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Registered multi-device/staining 
histology image dataset for 
domain-agnostic machine learning 
models
Mieko Ochi   1, Daisuke Komura   1 ✉, Takumi Onoyama1,2, Koki Shinbo1, Haruya Endo1, 
Hiroto Odaka1, Miwako Kakiuchi   1, Hiroto Katoh1, Tetsuo Ushiku3 & Shumpei Ishikawa   1,4 ✉

Variations in color and texture of histopathology images are caused by differences in staining 
conditions and imaging devices between hospitals. These biases decrease the robustness of machine 
learning models exposed to out-of-domain data. To address this issue, we introduce a comprehensive 
histopathology image dataset named PathoLogy Images of Scanners and Mobile phones (PLISM). The 
dataset consisted of 46 human tissue types stained using 13 hematoxylin and eosin conditions and 
captured using 13 imaging devices. Precisely aligned image patches from different domains allowed 
for an accurate evaluation of color and texture properties in each domain. Variation in PLISM was 
assessed and found to be significantly diverse across various domains, particularly between whole-
slide images and smartphones. Furthermore, we assessed the improvement in domain shift using a 
convolutional neural network pre-trained on PLISM. PLISM is a valuable resource that facilitates the 
precise evaluation of domain shifts in digital pathology and makes significant contributions towards the 
development of robust machine learning models that can effectively address challenges of domain shift 
in histological image analysis.

Background & Summary
Since the 1990s, whole-slide scanners have facilitated the capture of high-resolution digital images of complete 
specimens, similar to microscopic images. This has led to the development of digital pathology, which employs 
computers to analyze whole-slide images (WSIs). Along with rapid advancements in deep learning, researchers 
are developing artificial intelligence (AI) to help minimize the workload of pathologists, aid in predicting patient 
prognosis, and provide decision support for treatment plans based on WSIs1.

However, unwanted color and texture heterogeneity1–3 is present in digital histology images. This heteroge-
neity is the primary cause of a domain shift in pathological images, thereby restricting the clinical application of 
deep learning algorithms by decreasing their generalizability4. Heterogeneity results from the inconsistencies in 
the procedures before obtaining WSIs, such as tissue preparation, staining, and scanning5,6. For instance, incon-
sistencies in the formulations of hematoxylin and eosin (H&E), exposure to light, and varying storage conditions 
lead to color inconsistencies7. Additionally, different scanners have unique imaging properties, resulting in color 
and texture variations7. Histology images captured through microscopes using smartphones also add to this 
variability. Smartphones are widely used to capture histological images as they enable the pathologists to easily 
consult with colleagues, seek consensus, and share images of interest8,9. This trend is particularly pronounced in 
developing countries, where resources might be limited10. Moreover, mobile tools such as content-based image 
retrieval, which provide image similarity search capabilities, have emerged to address the growing demand for 
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assistance in pathological diagnosis using mobile phones11,12. Nevertheless, images taken by smartphones sig-
nificantly differ in quality from those produced by WSI scanners. Furthermore, the wide variety of smartphone 
devices contributes to the variability in image quality, thereby exacerbating the problem of color and texture 
heterogeneity.

Color augmentation1,13,14 is a common technique used to enhance the robustness and generalizability of 
deep-learning models against color variation. Although this augmentation involves applying random changes in 
hue, saturation, and brightness to the input image, the degree of perturbation is a hyperparameter that is difficult 
to optimize. Small perturbations are ineffective at increasing the robustness. Contrarily, large perturbations may 
lead to an unnatural color distribution, causing a drop in the performance of the trained model14. While deep 
learning-based style transfer methods have been utilized to improve robustness against both color and texture 
variations, histological images in diverse domains are required to train the model15. Therefore, histopathological 
datasets encompassing various domains could be beneficial for researchers to optimize the color range of aug-
mentation or develop robust style-transfer models.

Recent studies have provided histopathological image datasets for various domains. For instance, the 
MIDOG++16 dataset includes 503 cases of H&E-stained WSIs from seven types of cancer. The images were 
obtained using five distinct WSI scanners to detect mitotic cells effectively. Kuritcyn and colleagues17 created 
an image dataset consisting of 161 cases of colorectal cancer images captured using six different scanners. They 
found that, model performance decreased owing to domain shifts. The CAMELYON dataset18 was developed to 
construct a model aimed at detecting tumor metastases in sentinel lymph nodes, although it was not primarily 
designed to address domain shifts. The dataset comprises lymph node specimens, scanned using three distinct 
scanners from multiple medical institutions. However, these studies have several limitations: (1) they target only 
one organ, except for MIDOG++, which results in a lack of tissue diversity in the images obtained; (2) these 
studies are limited to only WSI scanners; (3) they do not focus on the differences in staining conditions, which 
results in a lack of diversity in H&E staining; and (4) the same tissues are not captured across domains, thus 
limiting the ability to evaluate color and texture differences between different domains. Kuritcyn’s dataset is an 
exception; however, it is not publicly available. The features of each dataset are summarized in Table 1.

To address this issue, we developed a dataset named Pathology Images of Scanners and Mobile phones 
(PLISM)19 (Fig. 1a). The dataset contains histopathological images from various domains, including differ-
ent tissue types, staining conditions, and imaging devices. It covers a wide range of colors similar to that of 
MIDOG++, comprising images of specimens obtained from multiple laboratories, except for the spectrum with 
an extremely strong red hue. Based on the observation of a high prevalence of artifact images within the strongly 
red-hued section of the MIDOG dataset, we believe that the data distribution of the PLISM dataset aligns with 
existing external datasets (Fig. 1b). The strength of the PLISM dataset lies in its unique design, in which images 
encompass both WSIs and smartphone images that capture the same tissue or serial sections of tissue microarray 
(TMA) stained under different H&E staining conditions. Each TMA slide contained 46 different tissues from the 
human body, providing a diverse tissue collection. We aligned these images properly from different domains at 
the patch level, which allowed for the statistical analysis of the imaging modality and staining types. This dataset 
can help evaluate the robustness of an AI model in various domains, providing valuable insights into the impact 
of diverse imaging modalities and staining on the algorithms. To the best of our knowledge, the PLISM dataset 
is the first of its kind to encompass a diverse collection of H&E-stained images captured using multiple imaging 
modalities, such as smartphones, and obtained using various hematoxylin solvents.

Methods
Data collection.  All histopathological specimens used in creating the PLISM dataset were sourced from 
patients who were diagnosed and underwent surgery at the University of Tokyo Hospital between 1955 and 2018. 
This study was approved by the Institutional Review Board of the University of Tokyo (approval number: 2381). 
Each TMA slide consisted of 46 different tissues extracted from formalin-fixed, paraffin-embedded human tis-
sues, as shown in Fig. 2.

From a pool of 64 H&E staining conditions, we selected two staining conditions for each H solution category 
along with the MY staining condition routinely used in our laboratory. The selection criteria were based on the 
color similarity between H and E, selecting an H solution with the highest color similarity to E and another 
with the lowest color similarity to E. This approach ensured a color diversity. Specifically, the stain deconvo-
lution method was used to deconvolve the RGB color of the histology image into the H and E color vectors. 
Subsequently, for each H solution category, the H solution with the minimum and maximum angle to the E color 
vector was selected. A greater contrast was achieved when the angle between the two vectors was larger, resulting 

MIDOG++ Kuritcyn17 CAMELYON PLISM (ours)

images from WSIs ✓ ✓ ✓ ✓

smartphone images × × × ✓

multi-tissue ✓ × × ✓

multi-stain × × × ✓

same tissue × ✓ × ✓

availability ✓ × ✓ ✓

Table 1.  Comparison of the existing datasets for domain adaptation with PathoLogy Images of Scanners and 
Mobile phones (PLISM).
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in a vivid color appearance with a clear distinction between the H and E components (e.g. GIVH, GMH, GVH, 
HRH, KRH and LMH in Table 2 Abbrev.). Conversely, a smaller angle produced a darker tone (e.g. GIV, GV, 
GM, GV, HR, KR and LM in Table 2 Abbrev.) (Fig. 2a). Therefore, these criteria contributed to the diversity of 
H&E staining in the dataset. Out of these staining conditions, H was exposed for approximately 24 hours in 
two conditions, which is considered impractical in clinical settings. These staining conditions were selected to 

Fig. 1  (a) Pathology Images of Scanners and Mobile phones (PLISM) Workflow, and b) Comparison of HSV 
color wheels between PLISM (left) and MIDOG++ (right) images. (a)Tissue microarray slides containing 
46 tissues stained under thirteen different staining conditions were scanned with six smartphones and seven 
slide scanners (objective lens at 40×). To ensure that the same field of view of the tissue was captured by all 
smartphones, each smartphone was attached to an eyepiece of the discussion microscope. Image registration 
was performed across all imaging modalities using smartphone images as the query (PLISM-sm subset) and 
throughout only WSIs’ images (PLISM-wsi subset). (b) In the left and center figures, kernel density estimation 
plots represent data distribution of 512 × 512 px RGB images resized to 50 × 50 px (n = 10,000), randomly 
extracted from each dataset. The right figure shows a plot of hue and saturation of pixels from regions with an 
extremely strong red hue.
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generate an extreme reference H color distribution. A total of 13 slides were stained using the 13 selected H&E 
staining conditions (Table 2).

Slide digitalization, image registration, and image tiling.  The workflow, from slide digitization to 
image registration are presented in Fig. 1. Once the slides were stained with H&E, they underwent digitization 
using seven slide scanners and six smartphones to capture scan variability across the devices used, in addition to 
the variability in the H&E staining procedure. H solvents used were produced by either Sakura Finetek Japan Co., 

Fig. 2  (a) Angles formed by hematoxylin and eosin (H&E) component vectors for each of the 64 staining 
conditions, and (b) Tissue types included in tissue microarray (TMA) specimens. (a) Angles are categorized  
by the type of hematoxylin solvent group. Red and blue points in the boxplot indicate the maximum and 
minimum angles, respectively, with corresponding images shown on the right. (b) a. Adenocarcinoma.  
b. Neuroendocrine carcinoma. (c) Squamous cell carcinoma. (d) Mucinous carcinoma. (e) Gastrointestinal 
stromal tumor. (f) Liver cancer. (g) Epstein-Barr virus-positive gastric cancer. (h) Salivary gland. (i) Clear 
cell carcinoma. (j) Hepatocellular Carcinoma. (k) Dedifferentiated liposarcoma. *This tissue was lost due to 
detachment from the slide during slicing.
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Ltd. or Muto Pure Chemicals Co., Ltd. (Tokyo, Japan). The scanners used in the PLISM are listed in Table 3. All 
slides were scanned at the maximum resolution of each scanner used, which ranged from 0.22 to 0.26 µm/pixel.

We used discussion heads attached to an Olympus BX-53 microscope (EVIDENT Co. Ltd., Tokyo, Japan) to 
capture the same microscopic images using various smartphones (Fig. 1a). Each discussion head was attached 
to a different smartphone. The smartphones used in PLISM are listed in Table 4. All images were captured 
at 400 × magnification of the microscope. The Open Camera20 tool was used for the Android smartphones, 
whereas the Camera + 221 tool was employed for the iPhones. Images were captured by manually pressing a 
Bluetooth switch (ELECOM, P-SRBBK 4953103305977). This setup allowed images of the same tissue structure 
to be captured simultaneously without the influence of motion blurring from the capturing process. The imaging 
settings for each tool and camera specifications for each smartphone are presented in Table 5.

All slides were initially stored in the original vendor format. Subsequently, we used VALIS22, an open-source 
image registration package, to perform both rigid and non-rigid registration among WSIs, designating the slide 
scanned by Hamamatsu Nanozoomer S60 with Mayer stain as the reference slide and setting ‘align_to_reference’ 
parameter as True.

We created two PLISM subsets from the images:

	 1.	 PLISM-wsi contains only WSI images. Registration was performed across all scanners and staining con-
ditions. There were 3,417 aligned image groups, with a total of 310,947 (3,417 groups × 91 WSIs) image 
patches.

Type of Hematoxylin 
(product number)

Exposure time of 
Hematoxylin (min)

Exposure time of 
Eosin (min) Number of Dehydration Abbrev. Solution Category

Gill IV (8647) 0.5 15 1 GIVH
GIV

Gill IV (8647) Overnight* 15 4 GIV

GM (30081) 2 15 1 GMH
GM

New Type G (30161) 5 15 4 GM

Gill V (20032) 5 15 1 GVH
GV

Gill V (20032) 60 15 4 GV

Mayer (30002) 3 3 1 MY MY

Harris (20022) 2 15 1 HRH
HR

Harris (20022) Overnight* 15 1 HR

Carrazi (30131) 5 15 1 KRH
KR

Carrazi (30131) 60 15 4 KR

Lillie-Mayer (30072) 2 15 1 LMH
LM

Lillie-Mayer (30072) 2 15 5 LM

Table 2.  Hematoxylin and eosin (H&E) staining conditions used in PLISM. *About 24 hours.

Vendor Model Abbrev. Year Released MPP (µm/pixel) File Format

Hamamatsu NanoZoomer-S360 C13220-01 scanner S360 2017 0.229 ndpi

Hamamatsu NanoZoomer-S210 C13239-01 scanner S210 2015 0.220 ndpi

Hamamatsu NanoZoomer-SQ C13140-D03 SQ 2014 0.221 ndpi

Hamamatsu NanoZoomer-S60 C13210-01 S60 2016 0.220 ndpi

Leica Aperio AT2 AT2 2013 0.253 svs

Leica Aperio GT450 GT450 2019 0.262 svs

Phillips Ultrafast Scanner P 2018* 0.25 isyntax

Table 3.  Whole-slide image (WSI) scanners used in the dataset. *Release year in Japan.

Vendor Model Number of Pixels (Megapixels) Resolution (pixels) F-number (f)

Samsung Galaxy S20 5 G SC-51A 12 1440 × 3200 1.8

Motorola moto g8 16 720 × 1560 1.7

Xiaomi Redmi Note9 Pro 64 1080 × 2400 1.9

Apple iPhone 6 8 750 × 1334 2.2

Apple iPhone 13 mini 12 1080 × 2340 2.4

Transsion iTel P33 8 720 × 1440 1.8

Table 4.  Specification for smartphone cameras. When the smartphone used had multiple lenses, the 
information about the lens actually used for capturing the image is provided.
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	 2.	 PLISM-sm includes both smartphone and WSI images. Registration was performed on all scanners and 
smartphones under each staining condition. There were a total of 4,454 aligned image groups containing 
57,902 (4,454 groups × 13 devices) images.

For the PLISM-sm subset, smartphone images were used as queries, and employed OpenCV’s AKAZE23 key 
point matching algorithm to extract the corresponding tissue regions from each WSI with a matching stain type. 
In PLISM-sm, the size of the reference WSI images varied for each smartphone image. Rigid registration was 
then performed twice to align the WSI and the smartphone images using ‘cv2.findHomography’ and ‘cv2. warp 
Perspective’ with RANSAC24 filtering. After image alignment, each image was center-cropped to a size of 512 × 512 
pixels because we observed large registration errors around the edges of the images. For the PLISM-wsi subset, we 
tiled all 91 WSIs to 1024 × 1024 pixels without overlap, regardless of staining. Subsequently, we again performed 
rigid registration on the AT2, GT450, and P scanner images using OpenCV’s AKAZE23 key-point matching algo-
rithm to align them with the S60 scanner images, because of their relatively large visible misalignment. Each image 
was center-cropped to a size of 512 × 512 pixels. Figure 3 shows the number of images classified by tissue type, 
staining type, and imaging device for both subsets. Example images of both subsets are presented in Fig. 4.

Data validation and quality control.  All glass slides included in the PLISM dataset were manually 
stained and scanned by M. O. and experienced technical staff. The staining quality was visually confirmed by a 
board-certified pathologist (M. O.), and all images were manually inspected after tiling the WSIs. The quality of 
the tiled images was assessed by technical staff (H. E. and K. S.), and tile-cropped images with missing parts or 
significant focus problems were excluded from the analysis.

The registration quality was also evaluated. The Target Registration Error (TRE), the median distance 
between the registration target features in the image, and the corresponding matched features22 in the reference 
image was 43 μm for registration between serial sections. This value is within the normal range for serial sections 
where the target points can be shifted between sections. As Gatenbee et al. demonstrated in the original VALIS 
study22, the TRE between serial WSIs after both rigid and non-rigid registration is approximately between 20 μm  
and 100 μm. Furthermore, to evaluate the quality of registration between WSIs and smartphone images, we 
manually refined the position of each landmark such that it was positioned on the same cell or prominent tissue 
landmarks in the corresponding WSI-smartphone-group images. In total, we created and manually checked  
325 registration points on 65 patch images, which resulted in a 1.0 μm TRE score. All groupwise images were 
manually checked by H.E., K.S., and O.M., and misaligned image groups were removed.

Evaluation methods.  To test whether the PLISM can improve the robustness of convolutional neural 
networks (CNN) to out-of-domain datasets and exceed conventional color augmentation, we pretrained two 
ResNet18s model using SimCLR25, a self-supervised learning method. The PLISM-full model was pretrained 
on PLISM-sm dataset, while the PLISM-WSIonly model was pretrained on PLISM-wsi dataset. The two models 
used on the PLISM were pre-trained with 224 × 224 pixel images from each data subset for 1000 epochs using 
the same augmentation method as Ciga et al.26. The pretrained models were trained with a batch size of 256 and 
a learning rate of 0.3 × (batch size)/256. For a comparative evaluation, we also assessed CNN models trained on 
two different datasets: one featuring over one million general images from ImageNet with and without HED-light 
color augmentation method that demonstrated the best performance across various histology datasets1 and the 
other comprising of 57 histology datasets from the study conducted by Ciga et al.26. The latter included images 
from various organs, captured at resolutions ranging from 10 × to 100 × , and predominantly stained with H&E.

We evaluated the pretrained model on two multiclass classification datasets for colorectal adenocarcinoma: 
Kather1927 and CRC-TP28, and a binary classification dataset for the presence or absence of breast cancer metasta-
sis in sentinel lymph nodes: Camelyon1718. For the colorectal adenocarcinoma datasets, we modified the datasets 
to focus exclusively on the six common classes in both the Kather19 and CRC-TP datasets: debris (DEB), lym-
phocytes (LYM), muscle (MUS), normal glands (NORM), simple stroma (STR), and tumor epithelium (TUM).

In the training for the downstream task, only the linear classification layer was trained, whereas the remain-
ing layers were frozen to rigorously evaluate the performance of the pretrained model. We then evaluated the 
classified images against the ground truth labels and computed the mean F1 score across all test patch images 
of each tissue type. For the colorectal adenocarcinoma datasets, Kather19 was used for training and CRC-TP 
was used for testing. Next, CRC-TP was used for training and Kather19 was used for testing. The Camelyon17 
dataset included cases from five institutions and we tested 10 combinations of institutions for the training and 
testing datasets. We trained the linear layer 10 times with random initial weights for each training and testing 
combination for the colorectal adenocarcinoma and breast cancer metastasis datasets.

Tool Camera + 2 Open Camera

Focus Manual Manual

Flash No No

Exposure Automatic Exposure Fixed

White Balance Auto Auto

File Format JPEG (for iPhone 6)
TIF (for iPhone 13 mini) PNG

Table 5.  Imaging setting details for applications.
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Statistical analysis.  Data were analyzed using Python version 3.8.5 and R version 4.3.1. Statistical signifi-
cance was assessed using Welch’s t-test with Bonferroni correction and two-way analysis of variance (ANOVA) 
test using “SciPy” library (“Quality Control for Differences in Color Variation Across Staining Conditions and 
Imaging Devices in Identical Tissue Images”), Kruskal–Wallis test with “ggpubr” library (Fig. 7). All statistical 
tests were two-sided and p value < 0.05 was considered statistically significant.

Fig. 3  The number of images per tissue, staining condition, and imaging device in (a) PLISM-sm and (b) 
PLISM-wsi.

https://doi.org/10.1038/s41597-024-03122-5
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Data Records
Image data & lists of data.  The entire PLISM dataset is publicly available on figshare plus under the CC-BY 
4.0 license19. PLISM-wsi and PLISM-sm were deposited separately. The folder structure for each subset is as 
follows.
	 1.	 PLISM-wsi, consists of image groups for all staining conditions between the WSIs for each tile image. Im-

age groups from the same field of view in the WSI images shared common coordinates in their filenames.

├(stain_name)_(device_name)/
└(stain_name)_(device_name)_(top_left_x)_(top_left_y).png

�List of images selected through quality control by visual assessment. This is a CSV file with the following 
columns providing information regarding the images:

•	 Tissue Type: The tissue types out of the 46 types of human tissue.
•	 Stain Type: The staining condition out of the 13 types.
•	 Device Type: The device types out of the 13 device types.
•	 Coordinate: The xy coordinates of the upper-left corner of each WSI image (e.g., 1000 _500)*.
•	 Image Path: The relative path to each image file.

	 2.	 PLISM-sm, where smartphone images are used as queries to create image groups for each staining condi-
tion corresponding to each tile image. Image groups from the same field of view shared common coordi-
nates in their file names, which corresponded to the WSI coordinates captured using the AT2 device under 
the respective staining conditions.

Fig. 4  Example images of (a) PLISM-sm and (b) PLISM-wsi. Since different staining cannot be applied to stain 
the same sections, we stained the serial sections, resulting in a slightly different tissue appearance between 
different staining conditions while preserving the tissue components.

https://doi.org/10.1038/s41597-024-03122-5
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├(stain_name)/
└(device_name)/

└(top_left_x)_(top_left_y)_(right_lower_x)_(right_lower_y).png
�List of images selected through quality control by visual assessment. This is a CSV file with the following 
columns providing information regarding the images:

•	 Tissue Type: The tissue types out of the 46 types of human tissue.
•	 Stain Type: The staining condition out of the 13 types.
•	 Device Type: The device types out of the 13 device types.
•	 Coordinate: The xy coordinates of the upper left and bottom right corners of each WSI image (e.g., 

10000_5000 104000_9000)*.
•	 Image Path: The relative path to each image file.

All images were saved in PNG format. Original 91 WSIs are also publicly available19. The asterisks (*) indi-
cate the coordinates of each image before they were center-cropped.

Technical Validation
Quality control for differences in color variation across staining conditions and imaging devices 
in identical tissue images.  For quality control, and to demonstrate the diversity of color and texture in 
the H&E-stained images of PLISM across staining conditions and imaging devices, we utilized the PLISM-sm 
subset, which includes all device types and captures the same tissue image for each group. We statistically tested 
the differences in color distribution for each of the Hue, Saturation, Value (HSV) components between different 
devices and staining conditions. Among the different devices, 216 (92.3%) of the 234 combinations were signif-
icantly different after the Bonferroni correction. Similarly, among the different staining conditions, 215 (91.8%) 
of 234 combinations were significantly different. These results suggest that almost all devices and staining types 

Fig. 5  T-values for mean Hue, Saturation, Value (HSV) values by (a) Device type, and (b) Staining condition. 
The color scale indicates the absolute t-value in unpaired t-tests for each device and staining condition regarding 
the mean HSV values in the PLISM-sm subset.
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exhibited different color characteristics. The differences in HSV values according to the device and staining type 
are presented in Fig. 5. There was a greater difference in hue between smartphones and WSIs than between the 
WSI combinations. There was also a slight difference in the saturation between the WSIs and smartphones. When 
staining was examined, there was a similar trend of differences in hue and saturation between smartphones and 
WSIs; however, saturation showed a greater difference. As expected, HR staining with overnight H exposure had 
a strong H component, resulting in substantially different saturation and values compared to other staining types. 
However, GIV staining with a different overnight H exposure had a smaller difference in color.

To determine whether the differences in the HSV components were attributable to staining or device type, we 
compared the sum of squares using ANOVA for staining and device type. The analysis indicated that device type 
contributed more significantly to Hue (Device: Stain, 947.5 vs. 332.7, p < 0.000001), whereas staining contrib-
uted more to saturation (Stain: Device, 360.3 vs. 165.7, p < 0.000001) and value (Stain: Device, 318.9 vs. 120.7, 
p < 0.000001). This finding suggests that despite staining with various H solvents, the influence of device type 
on defining image coloration was greater than that of staining in our dataset.

Fig. 6  t-distributed Stochastic Neighbor Embedding (t-SNE) plot for the PLISM-sm subset. Each image was 
encoded using deep texture representations (DTR) method11 with the VGG16 model pre-trained on ImageNet. 
For the PLISM-sm subset, we calculated the 1024-dimensional DTRs of each image, performed dimensionality 
reduction using t-SNE from python sklearn library with learning_rate = ‘auto’, and plotted the results in 2D. The 
figure shows the t-SNE plots for (a) WSI and smartphones, (b) original images, (c) staining types, (d) device 
types, and (e) tissue types.
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Subsequently, we assessed the color and texture differences in the feature space produced by the CNN model 
(Fig. 6). Interestingly, the images captured by the smartphones and the WSIs were clearly divided into two dis-
tinct clusters (Fig. 6a,b). While HR staining with overnight hematoxylin exposure formed a separate cluster, no 
clear clusters were formed for the other staining types or devices (Fig. 6c,d). However, a closer examination of 
the WSI cluster in Fig. 6e reveals that the images are loosely grouped by tissue type. These results suggest that 
the broad categories of devices, such as WSIs and smartphones, as well as tissue types, have distinct color tones 
and textures in the images.

Fig. 7  Out of distribution performance of convolutional neural network (CNN) models trained on various 
image datasets. Macro F1 scores, where (a) Kather19 was used as the training dataset and CRC-TP as the test 
dataset and (b) CRC-TP was used as the training dataset and Kather19 was used as the test dataset. Training and 
inference were performed 10 times for both (a and b). For the Camelyon17 dataset, combinations of training 
and test datasets were created for 10 facility combinations, and (c) the macro F1 scores for all combinations. 
(d) Macro F1 scores for each combination of training and test datasets. Training and inference were performed 
10 times for each combination. In the box plot, the lower and upper hinges correspond to the 25th and 75th 
percentiles, respectively, and the upper whisker extends from the hinge to the largest value no further than 
1.5 × interquartile range (IQR) from the hinge. The lower whisker extends from the hinge to the smallest value 
at most 1.5 × IQR of the hinge. ns: p > 0.05, *p < = 0.05, **p < = 0.01, ***p < = 0.001, ****p < = 0.0001.
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Improving domain shift using plism pre-trained convolutional neural network.  We performed 
two sets of experiments: first, we used Kather19 for training and CRC-TP for testing (Fig. 7a) and second, we 
reversed the roles, employing CRC-TP for training and Kather19 for testing (Fig. 7b).

As shown in Fig. 7a, the model pre-trained on the PLISM-sm subset (PLISM-full) significantly outperformed 
both Imagenet with and without HED-light color augmentation method and Ciga’s models in terms of macro 
F1 scores (p ≤ 0.0001). In contrast, no significant differences were observed when comparing the model pre-
trained on the PLISM-WSI subset (PLISM-WSI only) with model by Ciga et al. In Fig. 7b, for the performance of 
ImageNet without the HED-Light augmentation method and Ciga’s model, we observed results similar to those 
observed in Fig. 7a when compared to that of the PLISM models. However, the ImageNet without HED-Light 
augmentation method and the PLISM-full model demonstrated comparable F1 scores.

We also tested the model using Camelyon17. This dataset included cases from five institutions, and we tested 
10 combinations of institutions for the training and test datasets. As shown in Fig. 7c, both PLISM_full and 
PLISM_WSI had significantly higher F1 scores than ImageNet without HED-light augmentation method and 
Ciga models (p < = 0.001), and presented comparable scores compared to ImageNet with HED-Light augmen-
tation method. For each combination shown in Fig. 7d, the model pretrained on PLISM significantly outper-
formed the other models in terms of F1 scores in seven of the 10 combinations. These results suggest that PLISM 
effectively simulates pathological images across various domains, and pretrained models using PLISM data have 
the potential to outperform conventional color augmentation methods when used independently.

Code availability
All codes used in the image registration between WSI and smartphone images described in the manuscript 
were written in Python 3 and are available through our GitHub repository (https://github.com/p024eb/PLISM-
registration). We have provided all the necessary libraries and python scripts that allow the tracing of our results.
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