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Spatiotemporal atmospheric in-situ 
carbon dioxide data over the Indian 
sites-data perspective
Mahesh Pathakoti   1,2 ✉, Mahalakshmi D.V.   1, Sreenivas G.3,10, Arun Shamrao Suryavanshi4, 
Alok Taori1, Yogesh Kant5, Raja P.6,11, Rajashree Vinod Bothale1, Prakash Chauhan1, 
Rajan K.S.2, P. R. Sinha7, Naveen Chandra   8 & Vinay Kumar Dadhwal   9

In the current study, atmospheric carbon dioxide (CO2) data covering multiple locations in the Indian 
subcontinent are reported. This data was collected using a dedicated ground-based in-situ network 
established as part of the Geosphere-Biosphere Programme (CAP-IGBP) of the Climate and Atmospheric 
Processes of the Indian Space Research Organisation (ISRO). Data are collected over Ponmudi, 
Ooty, Sriharikota, Gadanki, Shadnagar, Nagpur, and Dehradun during 2014-2015, 2017–2020, 2012, 
2011–2015, 2014–2017, 2017 and 2008–2011, respectively. The atmospheric CO2 generated as part of 
the CAP−IGBP network would enhance the understanding of CO2 variability in different time scales 
ranging from diurnal, seasonal, and annual over the Indian region. Data available under this network 
may be interesting to other research communities for modeling studies and spatiotemporal variability 
of atmospheric CO2 across the study locations. The work also evaluated the CO2 observations against 
the Model for Interdisciplinary Research on Climate version 4 atmospheric chemistry-transport model 
(MIROC4-ACTM) concentrations.

Background & Summary
Carbon dioxide (CO2) emissions from human activity are one of the leading causes for the complicated issue 
known as “human-induced climate change”. Other activities that release greenhouse gases (GHGs) into the 
atmosphere include burning fossil fuels1. CO2 contributes about 64% of the total radiative forcing created by 
other long-lived GHGs2. The accelerating CO2 mixing ratios were attributed to the land use land cover (LU/LC) 
changes, biological and human-induced process. The amount of CO2 released into the atmosphere by human 
activity and the rate at which concentrations increase estimate the global carbon budget3,4. Burning fossil fuel 
and LU/LC changes have increased CO2 by 40%5,6. This gas has been consistently increasing since pre-industrial 
times and crossed 400 ppm of daily mean in 2013 at the global reference site of Mauna Loa, Hawaii7. During 
2013, in India, CO2 emission was found to be 0.96 Ton/capita (http://www.iaea.org/inis/aws/eedrb/data/
IN-enemc.html). An increase in atmospheric CO2 from industrial or human activity is the most significant con-
tributor to possible anthropogenically induced global climate change8. Local meteorological conditions such as 
air temperature and moisture affect the diurnal and seasonal cycle9. The variability of environmental factors may 
significantly affect regional and global climate10, especially the radiative forcing, via the terrestrial carbon cycle’s 
biogeochemical pathways. Since CO2 mixing ratios in the atmosphere are strongly affected by photosynthesis, 
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respiration, biomass, fossil fuel burning, and the air-sea exchange process, in-situ atmospheric CO2 measure-
ments are essential data for understanding the carbon cycle11.

High precision in-situ measurements are more reliable concerning the better representation of GHG con-
centrations over a region12. An amalgamation of long-term observations from in-situ, remote sensing, and 
model-simulated atmospheric CO2 concentrations would significantly contribute toward understanding the cli-
mate system. Development of measuring infrastructure has advanced to perform high precision measurements 
of GHGs while meeting the World Meteorological Organisation (WMO) standards13. To understand the CO2 
variability and the underlying dynamics over different parts of India, several researchers such as the National 
Institute of Oceanography (NIO), Indian Institute of Tropical Meteorology (IITM, Pune) and Physical Research 
Laboratory (PRL, Ahmedabad)14,15 are measuring high-precision CO2 measurements. The ground based atmos-
pheric CO2 concentrations network over Indian region established by various research centers16,17. Huo et al.18 
reported fossil fuel and cement industry emissions at the city level covering 1500 cities in 46 countries.

The current study presents first data on atmospheric CO2 concentrations recorded from different locations 
in India through a well-established CO2 network by the Climate and Atmospheric Processes of the Indian Space 
Research Organisation (ISRO)’s Geosphere−Biosphere Programme (CAP-IGBP). The National Remote Sensing 
Centre (NRSC), ISRO, built this network to resolve space−time diurnal and seasonal variability and construct 
a prospective record of atmospheric CO2 in the country. By utilising this in-situ CO2 data from the CAP-IGBP 
network, an integrated study with the remote sensing and model simulated atmospheric CO2 concentrations, 
Mahesh et al.19 carried out a study to assess the diurnal and seasonal variability over the Indian sites as a function 
of different geographical locations. The CO2 sensor installation covers various geographical features, including 
coastal, high-altitude, and dry climate conditions. The data is necessary to comprehend the CO2 variations spa-
tially and temporally across India. Data available under this network may be interesting to modeling research 
communities that aim to adjust the uncertainties resulting from the model simulation. For climate projections 
to reflect pertinent temporal scales more accurately, the models must be validated and refined based on global 
GHG measurements. Thus, the in-situ measurements are decisive for understanding the carbon cycle and vali-
dating the satellite retrievals.

The present paper aims to report the atmospheric CO2 in-situ data collected over the different geographical 
locations of the Indian stations. This paper describes the features of atmospheric CO2 monitoring stations, com-
mon data collecting protocols, procedures employed to generate dry atmospheric CO2, and standard calibra-
tion methods. Data has potential in resolving the diurnal and seasonal variability as a function of geographical 
location. The influence of meteorological parameters, especially winds and precipitation have significant impact 
on the distribution of CO2 concentration9. The high-altitude stations namely Ooty and Ponmudi are two con-
trasting sites controlled by the boundary layer processes, which can be studied in detail. The CO2 concentration 
changes among different sites, therefore studies can be carried out by considering factors such as monsoons, 
altitude, anthropogenic emissions, and land cover type. These datasets are collected with consistent inter-sensor 
calibration and using the National Oceanic Atmospheric Administration (NOAA) calibration cylinders (CC). 
The high-quality CO2 observations are on high demand especially from fast growing economy India for accu-
rately understanding sources/sinks, their magnitude and spatiotemporal variability using atmospheric inver-
sion. Such estimation will be helpful to develop effective strategies to mitigate CO2 emissions.

Methods
Overview.  A Vaisala GMP-343 CO2 sensor probe through Campbell data loggers was used to collect contin-
uous ambient CO2 observations from seven Indian locations, as depicted in Fig. 1. GMP-343 instruments, which 
works on non-dispersive infrared (NDIR) technology20 are set up at the observation location at various time 
scales. Consequently, the data were intercalibrated using standard calibrated greenhouse gas analyser (GGA) 
equipment, with biases included.

The bias correction was applied linearly from the installation to the calibration date. At each measuring 
station, the atmospheric CO2 observations were collected with 5-minute temporal resolution and integrated 
to 60-minute. Using the GGA continuous CO2 observations were collected from Shadnagar at a temporal 
frequency of 1 Hz from 2014 to 2017. The Ultraportable GGA (UGGA) is a sophisticated device that simul-
taneously measures CO2, CH4, and H2O and is also purchased from Los Gatos Research Inc. It also uses a 
performance-improving off-axis spectroscopy method. True wavelength scanning is used by the enhanced 
off-axis integrated cavity output spectroscopy (OA-ICOS) technique to capture completely resolved absorp-
tion line shapes. A longer effective path length than a typical along-axis setup is made possible by the laser’s 
off-axis alignment on the highly reflective mirrors inside the instrument chamber. This allows for the extraction 
of absorption line shapes with higher resolution. To investigate the effects of pressure, drop within the cavity, 
possibly caused by choked filters, on the absorption line spectra, the raw data were evaluated for cavity pressure 
and temperature variations. Using measurements of H2O, the analyzer adjusts CO2 and CH4 values for dry air 
conditions. By removing up to 60% of the ambient H2O through a Peltier cooler setup before the air is allowed 
to enter the GGA, the relatively high concentration of H2O in ambient air, which may cause a significant error 
in such corrections, is reduced. The measuring setup of GGA is given in Mahesh et al.12 and the data collection 
layout are described in Fig. 2. Studies show reliable results using these sensors in atmospheric studies21,22.

Calibration.  As shown in Table 1, the 3-span calibration gases from the NOAA are utilized for the periodic 
calibration of GGA and UGGA analyzers. These analyzers are well calibrated against the NOAA CO2 spans to 
evaluate the instrument’s precision and accuracy. The NOAA CO2 cylinders are highly accurate while meeting 
the WMO standards with a reproducibility of ±0.02 ppm. Reproducibility is defined as the consistency of meas-
urements by different time periods using the same measuring equipment. The accuracy in the data file represents 
the degree of uncertainty which is used for assessment of the quality of the records. The precision and accuracy 

https://doi.org/10.1038/s41597-024-03243-x


3Scientific Data |          (2024) 11:385  | https://doi.org/10.1038/s41597-024-03243-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

of CO2 were, respectively, 0.078 ppm and 0.101 ppm for sample averaging time of 10 seconds. As shown in Fig. 1, 
except at the Shadnagar location, all other measuring locations are installed with the Vaisala GMP343 instru-
ments, which were well calibrated against the precision UGGA equipment (make: ABB-Los Gatos Research, 
U.S.A) and subsequently adjusted the bias in the GMP-343 measured atmospheric CO2 data. No additional tem-
perature or pressure adjustments are needed for stations close to mean sea level23. Atmospheric CO2 concentra-
tions are measured with a portable UGGA of CH4/CO2/H2O analyzer at Ooty station is used for the inter-sensor 
calibration. UGGA works on off-axis integrated cavity output spectroscopy (ICOS) to measure atmospheric 
CO2 concentrations with laser absorption technology. The precision of this analyzer for CO2 measurements are  
<0.30 ppm24–26. As the GMP-343 instruments does not account for ambient moisture, hence the present study 
implemented the standards empirical equations to remove the water vapour influence and reported in the dry 
atmospheric CO2 concentrations. Detailed air sampling system, calibration and inter-sensor comparison strategy 
is given in Mahesh et al.12.

Table 2 provides inter-sensor calibration for every location. As shown in Fig. 3, the GMP-343 sensor func-
tions accurately with an accuracy of 0.62%, as evidenced by the strong correlation between UGGA and GMP-
343, which has a root mean square error of 2.57 ppm19.

Atmospheric CO2 water vapour correction.  Since the GMP-343 operates on NDIR technology, ini-
tially the measured atmospheric CO2 records are corrected with the ambient temperature and pressure for 
the high-altitude stations using ideal gas equation as described in21. In the data files, the GMP-343 instrument 
reports atmospheric CO2 concentrations without accounting the water vapour. Therefore, using the Wagner and 
Pruss27 equations, the GMP-343 measured wet atmospheric CO2 concentrations were corrected to dry atmos-
pheric CO2 concentrations. The following are the empirical formulas for calculating the ratio of atmospheric 
CO2 concentration in wet and dry conditions. Except for the Shadnagar site, all other measurement location’s 

Fig. 1  Workflow illustration of atmospheric CO2 datasets creation a) Study site overlaid on the Digital Elevation 
Model (DEM) b) stages of calibration.
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dry air CO2 concentrations are estimated using Wagner and Pruss27 Eq. (1-3). However, in the Shadnagar site, 
the high-precision greenhouse gas analyzer will remove 60% of water vapor through its Peltier cooling system. 
To remove the other 40% water vapour influence, a three-point standard calibration curve is established between 
measured CO2 against the known CO2 concentrations using the WMO certified NOAA supplied calibration 
spans as summarized in Table 1. Further, zero calibration is also applied to adjust the instrument bias. A detailed 
dry correction method is also discussed in the previous studies by Mahesh et al.19 and Sharma et al.21,23.

Fig. 2  Flow chart of data collection layout from the GGA, UGGA and GMP-343 CO2 sensors at the 
observational sites.

S.No Cylinder ID CO2_NOAA.(ppm) Reproducibility (ppm)

1 CB09852 353.17 ±0.02

2 CC718409 404.53 ±0.02

CC718425 448.44 ±0.40

Specifications of UGGA Precision and Accuracy

Precision Accuracy Reference

78 ppb 101 ppb NOAA Calibration 
Cylinder

Table 1.  NOAA calibration span gases.

Station Name Date of calibration Reference data RMSD (ppm) Mean (ppm) Accuracy (%)

NARL, Gadanki 17th

18th  March 2015

High precision UGGA

.

.
23 19
24 53

374.56 6.0

RRSC, Nagpur 17th

18th  March 2015
8 30

14 73
.
.

389.22 2.0

IISWC, Ooty 09-10th August 2017 2.57 411.25 0.60

IIST, Ponmudi 17th

18th  March 2015
.
.

24 54
25 06

372.79 6.50

SHAR, Sriharikota 15th January 2014 Against calibration reference 370 ppm 3.2 373.20 1.0

NRSC Shadnagar 10th March 2015 NOAA CO2 references 0.11 ppm 402.92 <0.25

Table 2.  Calibration of GMP-343 CO2 sensors at study locations against UGGA instrument.
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p = saturated vapor pressure; pc = critical pressure (22.064 MPa); Tc = Critical temperature (647.096 K); 
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are actual and saturated vapour pressure respectively.

Figure 4 displays the monthly water vapour corrected atmospheric CO2 concentration compared to the raw 
atmospheric CO2 concentration (wet CO2) over the observational sites for the corresponding periods. The nearly 
uniform difference in atmospheric CO2 content between wet and dry is noticed at the stations. The relative bias 
between the dry and wet atmospheric CO2 concentrations are −11.27%, −2.80%, −2.52%, −2.24%, 1.78% and 
5.95% over the Dehradun, SHAR, Nagpur, Gadanki, Shadnagar and Ooty respectively.

Data Records
We have made an effort to maintain synchronized atmospheric CO2 observations across the country. Data gaps 
over the study sites are due to technical snags in the instrument. Atmospheric CO2 data records are located at 
figshare online repository28 and the National Information system for Climate and Environment Studies (NICES) 
web page under the ISRO’s Bhuvan Geo-portal platform (https://bhuvan-app3.nrsc.gov.in/data/download/
index.php). Data can be downloadable to the login users only. After login, the procedure to download the data 
has been given in Fig. 5.

Atmospheric CO2 data is formatted in a single Microsoft Excel (.xlsx) file. The first sheet is labelled as 
“daily_Atmospheric_CO2_ppm”, in which the first column represents the date in DDMMYYYY format. From 
the second to eighth columns are CO2 measurement locations, namely Dehradun, Gadanki, SHAR, Ponmudi, 
Shadnagar, Nagpur, and Ooty, respectively. The second sheet of the file contains the daily raw CO2 labelled as 
“Raw_daily_CO2_ppm”. Third sheet contains hourly corrected atmospheric CO2. Gaps in the meteorological 
data are obtained from a fifth generation European Centre for Medium-Range Weather Forecasts reanalysis 
(ECMWF-ERA5) climate data, an open access platform (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels). Fourth sheet tagged as “Meta_data_Info” depicts the information of the data 
records, such as station names with their geographical locations (Latitude and Longitude) and the respec-
tive data period. The fifth sheet, i.e., inter-sensor_calibration, contains the simultaneous data recorded by the 
UGGA and GMP-343 CO2 sensors for inter-sensor calibration along with their deviations. The data in the fifth 
sheet has three columns; the first column is measurement time in HHMM format, the second column is CO2 
in ppm measured by the UGGA, the third column is CO2 in ppm recorded by the GMP-343 sensor and fourth 
column is deviation between UGGA and GMP-343 measurements. Missing values in the xlsx file are indicated 
by the −999.

GMP-343 recorded CO2 data are formatted in a CSV file. Table 3 shows the study site’s positions, mean 
sea level (altitude), and data availability. At study sites, GMP-343 CO2 sensors are installed during different 
periods.

Fig. 3  A 12-hour inter-sensor calibration of GMP-343 CO2 sensor against high precision UGGA sensor during 
9-10 August 2017.
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Technical Validation
To maintain the quality measurements of continuous atmospheric CO2 observations, the GMP-343 CO2 sensors 
and the high precision greenhouse gas analyzer were periodically calibrated. An inter-sensor calibration was 

Fig. 4  Water vapor corrected monthly mean of atmospheric CO2 variation over the study locations.

https://bhuvan-
app3.nrsc.gov.in/dat
a/download/index.p
hp?c=p&s=NI&g=all

Category:  
Program/Projects

Project: National 
Information system for 
climate & Environment 

studies (NICES)

Group: In-situ
data

Product:
Atmospheric 

CO2

Select site 
and time 

period

Register /Login Select Select Select Select Select

Fig. 5  Flow chart for the CO2 data access from the NRSC/Bhuvan Portal of NICES.

Station name Latitude (N) Longitude (E) Altitude (m) Data period

IIST, Ponmudi 8°45′ 77°06′ 1100.0 June 2014-May 2015

IISWC, Ooty 11°24′ 76°40′ 2240.0 May 2017- July 2021

SHAR, Sriharikota 13°43′ 80°13′ 9.0 January 2012-December 2012

NARL, Gadanki 13°27′ 79°10′ 375.0 January 2014-December 2014

NRSC, Shadnagar (GGA) 17°01′ 78°11′ 650.0 January 2014-December 2017

RRSC, Nagpur 21°09′ 79°01′ 310.0 January 2017-December 2017

IIRS, Dehradun 30°20′ 78°02′ 690.0 November 2008-December 2011

Table 3.  GMP-343 CO2 sensor locations and data availability.
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carried out between the GGA and GMP-343 CO2 sensors. An accuracy of the measurements from site to site 
are varied between 0.25% to 6.50%. The dry atmospheric CO2 is mainly controlled by the atmospheric pressure, 
temperature, and water vapor, hence atmospheric dilution correction was carried out. Due to the atmospheric 
dilution, observed a deviation of 3 ppm to 50 ppm at different locations. Further, the CO2 simulations from the 
Model for Interdisciplinary Research on Climate version 429 (MIROC4); atmospheric general circulation model 
(AGCM)-based chemistry-transport model30 (referred to as MIROC4-ACTM;) are used to evaluate the in-situ 
observations against the model simulation for the Indian sites (Fig. 6). Observation from 50 sites across the 
globe are used for optimizing biospheric and oceanic fluxes. Detailed information about the simulations can be 
found in Patra et al.31.

The model-simulated CO2 and the baseline measurement over Nagpur match well; however, from March to 
April, there are noticeable increases in atmospheric CO2 concentrations. Measurements of Gadanki between 
2011 and 2013 occasionally found inconsistent values. However, measurements in 2014 showed a good corre-
lation with the model’s output. In the month of June 2013, anomalous measurements of atmospheric CO2 con-
centrations were recorded due to the technical snag of the instrument The mean monthly bias between in-situ 
CO2 against the MIROC4−ACTM simulated CO2 indicated the largest bias for Dehradun compared to other 
stations and systematic bias for Shadnagar (Fig. 6b). Overall, the bias between the dry corrected CO2 and model 
simulated CO2 lies within ±10%. Results of the comparison indicates the potentiality of the in-situ CO2 for the 
use of atmospheric research.

Code availability
There is no specific custom code used to generate the data/figures presented in this work.
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