSE), the largest value occurred in evergreen broadleaf 
forests (EBF) at 1.06 mm day−1, representing the sole situation where RMSE exceeded 1 mm day−1 among all 
PFTs. It is worth noting that RMSE differences are also associated with varying ET magnitudes in different PFTs. 
Conversely, the dimensionless Nash-Sutcliffe Efficiency (NSE) effectively eliminates this effect. We found that the 
NSE of SiTHv2-derived ET estimates of EBF is the lowest at 0.22, while it remained greater than 0.5 in other PFTs, 
even reaching 0.7 in GRA. Additionally, linear slopes between SiTHv2 and in-situ observations are closely aligned 
with the 1:1 line in most PFTs, particularly in DBF (0.99), EBF (1.02), MF (0.96), and WET (0.93). Overall, the 
SiTHv2 model is capable of providing reliable ET estimates at the in-situ level.

comparison of ET with independent water balanced ET at basin level. We compared the ET esti-
mates derived from SiTHv2 with independent water balance results (ETwb) across 49 major global basins. This 
comparison aimed to address uncertainties arising from scale mismatches between in-situ measurements and 
grid-based ET estimations at a spatial resolution of 0.1°. As illustrated in Fig. 3, SiTHv2-derived ET estimates 
demonstrated a strong agreement with ETwb, exhibiting a R-value of 0.96 and a NSE value of 0.90. Although this 
NSE value is slightly lower than that of the CR model (NSE = 0.93), both SiTHv2 and CR exhibits identical linear 
regression slopes of 1.01. Notably, SiTHv2 displayed a superior intercept compared to CR, indicating a closer 
estimates to ETwb in the basins with low ET volumes. While the GLEAM and ERA5L product also showed a close 
slope (0.99), both of them consistently overestimated ET in comparison to ETwb due to their elevated intercepts. 
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In contrast, FluxCOM exhibited the same R-value as SiTHv2, however, SiTHv2’s RMSE of 95.68 and NSE of 0.90 
surpassed the corresponding FluxCOM statistics, highlighting its better performance at these basins.

The accuracy of estimated ET volume was further assessed by comparing the ratio of mean annual ET to 
the ETwb across different basins. From Fig. 4a, the majority of basins exhibit ratio values near 1, indicating that 
the SiTHv2-derived ET is closely aligned with ETwb. Moreover, a comparison with other mainstream global 
ET products reveals that the ratio values of SiTHv2 across 49 basins (with a mean value of 0.98) demonstrate 
superior performance (Fig. 4b). A relatively high ratio value is observed in a few individual basins located at 
the high latitudes of the Northern Hemisphere, where a similar pattern also found in other ET products. Such 
discrepancy might be attributed to the inadequate characterization of the soil freezing and thawing process68,69 
in current ET models.

comparison of ET with global ET product. Using the long-term global ET estimates from SiTHv2, we 
generated a global distribution of mean annual ET (Fig. 5). Spatially, tropical regions exhibit the highest ET, while 
drylands show the lowest ET. Such pattern is typically determined by the combined effect of atmospheric evapo-
rative demand and local water availability. The zonally mean profile of SiTHv2-derived ET is also similar to other 
global ET products, particularly the GLEAM and CR. We further evaluated the annual variation of global terres-
trial ET. SiTHv2-derived ET displays a variation comparable to most ET products and fall within the interquartile 
range (IQR) of CMIP6 results (Fig. 6a). Regarding the annual linear trend, most global ET products (except for 
ERA5L) show a significant increase over the past few decades. SiTHv2 has the highest increasing trend, with a 
value of 0.53 mm year−1 from 1982 to 2020, followed by GLDAS-Noah (0.42 mm year−1), and median of 20 ESMs 
in CMIP6 (0.36 mm year−1). CR and GLEAM has the same increasing rate of 0.31 mm year−1. It is worth noting 
that the ET estimates from FluxCOM exhibit an insignificant trend, which due to its shorter time span with 
covering only the most recent 14 years from 2001. In terms of total volume of global terrestrial ET (Fig. 6b), the 
mean value of SiTHv2-derived ET is 71.5 × 103 km3, closely aligned with the mean value of other ET products 
(71.8 × 103 km3). Comparatively, the 20 ensemble ESMs of CMIP6 present a broader range of global terrestrial ET 
volume, with a mean value of 78.5 × 103 km3. Previous studies1,50,70–73 have reported global terrestrial ET volumes 
primarily within the range of 65 to 75 × 103 km3. In summary, the global spatial pattern, annual variation, and 
total magnitude of ET estimated by SiTHv2 are reliable based on current understandings of global water cycles.

Fig. 2 Validation of evapotranspiration (ET) between SiTHv2-derived estimates and in-situ observations based 
on eddy covariance for different plant functional types (PFTs). Details of selected sites are summarized in an 
Excel file stored in the repository, and the link is available in the Code Availability section.
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comparison of ET partitioning ratio with independent T/ET dataset. The SiTHv2 model enables 
estimation of different components of total ET, making the ratio between transpiration and ET (T/ET) a crucial 
metric for evaluating accuracy of ET partitioning74. Although in-situ measurements can provide the T/ET bench-
mark based on sap flow and eddy covariance techniques, their relative scarcity and short duration limit the pro-
vision of grid-based reference applied globally75. Moreover, isotope-based methods, which also only cover short 
measurement periods, tend to overestimate T/ET27,76,77. By contrast, Model-data fusion (MDF) method can be 
employed to incorporate available observations into a process-based framework. A recent study published a new 
T/ET dataset over China spanning from 1981 to 2015, based on multivariate observations, demonstrating good 
agreement with independent site measurements78. Hence, we extracted the grid-based T/ET ratios from SiTHv2 
across China and compared with the MDF product (Fig. 7). The results indicate that the SiTHv2-derived T/ET 
ratios exhibit not only high spatial agreement with MDF, with a R-value of 0.85, RMSE is 0.14, and regression 
slope is 1.03 with intercept of 0.05 (Fig. 7b), but also a strong correlation for long-term variations (R = 0.90). 

Fig. 3 Basin-level comparison between different ET estimates and the independent ET derived from basin water 
balance across 49 basins. Different sub-panel respectively represented the comparison results from (a) the SiTHv2 
model; (b) the GLEAM model; (c) the CR model; (d) the GLDAS-Noah; (e) the FluxCOM product; (f) the ERA5L. 
The dash line in each sub-figure denotes the 1:1 line. The error bar for each point indicates the annual variation for 
simulated ET and ETwb, respectively.

Fig. 4 The ratio of multi-year mean ET estimates from different ET datasets relative to the ETwb across the 49 
basins. (a) represents the spatial distribution of the ratio for the SiTHv2; (b) is the intercomparison of the ratios 
for different models/products.
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Additionally, the linear trend for T/ET estimates from SiTHv2 and MDF are both significant (p < 0.01), with a 
value of 1 × 10−3 year−1 for SiTHv2 and 2 × 10−3 year−1 for MDF.

Soil moisture validation using in-situ observations. Soil moisture, also known as soil water content 
(SWC), is a key variable in the SiTHv2 model. Due to the limited availability of SWC measurements at most flux 
stations, we selected 12 sites with observed SWC to validate the performance of the SWC estimates in SiTHv2 
model at the in-situ level. These selected flux sites can cover the majority of various PFTs under different climate 
conditions. As depicted in Fig. 8, the SiTHv2 model can generally capture the dynamic changes in SWC across 
most sites. Specifically, the correlation coefficient reaches a mean value of 0.75, with the highest R-value of 0.81 
observed at the AU-Stp (GRA) while the lowest R-value of 0.55 at the AU-Tum (EBF). The metrics of RMSE for 
all selected sites are relatively small, with a mean value of 0.07 m3 m−3. The site AU-ASM (SAV) has the smallest 
RMSE value of 0.04 m3 m−3, while four sites (i.e., ES-LJu, US-Me2, US-Ton, and US-Var) exhibit a slightly higher 
RMSE value of 0.09 m3 m−3. In addition to the internal error of model performance, it should be noted that the 
differences in SWC depth between the SiTHv2 model (first layer at 5 cm) and site measurements (depth varying 
across sites) may also contribute to uncertainties in such comparisons. Nonetheless, the in-situ comparisons 
indicate that the SWC estimates from the SiTHv2 model are reliable and successfully characterize soil moisture 
dynamics across different sites globally.

comparison of soil moisture with data-driven product. To evaluate the global spatial pattern and 
magnitude of SiTHv2-derived SWC estimates, we employed the recently published global soil moisture product, 
SoMo.ml58, which is built upon deep learning techniques (i.e., LSTM network) and numerous in-situ observa-
tions. Figure 9a illustrates the mean annual surface SWC spanning from 1982 to 2020, with tropical areas exhib-
iting the highest SWC and the high latitudes of Northern Hemisphere following closely. Excluding polar regions, 
zones surrounding 20°N and 20°S displays the lowest zonally mean SWC, attributed to the vast drylands and 
deserts in these areas. Furthermore, the surface SWC estimated by SiTHv2 shows good spatial agreement with 
SoMo.ml (Fig. 9b), with a R-value of 0.81 and an overall RMSE of 0.08 m3 m−3. A high NSE value (0.45) also sug-
gests high reliability when compared to SoMo.ml. Meanwhile, we analyzed the correlation between SiTHv2- and 
SoMo.ml-derived annual SWC at each grid cell (Fig. 9c), revealing that a large portion of the globe presents a high 
R-value, particularly exceeding 0.60 for the areas between 45°N and 45°S. Additionally, the annual variations of 
SWC in these two datasets are quite similar, achieving a R-value of 0.73. It is important to note that the compar-
ison was conducted from 2000 to 2019, constrained by the temporal range of SoMo.ml. Overall, SiTHv2-based 
SWC estimates not only exhibit reasonable spatial patterns but also supply reliable annual dynamics across the 
majority of grid cells on a global scale.

Comparison of soil moisture with satellite product. In recent years, microwave remote sensing tech-
nology has become crucial for monitoring large-scale surface soil moisture via satellites, resulting in various 
satellite-based soil moisture products. Despite most products covering only the past dozen years due to the satel-
lite launch, microwave remote sensing, based on the physical mechanism of dielectric constant, is currently the 
most direct and effective way for obtaining large-scale surface soil water conditions. It also serves as an important 
benchmark for evaluating the SWC estimates at a large scale. We compared surface SWC from SiTHv2 with four 
microwave-based SWC products: SMAP, SMOS, ASCAT, and AMSR2. SiTHv2-SWC shows high consistency with 
satellite-SWC products globally, particularly in arid and semi-arid regions, where the mean correlation coefficient 
(R) can reach 0.8 or higher (Fig. 10a). Notably, lower R-values are observed in tropical rainforests (e.g., Amazon) 
and high-latitude regions (above 60°N). This does not imply significant errors in SiTHv2-derived SWC in these 

Fig. 5 Global distribution of mean annual terrestrial ET derived by the SiTHv2 model, and the comparison 
of zonally mean profile with the other ET products. The red shadow in the right panel represents the standard 
deviation for the zonally mean of SiTHv2.
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areas, as microwave retrievals of surface soil moisture are affected by factors such as dense vegetation and soil 
freeze-thaw processes, causing signal interference and larger errors in satellite-SWC accuracy in regions with 
forest and snow cover79. Among the four satellite-based SWC products, SiTHv2 exhibits the highest correlation 
with SMAP, with a median R-value over 0.5 based on grid-by-grid statistics (Fig. 10b). Furthermore, the range 
of SWC values for SiTHv2 in terms of the 25th to 75th percentile is closer to SMAP and SMOS products, while 
AMSR2 produces the lowest results (Fig. 10c).

In addition, we calculated the interannual trend of surface SWC from 1982 to 2020 using the SWC estimates 
from SiTHv2. The global spatial distribution of the annual trend is displayed in Fig. 11, revealing considerable 
spatial differences in SWC changes. For example, soil moisture has notably increased in the Indian subcontinent 

Fig. 6 Comparison of annual terrestrial ET from different data sets. (a) represents the annual variation and 
linear trend from 1982 to 2020, where the asterisks denote that the trend passed the Mann-Kendall test with a 
p-value < 0.01; (b) shows the annual total terrestrial ET volume from SiTHv2, mainstream global ET products 
(ETPs), and the CMIP6 simulations. A total of 20 ensemble ESMs from CMIP6 were used in this study; details 
can be found in Table S1.

Fig. 7 Comparison of spatial patterns and annual variations between SiTHv2- and MDF-derived T/ET ratios 
over China. (a) depicts the spatial distribution of mean annual T/ET across China; (b) represents an intensity 
scatter plot with linear regression based on the grid-wise T/ET from SiTHv2 and MDF; (c) displays the annual 
variation of T/ET in China from SiTHv2 and MDF, respectively. The significance of the linear trend is based on 
the Mann-Kendall test with a p-value < 0.01.
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and the Tibetan Plateau, while arid and semi-arid regions like the western United States and southern Sahara 
have become increasingly dry. We selected eight typical regions with significant SWC increases or decreases 
over the past 39 years (1982–2020) for a daily-scale comparison of SiTHv2-derived SWC and other satellite 

Fig. 8 Validation of soil moisture estimates (layer 1) obtained from the SiTHv2 model based on daily-scale 
surface soil moisture observations at 12 stations. The time span for different sites is adjusted according to the 
observation duration at each site.

Fig. 9 Soil moisture estimate comparison between SiTHv2 and SoMo.ml. (a) Mean annual surface soil water 
content (SWC) from SiTHv2 spanning 1982 to 2020; (b) Mean annual spatial pattern regression between 
SiTHv2 and SoMo.ml during the overlapping period of 2000 to 2019; (c) Global correlation between SiTHv2 
and SoMo.ml at each grid cell; (d) Annual variation of global SWC.
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products. Statistically, SiTHv2 effectively captures SWC seasonality in these key regions, with R-value of at least 
0.65 (Fig. 11c) and up to 0.96 (Fig. 11d,g), while RMSE values range from a maximum of 0.06 m3 m−3 (Fig. 11b) 

Fig. 10 Overall comparison of SWC derived from SiTHv2 with satellite-based products. (a) Spatial distribution 
of the mean correlation coefficient (R) between annual SWC from SiTHv2 and four satellite-based products 
(AMSR2, ASCAT, SMAP, and SMOS); (b) Boxplot shows the global statistics of R values for each combination 
between SiTHv2-SWC and different satellite-based SWC products; (c) The range distribution of SWC 
magnitudes from SiTHv2 and other satellite-based products.

Fig. 11 Global pattern of the annual trend in SWC derived from SiTHv2 from 1982 to 2020; The subplots 
depict temporal comparisons (daily) between SiTHv2- and satellite-based SWC products in selected hotspot 
regions, include: (a) western United States; (b) Central Asia; (c) North China; (d) southern Sahara; (e) Indian 
subcontinent; (f) Brazilian Plateau; (g) southern Africa; and (h) Australia. The temporal variation of satellite-
based SWC products starts from 2011, subject to the data availability (e.g., SMOS). The SMAP L3 data is 
highlighted with black dots, while the remaining satellite products are presented as a range of ensemble mean.
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to a minimum of 0.02 m3 m−3 (Fig. 11h). Overall, the SiTHv2-derived SWC estimates closely align with 
microwave-based satellite observations, particularly showing higher consistency with the SMAP L3 product. 
Thus, the comparison with satellite products, combined with previous SoMo.ml statistics, collectively suggest 
that the global SWC estimates from SiTHv2 are reliable and can provide robust data support for hydrology- and 
climate-related applications.

Usage Notes
The original datatype running in the SiTHv2 model is the 32-bit double float, while the outputs are stored 
as 16-bit short integers with two decimal places to conserve storage space and facilitate transfer and usage. 
Consequently, the released dataset must be rescaled to obtain corrected values for each variable. Specifically, 
high-level software (e.g., Matlab, ArcGIS, etc.) or programming languages (e.g., Python, R, NCL, etc.) can be 
utilized to load data from the NetCDF file. Subsequently, the “scale_factor” attribute for each variable should be 
applied to retrieve the corrected values as follows:

= ×− −
−Var Vardouble float( ) scale factor (20)corrected original

1

Although the newly SiTHv2-derived ET and soil moisture product perform well compared to similar data 
products, there are still limitations and uncertainties remain due to errors in forcing data and internal simulation 
processes. For instance, precipitation serves as a crucial water input in the SiTHv2 model, significantly influenc-
ing soil moisture and water supply for ET. However, current precipitation datasets, including the ERA5L precip-
itation used in this study, exhibit high uncertainties stemming from a scarcity of ground-based observations in 
certain regions80. Additionally, the model does not emphasize the freeze-thaw process of soil at low temperatures 
in high latitudes, which may introduce errors in soil moisture (ice and water) during boreal winters68,69, although 
the absolute ET amount does not undergo major changes at such low temperatures. Nonetheless, based on 
multi-scale validation and comparison, the SiTHv2-derived product is capable of offering reliable ET and soil 
moisture estimates. By featuring long-term time span and global seamless coverage with high spatio-temporal 
resolution, this dataset will provide a dependable solution and data support for global water cycle analysis, 
drought assessment, energy budget, and climate change related studies.

Code availability
The codes to process the data and generate the figures, and the details of selected flux sites are available at https://
github.com/kunlz/Codes.longterm.SiTHv2.product. The model codes of SiTHv2 are available at https://github.
com/kunlz/SiTHv2.
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