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Spike sorting with Kilosort4

Marius Pachitariu    1  , Shashwat Sridhar    1,2, Jacob Pennington1,3 & 
Carsen Stringer    1

Spike sorting is the computational process of extracting the firing times 
of single neurons from recordings of local electrical fields. This is an 
important but hard problem in neuroscience, made complicated by the 
nonstationarity of the recordings and the dense overlap in electrical 
fields between nearby neurons. To address the spike-sorting problem, 
we have been openly developing the Kilosort framework. Here we 
describe the various algorithmic steps introduced in different versions 
of Kilosort. We also report the development of Kilosort4, a version with 
substantially improved performance due to clustering algorithms inspired 
by graph-based approaches. To test the performance of Kilosort, we 
developed a realistic simulation framework that uses densely sampled 
electrical fields from real experiments to generate nonstationary spike 
waveforms and realistic noise. We found that nearly all versions of Kilosort 
outperformed other algorithms on a variety of simulated conditions 
and that Kilosort4 performed best in all cases, correctly identifying 
even neurons with low amplitudes and small spatial extents in high drift 
conditions.

Classical spike-sorting frameworks require a sequence of operations, 
which can be categorized into preprocessing, spike detection, cluster-
ing and postprocessing. Modern approaches have improved these steps 
by introducing new algorithms. Some frameworks1–3 took advantage 
of new clustering algorithms such as density-based approaches4 or 
agglomerative approaches using bimodality criteria5. In contrast, the 
original Kilosort6 used a simple clustering approach (scaled k-means) 
but combined two steps of the pipeline into one (spike detection + clus-
tering = template learning) and added an extra matching pursuit step 
for detecting overlapping spikes, sometimes referred to as solving the 
‘collision problem’7–12.

These early algorithms for large-scale electrophysiology required 
substantial human curation, as the clustering results were imperfect. 
This was mainly due to the nonstationary nature of data from real 
experiments. The electrical field of a unit sampled by a probe, called 
a spike waveform, should be fixed and reproducible across long time 
periods. Yet in many experiments, the shape of the waveform seemed 
to change over the course of hours and sometimes much faster. The 
main reason for these changes was identified as vertical probe move-
ment or ‘drift’, using high-density electrodes13. Correcting for drift 

resulted in substantial improvements in spike-sorting performance 
(see Methods in ref. 13).

The main goal of this paper is to describe Kilosort4 and demon-
strate its performance. Some of the algorithmic steps in Kilosort4 (see 
Table 1 for an overview) are directly inherited from previous versions, so 
we do not describe them in detail here (drift correction13 and matching 
pursuit6). The main algorithm introduced in Kilosort4 is a graph-based 
clustering approach based on modularity optimization. We combined 
this approach with a merging tree strategy that uses meta informa-
tion (such as refractory period violations and projection bimodality) 
to make merge/split decisions. We describe Kilosort4 in detail and 
benchmark it against other algorithms.

Results
At the core of Kilosort4 lies a graph-based clustering algorithm, which 
we describe below. Before that, however, we describe the feature extrac-
tion pipeline that provides the input to the clustering algorithm. We 
leave the description of the graphical user interface (GUI) (Extended 
Data Fig. 1) and the practical implementation details to the Methods 
section.
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features computed with the learned templates with background sub-
traction (Fig. 1i) are embedded as more uniform, Gaussian-like clusters. 
Without background subtraction, each cluster is surrounded by a pat-
terned envelope of points due to the contribution of overlapping spikes 
and these patterns can be easily mistaken for other clusters (Fig. 1g,h). 
The visualization in Fig. 1i can be used to get an impression of a small 
section of the data without performing any clustering. To visualize the 
distribution of spikes over a larger portion of a probe, we plot a subset 
of spikes at their inferred xy positions (Fig. 1j; see Methods for details 
on how the xy positions are inferred). The spikes are colored according 
to their norms, which tend to be uniform for spikes from the same unit.

Graph-based clustering with merging trees
The core clustering algorithm in Kilosort4 is applied twice: once in the 
template deconvolution pipeline to learn templates and once on the 
deconvolved features to assign final cluster identities. The graph-based 
clustering approach first constructs a graph of points connected to 
their nearest neighbors in Euclidean space and then constructs a cost 
function from the graph properties to encourage the clustering of 
nodes. In spike sorting, an early application of graph-based approaches 
was superparamagnetic clustering17. In more recent years, the ‘modu-
larity’ cost function has emerged as a popular choice for graph-based 
algorithms, which counts the number of graph edges inside a cluster 
and compares them to the expected number of edges from a disorgan-
ized, unclustered null model18.

Well-known implementations of modularity optimization are the 
Leiden and Louvain algorithms19,20. Applied directly to spike features, 
these established algorithms fail in at least two ways: (1) difficulty 
partitioning clusters with very different number of points21; and (2) 
relatively slow processing speed for hundreds of thousands of points19. 
To remedy the first problem, we developed an algorithm that combined 
a graph-clustering method with a ‘merging tree’ approach. The latter 
allowed us to inject domain knowledge into the clustering for making 
split/merge decisions. To improve the processing speed, which typi-
cally grows quadratically in the number of data points, we developed a 
landmark-based version of graph clustering which uses nearest neigh-
bors within a subset of all data points.

The graph-clustering part of the algorithm was used to obtain 
oversplit clusters, defined as the stationary points of an iterative neigh-
bor reassignment algorithm based on the modularity cost function 
(Fig. 2a and Methods). This method allowed us to find more of the small 
clusters compared to a straightforward application of the Leiden algo-
rithm (Fig. 2b). The oversplit clusters required additional merges using 
domain knowledge. To find the best merges, we used the modularity 
cost function to construct a ‘merging tree’ (Fig. 2c). The leaves of this 
tree correspond to the oversplit clusters and merges are sequentially 

Template deconvolution
The goals of the feature extraction pipeline (Fig. 1a) are to (1) detect 
all spikes, including overlapping ones; and (2) extract spike features 
after subtracting the influence of the background. We refer to the spike 
detection and feature extraction steps jointly as ‘template deconvo-
lution’. This module generates a set of templates that correspond to 
the average spatiotemporal waveforms of neurons in the recording. 
The templates are used in the matching pursuit step for detecting 
overlapping spikes6. A template deconvolution step has been used in 
all versions of Kilosort and the background-corrected spike features 
have been used for visualization in Phy14. In Kilosort4, we go one step 
further and use the background-corrected features as inputs to a more 
powerful clustering algorithm.

We illustrate the template deconvolution process using a record-
ing shared by the Neuropixels paper15,16, containing the visual cortex, 
hippocampus and thalamus. First, a set of initial spike waveforms are 
extracted from preprocessed data using a set of simple templates that 
are designed to span a wide range of spatial positions, spatial sizes and 
waveform shapes (Fig. 1b,c and elsewhere13). The waveform shapes are 
extracted from the recording by k-means clustering of single-channel 
waveforms (Extended Data Fig. 2a). To extract features from the spikes, 
we use a set of principal components (PCs) identified also from the 
single-channel waveforms (Extended Data Fig. 2a). The spike PC fea-
tures are then clustered using the graph-based algorithm from Kilo-
sort4 (described in the next section). The centroids of the clusters are 
the ‘learned templates’, which are then aligned temporally (Fig. 1d). 
The templates are compared to each other by cross-correlation and 
similar templates are merged together to remove duplicates. The 
learned templates are then used in the matching pursuit step, which 
iteratively finds the best-matching templates to the preprocessed data 
and subtracts off their contribution. The subtraction is a critical part 
of the matching pursuit and allows the algorithm to detect spikes that 
were overlapped by the subtracted ones. Among the major current 
spike-sorting platforms, Kilosort is the only one that performs this 
subtraction, which allows it to resolve spike collisions better than all 
other approaches12. The final reconstruction of the data with the tem-
plates is shown in Fig. 1e. The residual is the difference between the data 
and the reconstruction and can be informative if the algorithm fails to 
find some units (Fig. 1f).

Unlike previous versions, Kilosort4 does not further use the tem-
plates as putative clusters; they are completely discarded after spike 
extraction. This is because more powerful clustering algorithms can 
be applied to the spike features once they have been extracted with 
template deconvolution. Figure 1g–i shows the t-distributed stochastic 
neighbor embedding (t-SNE) of three different sets of features from 
spikes detected over a 40-μm stretch of a Neuropixels probe. The 

Table 1 | The evolution of Kilosort

Preprocessing Template deconvolution Clustering and postprocessing

Algorithms Language Filtering and 
whitening

Drift 
correction

Template 
deconvolution

Template 
learning

Deconvolution 
during learning

New 
templates 
from residual

Clustering Splits Merges

Kilosort1 
(2016)

MATLAB +CUDA Yes6 −  Yes6 Scaled 
k-means6

−  −  −  −  − 

Kilosort2 
(2018)

MATLAB +CUDA Yes − (only 
trackinga)

Yes Scaled 
k-means

Yesa Threshold 
crossinga

−  Bimodality 
pursuita

Yesa

Kilosort2.5 
(2020)

MATLAB/Python 
+CUDA

Yes Yes13 Yes Scaled 
k-means

Yes Threshold 
crossing

−  Bimodality 
pursuit

Yes

Kilosort3 
(2021)

MATLAB +CUDA Yes Yes Yes Recursive 
pursuita

−  −  Recursive 
pursuita

Yes Yes

Kilosort4 
(2023)

Python +pytorch Yes Yes Yes Graph 
clusteringa

−  −  Graph 
clusteringa

Merging 
treea

Yes

Bold text indicates new features added after Kilosort1, in the version where they were first introduced. aDescribed in this paper.
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identified by gradually reducing the modularity threshold. Potential 
splits in this tree were tested using two criteria: (1) a bimodal distribu-
tion of spike projections along the regression axis between the two 
subclusters (Fig. 2d, top) and (2) whether the cross-correlogram was 
refractory or not (Fig. 2d, bottom). These two criteria tend to be the 
ones most used by human curators performing spike sorting.

This clustering algorithm was applied to groups of spikes centered 
on a vertical segment of the probe, typically chosen as a multiple of 
the vertical pitch (40 μm for Neuropixels1, 30 μm for Neuropixels2, 
etc). Here we illustrate the process for a Neuropixels1 recording from 
the International Brain Laboratory (IBL) dataset22 containing anterior 
cingulate cortex, lateral septal nucleus, prelimbic cortex, striatum 
and corpus callosum. After all sections were clustered, an additional 
merging step was performed that tested the refractoriness of the 
cross-correlogram for all pairs of templates with a correlation above 0.5, 
similar to the global merging step from previous versions (2, 2.5 and 3).  
The final results are shown in Fig. 2e. Units that did not have a refrac-
tory period are shown grayed out in Fig. 2f; they likely correspond to 
neurons that were not well isolated. A quick overview of the units identi-
fied on this section of the probe shows that all units had neuronal-like 
waveforms and refractory autocorrelograms, all pairs of clusters had 
bimodal projections on their respective regression axes and all pairs of 
clusters had flat, non-refractory cross-correlograms (Fig. 2g,h). These 
properties together indicate that these nine units correspond to nine 

distinct, well-isolated neurons. These clusters can also be visualized 
on the probe in their local contexts (Fig. 2i).

Hybrid and full simulations without drift
To test the performance of Kilosort4 and other algorithms1–3,23,24, we 
next developed a set of simulations. All algorithms other than Kilosort4 
were run through their respective SpikeInterface wrappers to ensure 
consistent processing, and parameter adjustments were made in some 
cases to improve results (Methods)25. The latest algorithm versions as 
of December 2022 were used in all cases, which are often substantially 
different from the initial published versions2,3.

We start in this section with simulations without drift, which are 
much easier to generate. In this case, we assumed that waveforms are 
largely stable over a period of time, and we model each spike from 
the same unit as having the same waveform. Using this assumption, 
we developed hybrid ground-truth simulations6,14 using datasets 
recorded by the IBL22, which specifically had very low levels of drift, as 
estimated by Kilosort2.5. We chose datasets from a variety of laborato-
ries and spanning different brain areas (Fig. 3a). In hybrid ground-truth 
approaches, waveforms of the best-isolated units are added as extra 
spikes over the background provided by the recording, at spatial posi-
tions that are vertically offset from where the neuron was originally 
detected (Fig. 3b). For each ground-truth unit, we matched the units 
of each algorithm and kept the best match. The matching score was 
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Fig. 1 | Spike detection and feature extraction. a, Schematic of the pipeline for 
detecting spikes and extracting spike features. b, Short segment of preprocessed 
data over 70 channels and 1,000 time points (data from elsewhere16). Insets 
show an expanded section with multiple overlapping spikes. c, Example simple 
templates centered at a single position on the probe. Templates are repeated 
at 1,536 positions for a Neuropixels probe. d, Example learned templates 
centered at different positions on the probe. e, Reconstruction of the data in b 

based on the inferred templates and spike times. f, Residual after subtracting 
the reconstruction from the data. g–i, t-SNE visualization of spike features 
from a 40-μm segment of the probe. Spike features were extracted using either 
simple templates (g) or learned templates without (h) or with (i) background 
subtraction. j, Spatial distribution of a subset of the final extracted spikes colored 
by their template norm.
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defined as 1 − FP − FN, where FP and FN are the false positive and false 
negative rates, respectively (Methods). All Kilosort versions except 
Kilosort1 outperformed all other algorithms, with Kilosort4 perform-
ing the best (Fig. 3c).

Next we developed a full simulation, still relying on waveforms 
from experiments, but generating the spike background from simu-
lated 1/f noise as well as from multi-unit activity using units with small 
spike norms (Fig. 3d). We found similar performance for all algorithms, 
both in absolute and relative terms, with Kilosort4 outperforming all 
other methods. (Fig. 3e).

We also considered biophysical simulations as a benchmark but 
found that existing approaches generate unrealistic waveforms that 
are outside the distribution of real neurons in the brain (Extended 
Data Fig. 3a–e). We also found that this mismatch in waveform sta-
tistics explained why previous studies using biophysical simulations 
concluded that Kilosort outputs a large number of false positives25 
(Extended Data Fig. 3f–h).

Simulations with realistic drift
We next developed a set of realistic drifting simulations with a variety 
of drift patterns. Constructing such a simulation required knowledge 
of the dense electric fields of a neuron, because different drift levels 
sample the electric field at different positions. We obtained this knowl-
edge by sampling neurons from recordings with large drift (Fig. 4a) 
from a public repository of more than 500 Neuropixel recordings from 
the IBL consortium (Fig. 4b). In this repository, we found 11 recordings 
with large, continuous drift that spanned over at least 40 μm, which 
is the spatial repetition period of a Neuropixels probe. We collected 
two groups of units: one from neurons that were well isolated and had 
refractory periods and one from multi-unit activity that had refrac-
tory period contaminations. The average waveforms at five positions 
are shown for a few examples (Fig. 4c and Extended Data Fig. 4c,d).  
To simulate drift, we generated a single average drift trace and addi-
tional deviations for each channel to account for heterogeneous drift. 
Spike trains were generated using shuffled inter-spike intervals from 
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real units. For each simulation, a set of 600 ground-truth neurons were 
generated in this fashion, with spike norms drawn from a truncated 
exponential distribution that matched the approximate distribution 
of norms in real datasets. Another 600 ‘multi-units’ were added with 
lower norms (Extended Data Fig. 4a). Additional independent noise 
was added on each channel. The resulting simulation was ‘unwhit-
ened’ across channels using a rotation matrix from real experiments 
(Extended Data Fig. 4a). The simulations resembled real recordings 
(Fig. 4d and Extended Data Fig. 4b).

Results for all conditions are shown in Fig. 4e–j and quantified in 
Fig. 4j. All the algorithms had reasonable run times (Fig. 4l; within 2× 
the duration of the simulations). The drift conditions we chose were 
based on patterns of drift identified in the IBL dataset (Extended Data 
Fig. 5): no drift, medium drift, high drift, fast drift and step drift. We 
also added an extra condition with horizontally aligned sites for the 
step drift scenario (such as in Neuropixels2).

Benchmarks
Kilosort2, 2.5, 3 and 4 again outperformed all other algorithms in all 
drift conditions. The nearest competing algorithm in performance 
was IronClust, which accounts for drift in a different way from Kilosort. 
IronClust generally found ~50% of all units, compared to the 80–90% 
found by Kilosort4 (Fig. 4j). Many of the algorithms tested did not have 
explicit drift correction. Some of these (SpyKING CIRCUS and Moun-
tainSort4 (refs. 2,3)) matched the IronClust performance at no drift, 
medium and fast drift, but their performance deteriorated drastically 
with higher drift. Among all algorithms with explicit drift correction 
(Kilosort2.5, 3 and 4), Kilosort4 consistently performed better due to 
its improved clustering algorithm and in some cases performed much 
better (on the step drift conditions).

We also tested how well the drift amplitudes were identified by 
the drift detection algorithm from Kilosort2.5 (in the Kilosort4 imple-
mentation) and found good performance in all cases, except for the 
fast drift condition where the timescale of drift was faster than the 2-s 
bin size used for drift correction (Extended Data Fig. 6). Much smaller 

bin sizes cannot be used for drift estimation, as a minimum number 
of spike samples is required. Nonetheless, the results show that Kilo-
sort still performed well in this case, likely due to the robustness of 
the clustering algorithms. Finally, we calculated the performance of 
the algorithms as a function of the ground-truth firing rates, spike 
norm and spatial extents (Extended Data Fig. 7). The dependence 
of Kilosort4 on these variables was minimal; however, some of the 
other algorithms had a strong dependence on spike norm, which could 
not be improved by lowering spike detection thresholds. Also, many 
algorithms performed poorly when the waveforms had a large spatial 
extent as opposed to having their electrical fields concentrated on 
just a few channels.

Next, we performed a false positive analysis to see whether the 
high number of units correctly identified by Kilosort4 comes at the 
cost of many false positive units (Fig. 4k). For this analysis, we only 
considered ‘good’ units as putative candidates (units with low refrac-
tory period violations), as those are the units that users would con-
sider further. To maintain consistency, we defined ‘good’ units in the 
same way for all algorithms. First, we noticed that the matched (good) 
units were generally very similar to the matched (all) units. Second, we 
noticed that across simulations Kilosort4 had similar numbers of false 
positive units compared to the other algorithms, which were gener-
ally in the range of 50–100 units. These likely correspond to pieces of 
ground-truth units that were not matched at the 0.8 threshold that 
we imposed on the scores. Thus, the high performance of Kilosort4 
and other Kilosort versions does not come at the cost of high false 
positive unit rates.

Ablation results for Kilosort
In this section, we investigate the effect on performance of different 
steps in Kilosort. To start, we can gain insight by comparing certain pairs 
of Kilosort versions. Kilosort2 and 2.5 only differ in their drift-correction 
strategy and perform similarly on most simulations except for the step 
drift conditions, where Kilosort2 performs more poorly. This is due to 
the drift-tracking approach of Kilosort2, which needs a continuous 
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distribution of drift positions. We can also compare Kilosort2.5, 3 and 
4, which have the same drift-correction strategy and the same tem-
plate deconvolution strategy but differ in the clustering algorithm. The 
graph-based clustering from Kilosort4 helps across all drift conditions.

We also performed an ablation study on Kilosort4 by disabling 
certain algorithmic steps (Fig. 5a). We tested the performance 
of six different variations of Kilosort4 across all simulations and 
evaluated misses as well as false positives (Fig. 5b). Some steps had 
strong effects on performance: drift correction, deconvolution and 
cross-correlogram-based merges/splits. The reclustering step after 

template deconvolution had a smaller but consistent effect, as turning 
it off resulted in more misses, but relatively no change in false posi-
tives. The least change was observed by turning off nonrigid motion 
correction, which was surprising as the simulations contained a sub-
stantial fraction of nonrigid drift. Similarly, turning off the deconvolu-
tion for feature extraction had only a small, though consistent effect, 
despite the substantial effect it seems to have on the extracted features 
(Fig. 1h,i). A likely explanation for both these effects may be that some 
steps in Kilosort4 can redundantly fix problems left over by the other 
steps. In this case, the clustering algorithm may itself be sufficiently 
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Fig. 4 | Spike-sorting simulations and benchmarks. a, Example drift traces  
at different depths for a recording with large drift from the IBL dataset.  
b, Distribution of drift ranges across all IBL recordings. Drift range was defined as 
the difference between the fifth and 95th percentile of the median drift  
across channels. c, Waveforms of example units at multiple drift positions.  
d, Scatter-plot of spike depth versus time, colored by spike amplitude (darker is 
higher). Spikes were detected from a simulation. e–i, Accuracy of spike-sorting 
algorithms on simulations with various drift profiles. Simulated drift traces (left). 
Sorted accuracies for 600 ground-truth units from each simulation matched to 

the results of each algorithm (right). The accuracy score is defined as 1 − FP − FN, 
where FP is the false positive rate and FN is the false negative rate (Methods).  
e, Medium drift. f, High drift. g, Fast drift (10 min out of 45 min plotted for 
visibility). h, Step drift. i, Step drift for a probe with aligned sites. j, Summary of 
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robust to work on non-deconvolved features and without fully nonrigid 
motion correction; however, we cannot rule out that in some recording 
scenarios these steps are more important.

Discussion
Here we described Kilosort, a computational framework for 
spike-sorting electrophysiological data. All versions of Kilosort have 
been developed primarily on Neuropixels data; however, as Kilosort 
adapts to the data statistics, it has been used widely on other types 
of probes and other recording methods. We also tested Kilosort4 on 
two publicly available datasets recorded with either a 64-channel lin-
ear probe26 or a 128-channel tetrode array27 and found that Kilosort4 
returned good results in both cases (Extended Data Fig. 2). Kilosort4 
should substantially reduce the amount of manual curation required 
for different types of probes and recordings, though we encourage 
users to continue checking the quality of their results in Phy14.

Some types of data do require special consideration. For example, 
some data cannot be drift-corrected effectively due to either lack-
ing a well-defined geometry (tetrodes) or due to the vertical spacing 
between electrodes being too high (more than 40 μm). This consid-
eration also applies to data from single electrodes such as in a Utah 
array. Data from retinal arrays do not require drift correction and may 
be processed through Kilosort4 but may require large amounts of 
GPU RAM for arrays with thousands of electrodes and thus would be 
better split into multiple sections and processed separately. Another 
special type of recording comes from chronic experiments over mul-
tiple days, potentially separated by long intervals. While we have not 
explicitly tested such recordings here, the benchmark results for the 

step drift simulation are encouraging because this simulation quali-
tatively matches changes we have seen chronically with implanted 
Neuropixels2 electrodes13.

The problem of identifying neurons from extracellular recordings 
has a long history in neuroscience. The substantial progress seen in the 
past several years stems from multiple simultaneous developments: 
engineering of better devices (Neuropixels and others), better algo-
rithms (Kilosort and others), improved visualizations of spike-sorting 
results (Phy) and multiple rounds of user feedback provided by a quickly 
expanding community. Computational requirements have sometimes 
influenced the design of new probes, such as the aligned sites and 
reduced vertical spacing of Neuropixels2, which were motivated by the 
need for better drift correction. Such computational considerations will 
hopefully continue to influence the development of future devices to 
increase the quality and quantity of neurons recovered by spike sorting.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
The Kilosort4 code library is implemented in Python 3 (ref. 28) using 
pytorch, numpy, scipy, scikit-learn, faiss-cpu, numba and tqdm29–36. 
The GUI additionally uses PyQt and pyqtgraph37. The figures were made 
using matplotlib and jupyter-notebook38,39. Kilosort2, 2.5 and 3 were 
implemented in MATLAB.

To be able to process the large amount of data from modern elec-
trophysiology, all versions of Kilosort were implemented on the GPU. 
Kilosort4 is the first version fully implemented in Python, using the 
pytorch package for all its functionality, thus making the old CUDA 
functions obsolete28,31. Pytorch allows the user to switch to a CPU back 
end, which may be sufficiently fast for testing on small amounts of data 
but is not recommended for large-scale data. All versions of Kilosort 
take as input a binary data file, and output a set of ‘.npy’ files that can 
be used for visualization in Phy14. To set up a Kilosort4 run, we built a 
pyqtgraph GUI that replicates the functionality of the MATLAB GUI and 
can assist users in debugging due to the display of several diagnostic 
plots and summary statistics37 (Extended Data Fig. 2).

We demonstrate the Kilosort4 method step-by-step in Figs. 1 
and 2. In Fig. 1 an electrophysiological recording from N. Steinmetz 
was used (‘Single Phase 3’ (ref. 16); https://figshare.com/arti-
cles/_Single_Phase3_Neuropixels_Dataset/7666892). In Fig. 2 an 
electrophysiological recording from the IBL was used (ID 6f6d2c8e-
28be-49f4-ae4d-06be2d3148c1)22. In Fig. 3a–c, three recordings with 
very little drift were chosen to create hybrid ground-truth simulations: 
3f6e25ae-c007-4dc3-aa77-450fd5705046, fe380793-8035-414e-b000-
09bfe5ece92a and 4ddb8a95-788b-48d0-8a0a-66c7c796da96. In 
Figs. 3d and 4, drifting waveforms were extracted from high-drift IBL 
recordings:

•	 671c7ea7-6726-4fbe-adeb-f89c2c8e489b
•	 eacc49a9-f3a1-49f1-b87f-0972f90ee837
•	 0c828385-6dd6-4842-a702-c5075f5f5e81
•	 32d27583-56aa-4510-bc03-669036edad20
•	 58c4bf97-ec3b-45b4-9db4-d5d9515d5b00
•	 cea755db-4eee-4138-bdd6-fc23a572f5a1
•	 68775ca0-b056-48d5-b6ae-a4c2a76ae48f
•	 d57df551-6dcb-4242-9c72-b806cff5613a
•	 cde63527-7f5a-4cc3-8ac2-215d82e7da26
•	 fc14c0d6-51cf-48ba-b326-56ed5a9420c3
•	 4ddb8a95-788b-48d0-8a0a-66c7c796da96.

All these recordings were performed with a Neuropixels1.0 probe, 
which has 384 sites organized in rows of two with a vertical spacing 
of 20 μm, a horizontal spacing of 32 μm. Due to the staggered design 
(16-μm horizontal offset between consecutive rows), the spatial repeti-
tion period of this probe is 40 μm. For loading data, provided scripts 
were adapted (https://github.com/int-brain-lab/mtscomp).

GUI
We developed a GUI to facilitate the user interaction with Kilosort4. This 
interface was built using pyqtgraph, which itself uses PyQt37,40, and it 
replicates the MATLAB GUI that was originally built for Kilosort2 by N. 
Steinmetz. The GUI allows the user to select a data file, a configuration 
file for the probe and set the most important parameters manually. In 
addition, a probe file can be constructed directly in the GUI. After load-
ing the data and configuration file, the GUI displays a short segment of 
the data, which can be used to determine whether the configuration 
was correct. Typical mistakes are easy to identify. For example, if the 
total number of channels is incorrect, then the data will seem to be 
diagonally ‘streaked’ because multi-channel patterns will be offset by 
one or two extra samples on each consecutive channel. Another typical 
problem is having an incorrect order of channels, in which case the user 
will see clear single-channel but no multi-channel waveforms. Finally, 
the GUI can produce several plots during runs, which can be used to 
diagnose drift correction and the overall spike rates of the recording.

Algorithms for Kilosort4
In the next few sections, we describe the algorithmic steps in Kilosort4. 
Some of these steps are inherited or evolved from previous versions. 
For clarity, we describe each of the steps exactly as they are currently 
used in Kilosort4. If a previous version of Kilosort is different, we clearly 
indicate the difference. We also describe separately in the Supple-
mentary Information the algorithms not used in Kilosort4 but used 
in previous versions.

Many of the processing operations are performed on a per-batch 
basis. The default batch size was NT = 60,000 in v.4 and it was NT = 65,536 
in v.2, 2.5 and 3 and NT = 32,768 in v.1. The increase in batch size in 
Kilosort2 was designed to allow better per-batch estimation of drift 
properties. Due to the per-batch application of temporal operations, 
we require special considerations at batch boundaries. Every batch of 
data is loaded with left and right padding of nt additional time points 
on each side (nt = 61 by default). On the first batch, the left pad consists 
of the first data sample repeated nt times. The last batch is typically less 
than a full batch size of NT. For consistency, we pad this batch to the full 
NT size using the repeated last value in the data. The batch size as well 
as the padding are user-modifiable.

The clustering in Kilosort3 and Kilosort4 is conducted in small sec-
tions of the probe (for example, 40 μm for Neuropixels1), but including 
information from nearby channels and including spikes extracted at 
all time points.

Preprocessing
Our standard preprocessing pipeline includes a sequence of opera-
tions: common average referencing (CAR), temporal filtering, channel 
whitening and drift correction. These steps are applied in sequence; 
drift correction uses data that have undergone CAR, temporally filtered 
and channel-whitened. In Kilosort4, all these steps are performed on 
demand whenever a batch of data is needed. In all previous versions, 
the preprocessing of the entire data was conducted first and the pre-
processed data were stored in a separate binary file. Drift correction 
was introduced in Kilosort2.5.

Data formats. The standard data format for Kilosort is a flat binary 
file with a default data type of ‘int16’. If the data type is different, the 
user needs to specify one of ‘uint16’, ‘int32’ or ‘float32’. If the file for-
mat is different, the user must either convert the data to binary using 
SpikeInterface25 (preferable, for compatibility with Phy14 and faster 
speed) or use our SpikeInterface wrapper to load data into Kilosort 
without doing the conversion. We provide an example notebook to 
illustrate the data format conversion using SpikeInterface25 (https://
github.com/MouseLand/Kilosort/blob/main/docs/tutorials/load_data.
ipynb), which allows for compatibility with several more formats, such 
as ‘nwb’, ‘open-ephys’, ‘blackrock’, ‘neuralynx’ and ‘intan’.

CAR. The first operations applied to data are to remove the mean across 
time for each batch, followed by removing the median across channels 
(CAR). The CAR can substantially reduce the impact of artifacts com-
ing from remote sources such as room noise or optogenetics. The CAR 
must be applied before the other filtering and whitening operations, 
so that large artifacts do not ‘leak’ into other data samples.

Temporal filtering. This is a per-channel filtering operation that 
defaults to a high-pass filter at 300 Hz. Bandpass filtering is typically 
performed using IIR filters, for example with Butterworth coefficients. 
Butterworth filters have some desirable properties in the frequency 
space, but their implementation on the GPU is slow. To accelerate it, 
we switch to using an FIR filter that simulates the Butterworth filter 
and we perform the FIR operation in FFT space taking advantage of the 
convolution theorem. To get the impulse response of a Butterworth 
filter, we simply filter a vector of size NT with all zeros and a single 1 
value at position floor(NT/2) (0-based indexing).
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Channel whitening. While temporal filtering reduces time-lagged 
correlations coming from background electrical activity, it does not 
reduce across-channel correlations. To reduce the impact of local 
sources, such as spikes from 100–1,000 μm away from the probe, 
we perform channel whitening in local neighborhoods of channels.  
A separate whitening vector is estimated for each channel based on its 
nearest 32 channels using the so-called ZCA (zero-phase component 
analysis) transform41. ZCA is the data-whitening transformation that is 
closest in Euclidean norm to the original data. For an N × T matrix A, the 
ZCA transform matrix W is found by inverting the covariance matrix, 
using epsilon-smoothing of the singular values:

C = cov(A)

U, S,V = svd(C)

W = U(S + ϵI)−
1
2 UT

The local whitening matrix W is calculated separately for each 
channel and its neighborhood of 32 channels, and only the whitening 
vector corresponding to that channel is kept and embedded into a 
full-size Nchan × Nchan matrix. This is preferable to directly calculating 
a grand Nchan × Nchan whitening matrix because it reduces the number 
of whitening coefficients to 32 × Nchan instead of Nchan × Nchan, which 
prevents overfitting in the limit of a large Nchan. The number of neigh-
borhood channels is user-modifiable and may need to be increased for 
ultra-dense probes, such as the Neuropixels Ultra42.

Drift correction. Drift correction is a complex preprocessing step 
that was described in detail previously13. Here we describe only a few 
small modifications in Kilosort4. The drift correction process can be 
separated into drift estimation and data alignment. In Kilosort4, drift 
estimation is performed in advance, whereas data alignment is per-
formed on demand, along with the other preprocessing operations. 
Drift estimation includes a step of spike detection, which uses a set 
of predefined, ‘simple’ templates to detect multi-channel spikes. In 
Kilosort2.5 and 3, these predefined templates were constrained to be 
negative-going spikes, whereas in Kilosort4 we consider both positive 
and negative-going spikes using pairs of inverted templates (for fast 
computation). Another modification in Kilosort4 is the use of linear 
interpolation for sampling the drift traces at every channel, in place 
of the ‘Makima’ method used in previous versions.

As data alignment is a linear operation performed with a Gaussian 
kriging kernel, it can be combined with channel whitening, which is 
also a linear operation. In practical terms, the two Nchan × Nchan matrix 
multiplications are combined into one, thus further accelerating the 
computation.

Template deconvolution
Template deconvolution is the process of using a set of waveform tem-
plates matched to the data to detect spikes and extract their features, 
even when they overlap other spikes on the same channels and at the 
same time points. Template deconvolution can be seen as replacing 
the spike detection step in a classical spike-sorting pipeline. The goal 
in Kilosort4 is to extract all the spikes above a certain waveform norm 
and calculate their spike features in a way that discards the contribu-
tion of nearby overlapping spikes. Template deconvolution improves 
on classical spike detection in several ways:

1.	 The detection of the spikes is performed by template matching, 
which is a more effective way of detecting spikes compared to 
threshold crossings, because it uses templates that represent 
the multi-channel spikes of the neurons being matched.

2.	 Spikes that overlap in time and channels can be detected and 
extracted as separate events due to the use of an iterative 
matching pursuit. Classical methods require an ‘interdiction’ 

area in time and channels around each detected spike where 
a second spike detection is disallowed, to prevent double 
detections of the same spike.

3.	 The features extracted for each spike can be decontaminated 
from other overlapping spikes, due to the use of a generative 
or reconstructive model. As described below, these features 
are robust to imperfect templates, because the templates 
are only used for detection and for subtracting other spikes 
from the background, and they are not used to compute the 
features of the detected spike itself.

Template learning. To perform template deconvolution, a set of tem-
plates must be learned that can match all the detectable spikes on the 
probe. In previous Kilosort versions (1, 2 and 2.5), special care was taken 
to ensure that these templates match neural waveforms on a one-to-one 
basis. This was necessary because relatively few additional merges 
and splits were performed after template deconvolution. In Kilosort3 
and 4, the templates do not need to match single neurons because the 
features extracted by template deconvolution are clustered again using 
more-refined clustering algorithms; however, it is important that every 
spike in the raw data has some template to match to.

To build a set of templates, we performed clustering on a set of 
spikes identified using a set of simple spike templates. This initial 
spike detection step is equivalent to the spike detection performed in 
Kilosort2.5 for drift correction. The simple templates are defined by 
all possible combinations of (1) a spatial position in two dimensions; 
(2) a single-channel waveform shape; and (3) a spatial size. The spatial 
positions need not be coincident with actual probe channels and we 
choose them to upsample the channel densities by a factor of 2 in each 
dimension. For a Neuropixels1 probe, this corresponds to 1,536 posi-
tions. The single-channel waveform shapes are obtained by k-means 
clustering of single-channel spikes, either from a pre-existing dataset 
(IBL dataset) or from spikes detected by threshold crossings in the 
data, and we defaulted to six such waveforms. Finally, the spatial sizes 
(five by default) define the envelope of an isotropic Gaussian centered 
on the spatial position of the template, which is used as per-channel 
amplitudes. In total, a set of 46,080 simple templates are used for a 
Neuropixels1 probe corresponding to all possible combinations of 
spike shapes, spike sizes and two-dimensional spike positions (for more 
details see ref. 13). The spatial footprints are explicitly precomputed for 
all positions and all spatial sizes. The templates are effectively normal-
ized to unit norm by separately normalizing the per-channel waveform 
templates and the spatial footprints. As the simple templates are unit 
norm, their variance explained (Vexplained) at each time point can be easily 
calculated as the dot product with the data, squared:

Vexplained =∥ D∥2 −minx ∥ D − xW∥
2

=∥ D∥2− ∥ D − (WTD)W∥2

= (WTD)2

where W is the unit-norm simple template, D are the data over a par-
ticular set of channels and time points and x is the best-matching scalar 
norm that the template needs to be multiplied by to match the data.

The dot products between each of these templates and the data 
at each time point can be performed efficiently in the following order: 
(1) temporal convolution of each data channel with each of the six 
single-channel waveforms; and (2) per time point matrix multiplication 
with a set of weights corresponding to all positions and all spatial sizes. 
Once the dot products are calculated in this manner, the largest vari-
ance explained value is kept at each spatial position of each template. 
For a Neuropixels probe, this is a matrix of size 1,536 × NT (batch size). 
The goal of this spike detection step is to find localized peaks in this 
matrix, which must be local maxima in a neighborhood of time points 
(± 20) and spatial positions (100 nearest positions). The relatively large 
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neighborhood size ensures that no spike is detected twice, but prevents 
many overlapping spikes from being detected (typically about 50% of 
spikes go undetected); however, the missing spikes are not a concern 
for the purpose of template learning, as it is extremely unlikely that all 
the spikes from a neuron will be consistently missed by this procedure.

Once the spikes are detected, we extract PC features in the ten 
nearest channels to each detection. We use a set of six PCs that are 
found either from a pre-existing dataset (IBL dataset) or from spikes 
detected by threshold crossings. For each spike, an xy position on the 
probe is computed based on the center of mass across channels of the 
spike’s projection on the best-matching single-channel template (same 
as in Kilosort2.5). We assign all spikes in 40-μm bins according to their 
vertical position and embed all spikes detected in the same bin to the 
same set of channels (which is usually more than ten channels due to dif-
ferences between spike positions). Finally, the embedded PC features 
are clustered according to the same graph-based clustering algorithm 
we describe below, using only the merging criterion of the bimodal 
regression axis and not using the cross-correlation based criterion. In 
Kilosort3, the same procedure is applied but the clustering algorithm 
is recursive pursuit. After clustering each 40-μm section of the probe, 
the centroids are multiplied back from PC space into spatiotemporal 
waveforms and pooled together across the probe.

Templates from the same neuron may be detected multiple times, 
either on the same 40-μm section or in nearby sections. This is not 
inherently a problem because each neuron can have multiple tem-
plates; however, it can become a problem if these multiple templates 
are not aligned to each other, because then, spikes from the same 
neuron will be detected at different temporal positions, which changes 
their PC feature distribution. In addition, having many templates makes 
the spike-detection step memory and compute inefficient. A solution to 
both these problems is to merge templates that have a high correlation 
with each other and similar means, where the correlation is maximized 
across possible timelags. In addition, we temporally align all templates 
based on their maximal correlation with the same six prototypical 
single-channel waveforms described above. Note that this merging step 
may result in the opposite scenario of having one template for multiple 
neurons. This is also not a problem, because templates are only merged 
when they have a high correlation and thus the same average template 
can successfully match the shape of multiple neurons.

Spike detection with learned templates and matching pursuit. Once 
a set of templates is learned, they can be used for template matching 
similar to the simple templates described above. The main difference 
is that instead of allowing for an arbitrary scaling factor x, we require 
that matches use the average norm of the template it was found with. 
The Vexplained of learned template W of some data D thus becomes:

Vexplained =∥ D∥2− ∥ D − xWW∥
2

= 2xWWTD − x2W

Like before, this quantity only requires the calculation of WTD, 
which can be performed convolutionally for each template. In practice, 
we represent templates using a three-rank approximation, factorized 
over channels and time, which speeds up the convolutions dramati-
cally6. We first multiply the data with the channel weights for each rank 
and convolve the resulting traces with the temporal components. The 
three-rank approximation captures nearly the entire waveform vari-
ance in all cases6 and also helps to denoise templates calculated from 
relatively few spikes.

To extract overlapping spikes, we must detect spikes iteratively 
over the same portion of data and subtract off from the data those parts 
attributed to spike detections. This subtraction allows for another pass 
of detections to be performed, which can detect other spikes left over 
and yet unsubtracted. This procedure is called matching pursuit43 and 

is fundamentally a sequential process; to detect another spike, one 
must first subtract off the contributions of spikes detected before; 
however, we can parallelize this step, thus making it suitable for GPU 
processing by observing that the subtraction of a single spike results in 
highly localized changes to the data, which cannot affect the calculated 
spike norms far from the position of that subtracted spike. Thus, we 
can detect and subtract multiple spikes in one round as long as they 
are far enough from each other. Upon calculating a matrix of variance 
explained for each template at each time point, we detect peaks in this 
matrix that are local maxima over local neighborhoods in time ± nt time 
samples and across all channels. After detection, the optimal norm for 
each spike is calculated and its contribution from the data is subtracted 
off. To avoid recalculating the dot products of templates at all time 
points, the contribution of the subtracted spikes to the dot products 
is directly updated locally using a set of precomputed dot products 
between templates, at all possible timelags. This detection and subtrac-
tion process is repeated for 50 rounds, with later rounds being much 
faster due to the increasingly smaller number of spikes left to extract.

Extracting PC features with background subtraction. The final step 
in template deconvolution is to extract features from the data to be 
used by the clustering algorithm. One possibility would be to directly 
extract PC features from the preprocessed data at the spike detection 
times (Fig. 1h); however, this results in contamination with background 
spikes. A better option is to first subtract the effect of other spikes, as 
we know from the matching pursuit step how much these other spikes 
contribute (Fig. 1e). To do this computation efficiently, we first extract 
PC features from the residual (Fig. 1f), and then add back to these 
features the contribution of the template that was used to extract the 
spike. The contribution of each template in PC space is precomputed 
for faster processing.

Graph-based clustering
The new clustering algorithm in Kilosort4 uses graph-based algorithms. 
This class of algorithms relies entirely on the graph constructed by find-
ing the nearest neighbors to each data point. There are several steps:

1.	 Neighbor finding with subsampling
2.	 Iterative neighbor reassignment
3.	 Hierarchical linkage tree.

Neighbor finding with subsampling. Many frameworks for fast 
neighbor finding exist and we tested many of them for spike-sorting 
data. In the end, the brute force implementation from the faiss frame-
work30 outperformed other approaches in speed on modern multi-core 
computers for the range of data points that we need to search over 
(10,000–100,000) and the number of data points that we need to find 
neighbors for (100,000–1,000,000).

Iterative neighbor assignment. Clustering algorithms based on 
graphs typically optimize a cost function such as the modularity cost 
function. We review this approach first, before describing our new 
approach. Following ref. 19, the modularity cost function is defined by

ℋ = 1
2m∑

c
(ec − γ

K2
c

2m )

where m is the total number of edges in the graph, ec is the number of 
edges in community c, Kc is the sum of degrees in community c and γ is 
a ‘resolution’ parameter that controls the number of clusters. The K

2
c

2m
 

can be interpreted as the expected number of edges in community  
c from a null model with the same node degrees as the data but other-
wise random graph connections.

Specialized optimization algorithms exist to maximize the modu-
larity cost function by moving nodes between communities and 
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performing merges when the node reassignment converges20. Addi-
tionally, splitting steps and other optimizations were recently intro-
duced, which improve the results of the algorithm and its speed19. These 
algorithms are effective for many types of data, yet have a substantial 
failure mode for spike-sorting data: they have difficulty clustering data 
with very different number of points per cluster. In practice, for our 
clustering problems, there are often very large clusters of up to 100,000 
points together with clusters with many fewer (<1,000) points.  
A low-resolution parameter γ can keep the large cluster in one piece, 
but also merges the small clusters into larger clusters. Conversely, 
high-resolution parameters may return the small clusters as individual 
clusters, but can split the large cluster into very many (hundreds) of 
pieces. The oversplitting is not inherently a bad property as we will 
perform merges on these clusters anyway, but the large number of 
pieces returned for the large clusters means that many correct merging 
decisions must be made, which is in itself a very difficult optimization 
problem. In addition, running the Louvain/Leiden algorithms with large 
resolution parameters may somewhat reduce the effectiveness of the 
algorithm, as the community penalty γ K

2
c

2m
 only has a null model inter-

pretation for γ = 1.
To improve on these algorithms, we started from the observation 

that local minima of the neighbor reassignment step have some desir-
able properties. These local minima arise because the neighbor reas-
signment step monotonically improves the modularity cost function by 
greedily moving nodes to new clusters if that improves the modularity 
score. This step converges after a while, because no more clusters 
can be moved. This is, however, a local minimum of the optimization, 
and the modularity can often be further increased by making merges 
between clusters. Unlike the node reassignment, which consists of 
small local moves, the merging between clusters is a global move in the 
cost function and can thus escape the local minimum. Algorithms such 
as Leiden/Louvain take advantage of such global merges by applying 
the node reassignment step again on a new graph made by aggregating 
all the points into their clusters when the local minimum is reached.

Our observation was that the local minima themselves can consist 
of good clustering (Fig. 2b). We initialize the algorithm with 200 clus-
ters found by the k-means++ algorithm, a popular initialization choice 
for clustering44. The node reassignment algorithm for the modularity 
cost function with γ = 1 is run for a fixed number of iterations (typically 
sufficient for convergence). The converged partitioning of the data is 
then used as a clustering result. Especially relevant to the next step, the 
algorithm almost never made incorrect merges and instead, output 
some clusters oversplit. This bias toward oversplitting is important 
because it allows us to correct the mistakes of the algorithm by making 
correct merge decisions, which is much easier than finding the correct 
split in a cluster.

We also found that clusters that were oversplit generally had a 
reason to be oversplit; the separate pieces identified by the algorithm 
were in fact sufficiently different to create a local minimum in the 
cluster assignments. This is a common problem in spike-sorting data, 
where nonlinear changes in the waveform can result in clusters that 
seem bimodal in Euclidian space. An extreme example of this effect is 
due to abrupt drifts of the probe changing the sampling of the wave-
forms by a non-integer multiple of the probe period. Even after drift 
correction, waveforms sampled at the two different positions will be 
much more similar to other waveforms from the same position than 
they are to waveforms sampled at the other position (Extended Data 
Fig. 4b). As a consequence, many algorithms return such units oversplit 
into two halves, as can be clearly seen in the benchmark results for the 
step drift condition, where many units are identified with exactly a  
0.5 score, which corresponds to 50% of the spikes identified.

Hierarchical merging tree. To perform merges, we could take two 
strategies: (1) a brute force approach in which we check all pairs of 
clusters for merges or at least the ones with high waveform correlation; 

and (2) a directed approach, where we use the structure of the data to 
tell us which merges to check. We use both, starting with the second 
one to reduce the number of clusters and thus reduce the number of 
brute force checks we need to make later.

For the directed approach, we construct a hierarchical merging 
tree based on the modularity cost function. The leaves of this tree 
consist of the clusters identified at the previous step. For each pair of 
clusters i,j, we aggregate the neighbors and node degrees, similar to 
the Leiden/Louvain algorithms, thus resulting in a full matrix K of size 
nk by nk, where nk is the number of clusters and where Kij is the number 
of edges between clusters i,j, while Kii is the number of internal edges. 
Additionally, a variable ki holds the aggregated degree of each cluster i. 
The linkage tree is constructed by varying the resolution parameter  
γ in the modularity cost function from ∞ down to 0. As γ decreases, 
merges of two clusters start to increase the modularity cost function. 
Specifically, a pair of clusters gets merged when the modularity ℋ2 
after merging equals the modularity ℋ1 before merging, where:

ℋ1 = (Kii − γ
k2i
2m
) + (Kjj − γ

k2j
2m
) + constant

ℋ2 = (Kij + Kii + Kjj − γ
(ki+kj)

2

2m
) + constant

Setting ℋ2 = ℋ1 yields:

ℋ2 −ℋ1 = Kij − γ̂ij
kikj
2m

= 0

γ̂ij =
2mKij
kikj

In other words, a pair of clusters i, j should be merged when γ 
reaches a value of 2mKij/(kikj). After merging, the matrix K and vector 
k can be recomputed with the two clusters i, j becoming aggregated 
into one. Note that a merging decision does not change the γ̂ for other 
pairs of clusters, and it cannot result in a higher γ̂ than the current γ̂ij. 
This can be shown by reductio ad absurdum; if the merged i,j cluster 
had a higher γ̂  with another cluster l, it would imply that one of the 
original clusters i or j had a higher γ̂il or γ̂jl, and thus it should have been 
merged a priori. The monotonic property of γ̂ij  ensures that a 
well-defined merging tree exists, with a strictly decreasing sequence 
of γ̂ for increasingly higher merges in the tree. Empirically, we have 
found that the resulting merging tree is very useful for making merge/
split decisions.

Split/merge criteria
With the tree constructed, we next move down the tree starting from 
the top and make individual merge/split decisions at every node. If a 
node is not being split, then the splits below that node are no longer 
checked. We use two splitting criteria: (1) the bimodality of the data 
projection along the regression axis between the two clusters and (2) 
the degree of refractoriness of the cross-correlogram. These two crite-
ria tend to be the ones most used by human curators performing spike 
sorting. If the pair of units has a refractory cross-correlogram, then 
the split is always performed. If the cross-correlogram is not refrac-
tory, then the split is performed if and only if the projection along the 
regression axis is bimodal. In addition, splits below a predefined small 
modularity threshold (0.2) are always accepted to prevent cases where 
the top nodes are not split (though we never observed such cases).

Bimodality of regression axis. Consider a set of spike features xk with 
associated labels yk ∈ {−1, 1}, where −1 indicates the first cluster and  
1 indicates the second cluster. A regression axis û can be obtained by 
minimizing:

û = argminu∑
k
(uTxk − yk)

2
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This regression problem becomes highly unbalanced when one 
of the clusters has many more points than the other. We therefore add 
a set of weights w−1 = n2/(n1 + n2), w+1 = n1/(n1 + n2), where n1, n2 are the 
number of spikes in the first and second cluster.

û = argminu∑
k
wyk (uTxk − yk)

2

This weighted regression problem can be solved in the usual fash-
ion. Finally, we use the û axis to estimate how well separated the clusters 
are by projecting xproj = ûTxk . The density of the projections is esti-
mated nonparametrically. The projections are binned in 400 bins 
linearly-spaced between −2 and 2, and the histogram is Gaussian 
smoothed with an s.d. of four bins. These choices were found to result 
in sufficient accuracy in estimating the trough of the distribution for 
all of the units. To score the degree of bimodality, we find three impor-
tant values in the histogram: the peak of the negative portion, the 
trough around 0 and the peak of the positive portion. First we find the 
trough xmin at position imin in the bin range of 175 to 225 (corresponding 
to the center bins for the 400-bin histogram). Then we find the peaks 
x1, x2 in the bin ranges from 0 to imin and from imin to 400. The bimodality 
score is defined by

bimod = 1 −max(xmin/x1, xmin/x2)

In other words, we compare the density of the xproj distribution at 
its trough to the peak densities for both clusters. If the density at the 
trough is similar in value to the density of either the left or right peak, 
this indicates a nonbimodal distribution.

Refractory auto- and cross-correlograms. There are many cases 
where the regression axis has a bimodal distribution, yet the clusters 
are part of the same neuron. This is due to the nonstationarity of the 
waveforms from the same neuron, either due to drift or due to other 
factors. In such cases, we need to use extra information such as the 
statistics of the spike trains. Fortunately, all neurons have a refrac-
tory period, which is a short duration (1–5 ms) after they fire an action 
potential when they cannot fire again. The refractory period is heavily 
used by human curators to decide whether (1) a cluster is well isolated 
and not contaminated with spikes from other neurons; and (2) a pair 
of clusters are distinct neurons or pieces of the same neuron. These 
two decisions can be made based on the auto-correlograms (ACGs) 
and CCGs, respectively:

ACG(δt) = ∑
k,j,sk−sj=δt

1

CCG(δt) = ∑
k,j,sk−rj=δt

1

where sk, rj represent the spikes times of the two neurons. In practice, 
we bin the ACGs and CCGs in 1-ms bins from δt = −0.5 s to δt = 0.5 s. We 
consider the central bins of the CCGs and calculate how likely it is to 
see a very small number of coincidences in that bin if the two clusters 
are from neurons firing independently from each other. We define nk 
as the number of coincidences in the central −k to +k bin range, R as 
the baseline rate of coincidences calculated from the other bins of the 
CCG. CCGs may be asymmetric and to account for that we estimate R 
as the maximum rate from either the left or right shoulder of the CCG. 
We use two criteria to determine refractoriness. The first criterion 
is simply based on the ratio of refractory coincidences versus coin-
cidences in other bins, which works well in most cases, except when 
one of the units has very few spikes, in which case very few refractory 
coincidences may be observed just by chance. For the first criterion, 
we use the ratio R12 of nk to its expected value from a rate R, where R12 
takes the minimum value of this ratio across k. We set a threshold of 

0.25 on R12 to consider a CCG as refractory and 0.1 to consider an ACG 
as refractory. For the second criterion, we use the probability Pk that 
nk spikes or less would be observed from a Poisson process with rate 
λk = (2k + 1)R, which we approximate using a Gaussian with the same 
mean and s.d. as the Poisson process as

Pk =
1
2 (1 + erf( nk − λk

(ϵ + 2λk)
1/2 )) .

where ϵ = 10−10 is a small constant to prevent taking the square root of 
0. If Q12 = min(pk) is large, it implies that the number of refractory spikes 
have a high chance of being observed from a Poisson distribution with 
the baseline rate and thus the CCG is not refractory. We set a threshold 
on Q12 of 0.05 to consider a CCG as refractory and 0.2 to consider an 
ACG as refractory. Both criteria have to be satisfied for a CCG to be 
refractory: R12 < 0.25 and Q12 < 0.05 for the CCG and R12 < 0.1 and Q12 < 0.2 
for the ACG. The different thresholds for ACG and CCG have to do with 
the function of these decisions: for the ACG, we want small contamina-
tion rates R12 because this indicates a well-isolated neuron, whereas for 
the CCG we want to prevent clusters from being split if their contamina-
tion rate R12 is indicative of a relationship between these two clusters. 
This is similar for Q12.

Global merges. Global merges are performed after all sections of the 
probe have been clustered. As a similarity metric, we use the maximum 
correlation of pairs of waveforms over all timelags. To test for merges, 
we sort all units by their number of spikes and start testing in order from 
the units with the most spikes. For each unit, we find all other units with 
a similarity above 0.5 and start testing for merges starting from high 
to low similarity. A merge is performed if the CCG is refractory. After a 
merge is performed, the merged unit is retested versus all other units 
with a similarity above 0.5. After no more merges can be performed, 
a unit is considered ‘complete’ and is removed from potential merges 
with subsequent tested units.

Scaling up the graph-based clustering
Graph-based clustering algorithms do not scale well with the number of 
data points and we had to develop new formulations and optimization 
strategies. The poor scalability is due to several problems: (1) finding the 
neighbors of all points scales quadratically with the number of points; 
(2) the k-nearest neighbors in a small dataset are relatively further 
away from the k-nearest neighbors in a larger dataset; and (3) existing 
optimization algorithms like Leiden/Louvain are inherently sequential 
and thus hard or impossible to parallelize on GPUs. The first problem 
could be reduced by using some of the neighbor-finding algorithms that 
have sublinear time for finding neighbors30; however, for the particular 
type of data that we consider, we find these algorithms to be slower, not 
faster, than the brute force approach, at least when a multi-core CPU is 
used. The second problem is an issue because the effective neighbor-
hood size around a point influences its clustering properties. If the 
neighborhood sizes are very small, clusters may split up into multiple 
pieces more easily. If it is too large, it may include points from other 
clusters. As a recording grows in duration, the number of spikes grows 
linearly with it. Thus, some normalization step must be introduced to 
ensure that neighborhood sizes are comparable for short and long 
recordings. To solve the third problem, a redesign of the cost function 
is necessary, so as to make multiple optimization steps in parallel.

Our approach for improving scalability relies on a subsampled 
data approach, where we only search for neighbors in a smaller subset 
of all points. In other words, instead of constructing an N × N adjacency 
matrix, where N is the number of points, we construct an N × nsub adja-
cency matrix, where nsub is a fixed number of spikes independent of 
recording length, which is determined by the size of the section of the 
probe being clustered (40 μm typically, for which we use nsub = 25,000). 
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This solves the first two problems, but not the third. To solve the third 
problem, we replace the standard adjacency graph with a bipartite 
graph, which includes ‘left’ nodes and ‘right’ nodes. All connections are 
between a left node and a right node. The left nodes are defined simply 
as all points in the data. The right nodes are a copy of the subsampled 
nodes and their edges to the left nodes are defined by the adjacency 
structure of the original subsampled nodes. Edges thus only exist 
between original nodes and copies of the subsampled nodes, thus 
making the graph bipartite. The reason for making the graph bipartite 
is to allow the cluster identities for left nodes to be optimized indepen-
dently of each other, given the identities of the right nodes, and vice 
versa. The modularity cost function must also be slightly modified for 
the bipartite graph from:

ℋ = 1
2m ∑

c
(ec − γ

(Kleft
c + Kright

c )
2

2m )

into:

ℋ = 1
2m ∑

c
(ec − γ

Kleft
c Kright

c
2m )

where Kleft
c  is the sum of degrees of left nodes in the cluster c, Kright

c  is the 
sum of degrees of right nodes and ec is the number of edges between 
left and right nodes. If the cluster identities for all right nodes are fixed, 
a short calculation shows that every left node t can be assigned inde-
pendently to a cluster σt to maximize their contribution to the modular-
ity cost function:

σt = argmaxj (ntc − γ
ktK

right
c

2m )

where ntc is the number of right node neighbors of left node t in cluster  
c and kt is the degree of node t like before. Similarly, every right node can 
be assigned independently given fixed assignments for all left nodes. 
Thus, we can iterate between assigning cluster identities to all right 
nodes given all the left nodes, followed by assigning all the left nodes 
given all the right nodes. Note that a left node which represents the 
same point as a right node may in fact be assigned to a different cluster 
than its corresponding right node. This new iterative optimization has 
massive parallelism and thus is suitable for GPU acceleration.

This optimization is initialized with 200 clusters identified 
by k-means++, which we implemented in pytorch for GPU-based 
scalability44.

Benchmarking
The benchmarking procedures and algorithm parameters were the 
same for the hybrid simulation, biophysical simulation and drift 
simulation.

Performance metrics. Each ground-truth unit was compared to the 
40 closest detected units from the algorithm, where closeness was 
defined by the distance between the ground truth and detected units’ 
best channels. If an estimated spike from a detected unit was less than 
or equal to 0.2 ms from a ground-truth spike it was counted as a posi-
tive match. The FP rate was defined as the number of estimated spikes 
without a positive match divided by the total number of estimated 
spikes. The FN rate was defined as the number of missed ground-truth 
spikes divided by the total number of ground-truth spikes. We matched 
the ground-truth unit with the detected unit that maximized the score, 
defined as 1 − FP − FN (ref. 6). The upper bound of the score is 1. In 
Fig. 4e–j, the ground-truth units were sorted by their score from each 
algorithm separately. We defined ground-truth units as being correctly 
identified in Fig. 4j if the score was higher than 0.8.

To determine the rate of false positive units returned by the spike 
sorters, we used a classification criterion based on the ACGs. Using 
the same ACG metrics as above, we classified units as ‘good’ if their 
estimated refractory violations had a rate < 0.2. This is also the default 
rate in Kilosort4 to call units ‘good’ and we used the same strategy for 
labeling units from the other algorithms. Focusing only on good units 
had a negligible impact on the number of matches between the algo-
rithm and the ground truth. In other words, if a unit matches the ground 
truth well, it is also very likely that it has a refractory ACG, because the 
ground-truth units have refractory ACGs. Units which were classified 
as ‘good’ by each algorithm and did not match any ground-truth units 
were instead determined to be false positive units (not to be confused 
with the false positive rate of spikes in the previous paragraph).

Spike-sorting algorithm parameters. We ran Kilosort1, 2, 2.5 and 
3, IronClust, MountainSort4, SpyKING CIRCUS, SpyKING CIRCUS 2, 
HDSort and Herding Spikes on all simulations using the SpikeInterface 
platform to ensure that all spike-sorting algorithms were run in the 
same way. For Kilosort1, 2, 2.5 and 3, we set the detection thresholds 
to [9, 8] instead of their defaults, which varied across versions. Also, 
to speed up Kilosort1, we set the number of passes through the data 
to two instead of six (this did not reduce performance).

For the other top-performing algorithms (IronClust, Mountain-
Sort4 and SpyKING CIRCUS), we ran a parameter sweep over the detec-
tion threshold and used the detection threshold which maximized the 
number of correctly identified units on the medium drift simulation. 
For MountainSort4 and IronClust, the best detection threshold was the 
default detection threshold; for SpyKING CIRCUS, this was a detection 
threshold of 4.5. For SpyKING CIRCUS 2, we noticed poor detection of 
low norm units (Extended Data Fig. 7b,e) and thus also swept over the 
detection threshold for this algorithm, but did not achieve an improve-
ment in performance. For IronClust the default adjacency radius is 50, 
whereas for MountainSort4 the default is set to all channels. This large 
radius led to an incredibly long runtime (tens of hours) and thus we set 
the MountainSort4 adjacency radius to 50 as well.

All other parameters were set to their default values.

Hybrid simulation
We also created ‘hybrid ground-truth datasets’. These datasets are 
created using ground-truth units or manually curated units6,14,45. These 
units can be inserted into other real recordings or the same recording in 
a different position to ensure appropriate background noise. Multiple 
ground-truth units can be inserted in a dataset in this fashion; however, 
if the dataset drifts, then the waveforms must also be inserted with drift 
in some way; otherwise, the simulation is inconsistent. Instead, we 
chose to use recordings with low drift to avoid these issues, choosing 
three such recordings from the IBL dataset, each from different brain 
areas (Fig. 3a)22.

In brief, for each recording, we ran Kilosort4 with default param-
eters to get spike times for extracting waveforms, and then re-inserted 
these waveforms into the same recording at different positions. We only 
used waveforms from units with a contamination ratio less than 0.1. We 
used the estimated spike times for these units to compute the average 
waveforms in the raw recording. One hundred of these waveforms were 
randomly chosen to be added to the real recording, at either eight sites 
above or eight sites below the original position. We simulated the spike 
trains with an exponential random inter-spike interval (ISI) and an aver-
age ISI of ~500 ms. The ISI increased and decreased throughout the 
recording to match the firing rate fluctuations of the recording at the 
position on the probe on which the simulated unit was placed. The firing 
rate of the probe was computed in 100-ms bins for each channel, where 
each detected unit was assigned to its biggest channel. The firing rate 
was then smoothed across channels with a Gaussian filter with an s.d. 
of ten channels and set to mean of 1 for each channel, and then the ISI 
was multiplied by the inverse of this value, with a minimum ISI of 2 ms 
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as the refractory period. The ISI defined the simulated spike times and 
the waveform for the unit was then added at each of the spike times to 
the original recording (Fig. 3b). In Fig. 3, for visualization purposes, we 
show the spikes and the background high-pass filtered with a 300-Hz 
cutoff and whitened with the whitening matrix from the real recording.

We ran the ten different spike-sorting algorithms on the three 
different hybrid ground-truth simulations and combined the results 
across the three simulations in Fig. 3c.

Biophysical simulation
We investigated the biophysical simulation from the SpikeInterface 
paper25, available at DANDI 00028 (Extended Data Fig. 3b). We first 
quantified the waveforms from a real recording (ID 3f6e25ae-c007-
4dc3-aa77-450fd5705046) and from the biophysical simulation. In the 
real recording, we used the spike clusters extracted using Kilosort4 with 
good refractory periods (contamination ratio <0.2). We used the spike 
times from these clusters and computed the mean waveform shape 
across all spike times on the recording high-pass filtered in time at a 
cutoff frequency of 100 Hz. For the biophysical simulation, we used 
the ground-truth spike times to compute the mean waveform shape 
on the simulation, also high-pass filtered in time at a cutoff frequency 
of 100 Hz (Extended Data Fig. 3c,d).

We computed the trough-to-peak time (T2P) for each waveform 
using the channel with the largest norm (the best channel) and finding 
the time between the minimum waveform value and the first time after 
the minimum in which the waveform decreased (Extended Data Fig. 3e). 
We computed the spatial spread of each waveform by determining the 
channel with the largest distance from the best channel which has a 
minimum value that is less than half the minimum from the best chan-
nel (Extended Data Fig. 3e).

We ran Kilosort2 on the biophysical simulation at normal speed, 
as carried out in previous work25, and also ran it on the biophysical 
simulation at twice the normal speed. We sped up the simulation by sub-
sampling, taking every second sample. We set the sampling frequency 
in Kilosort2 to 32,000 in both cases. For the sped-up simulation, we set 
the time bin for estimating the contamination ratio to 0.5 ms instead 
of 1 ms. We then benchmarked the quality of the Kilosort2 using the 
ground-truth spike times in the simulation in both cases (Extended Data 
Fig. 3g). Detected units were defined as having good refractory periods 
if their contamination ratios were less than 0.2 (Extended Data Fig. 3h). 
False positives were detected units with good refractory periods which 
did not match any ground-truth units (Extended Data Fig. 3f,h).

Drift simulation
To determine the performance of various spike-sorting algorithms, 
we created realistic simulations with drift using the properties of 512 
electrophysiological recordings from the IBL performed using Neu-
ropixels1.0 probes15,22. These recordings were processed by the IBL 
using pyKilosort. The simulation generation was over two times faster 
than real time (for example a 45-min simulation took around 20 min to 
generate), which enabled us to create several simulations for bench-
marking. The simulations, other than ‘step drift, aligned’, used the 
site configuration of the Neuropixels1.0 probes, which have a vertical 
spacing of 20 μm, a horizontal spacing of 32 μm and a horizontal offset 
across rows of 16 μm.

pyKilosort, like other Kilosort versions, returns the estimated 
depth for each processing batch at nine equally spaced positions along 
the 3.84-mm probe. The processing batch size for all IBL recordings 
was 65,536 time points. We quantified the drift range for each record-
ing by first taking the median of the depth across the nine positions, 
then computing the difference between the fifth and 95th percentile 
of the drift. We used the properties of the drift across these recordings 
to create simulated drift (see drift examples in Extended Data Fig. 5).

For the simulations, we generated a drift trace of length 45 min 
at each of the positions, then upsampled the drift to all 384 channels 

using linear interpolation. The drift was the same across a period of 2 s 
for all simulations, other than the fast drift simulation which varied in 
periods of 200 ms. Here are the details of the generation of each drift 
simulation:

•	 No drift: zero drift at all nine positions.
•	 Medium drift: the overall drift was generated as random 

Gaussian noise smoothed in time with a Gaussian filter of 
σ = 100 s. Drift at each of the nine positions was generated 
as random Gaussian noise smoothed in time with a Gauss-
ian filter of s.d. of 100 s and smoothed across the positions 
with a Gaussian filter with σ = 2. This per-position drift was 
rescaled by a factor of 0.4 and added to the overall drift, then 
the drift across positions and time was rescaled such that the 
minimum and maximum values were −7 μm and 7 μm. This 
resulted in a simulation with a drift range of 9.4 μm.

•	 High drift: the overall drift and per-position drift were gener-
ated in the same way as the medium drift. The per-position 
drift was next rescaled by a factor of 0.26 and added to the 
overall drift, then the drift across positions and time was 
rescaled such that the minimum and maximum values were 
−18.5 μm and 18.5 μm. This resulted in a simulation with a drift 
range of 27.9 μm.

•	 Fast drift: a medium drift simulation was used for the slow 
drift across positions and time (generated in bins of 2 s, then 
upsampled to 200-ms bins with nearest neighbor interpola-
tion). Then fast drift events were generated with an amplitude 
of 10 μm and a difference of exponentials kernel with a rise 
time of 80 ms and a decay time of 200 ms. Then, 300 of these 
fast drift events were added to the upsampled medium drift 
simulation at random times.

•	 Step drift: the overall drift and per-position drift were gener-
ated in the same way as the medium drift. The per-position 
drift was next rescaled by a factor of 0.58 and added to the 
overall drift, then the drift across positions and time was 
rescaled such that the minimum and maximum values were 
−4 μm and 4 μm. Halfway through the recording, 30 μm was 
added to all the drifts across positions.

•	 Step drift, aligned: same exact drift as step drift, but the wave-
forms were upsampled using aligned probe sites with a verti-
cal separation of 20 μm and a horizontal separation of 32 μm.

Extraction of waveforms at multiple depths. Obtaining waveforms 
across many depths requires recordings with substantial drift. In the IBL 
dataset we found 11 such recordings with high drift that sampled a range 
of 40 μm in depth. We preprocessed the recordings by whitening and 
high-pass filtering with a cutoff of 300 Hz. We then used the estimated 
spike times from pyKilosort for each detected unit in these recordings 
and the estimated depth of the probe to compute the average waveform 
for the unit at specified depth positions. We used 20 depth bins each 
of size 2 μm, resulting in average waveforms across 40 μm. To ensure 
the quality of the waveforms, we did not use any units that had fewer 
than 50 spikes at each depth.

The waveforms were denoised by reconstructing each waveform 
across depths with only its top three PCs. The waveforms were then 
normalized by the average norm of the waveform across depths. We 
then threw out waveforms that varied substantially from −20 μm to 
20 μm in depth, as these waveform shape changes are likely caused by 
other processes besides drift. To quantify the variation across depth 
we computed the Euclidean distance across channels and time points 
between the waveform at −20 μm and the waveform at 20 μm shifted 
up by four channels (a distance of 40 μm). We removed units with vari-
ation greater than 0.25 (~25% of units), resulting in a waveform bank of 
597 units from the 11 recordings.

Next we needed the waveform shapes at a finer scale than 2 μm. 
For this, we upsampled the waveforms by a factor of 100 using kriging 
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interpolation13 with a regularization coefficient of 0.01 and a Gaussian 
s.d. of 20 μm. For the step drift with aligned site simulation, the upsam-
pled waveforms were interpolated using a probe with sites aligned 
vertically. Then the waveforms were again normalized by the average 
norm of the waveform across depths. We next divided these waveforms 
into two groups according to the contamination rates from their units’ 
estimated spike trains10: a contamination rate less than 0.1 were used 
to generate ‘single-units’, whereas those with a contamination rate 
greater than 0.1 were used to generate ‘multi-units’.

The units from these recordings exhibited waveform changes 
across depth (see example waveforms in Fig. 4c and Extended Data 
Fig. 4a). All waveforms moved down the probe as the depth changes, 
but some waveforms also changed their shape (example units 2 and 4, 
which had smaller spatial footprints). This shape change could not be 
inferred by other channels. We demonstrated this by using the same 
kriging interpolation procedure as above to estimate the 0-μm depth 
waveform from the waveforms at other depths (Extended Data Fig. 4b). 
The waveform at 0-μm depth was well-estimated for units 1 and 3 but 
not for 2 and 4. This exemplifies the need for real recordings to create 
accurate simulations of waveform shapes.

We quantified the performance of the spike-sorting algorithms as a 
function of the spatial extent of the waveforms of the ground-truth unit 
(Extended Data Fig. 7c,f). We defined the spatial extent of the waveform 
as the spatial scale across channels over which the waveform shape is 
maintained (using the 0-μm depth waveform). To compute this, we 
first matched the waveform with its most similar waveform from the 
simple templates as defined by cosine similarity. We then projected 
the waveform onto this best-template waveform and thresholded it 
to obtain a template weight for each channel. We next computed the 
weighted mean of the distance from each channel to the center of mass 
of the waveform, as defined by the template weights, and termed this 
the spatial extent.

Simulation of spikes. We simulated 600 ‘single-units’ and 600 
‘multi-units’ by randomly drawing waveforms from these two classes. 
These waveforms were randomly placed on the probe at positions from 
site 4 to site 380. To create the correct waveform shapes, the waveform’s 
best channel modulo 4 was computed and maintained in the simulation 
(because the probe site arrangement repeats every four sites).

We used the ISIs from detected units in the 11 recordings that had 
a contamination rate of less than 0.1; this was 1,497 units in total. The 
average firing rate of these units was 12.6 Hz. Each simulated spike 
train for a ‘single-unit’ was then generated by randomly shuffling the 
ISIs of one of the detected units. For the spike trains of ‘multi-units’ we 
generated Poisson spike trains with firing rates drawn randomly from 
these units’ firing rates.

The norms for the ‘single-units’ were generated by adding a con-
stant (10) to a random exponential with a mean of 7, which approxi-
mated the distribution from units detected in the data. The norms for 
the ‘multi-units’ were generated from a uniform random distribution 
with a range from 4 to 10. The waveform across depth for each unit 
was then multiplied by its norm. We quantified the performance of the 
spike-sorting algorithms as a function of the norm of the ground-truth 
unit (Extended Data Fig. 7b,e).

We then added the spike train of each simulated unit one by one to 
the simulation using the simulated drift at each time point to determine 
which depth of the waveform to add for each spike. Collisions could 
occur in the spike trains, so we added the spike train in three interleaved 
parts to ensure correct reconstruction, while still maintaining the speed 
of simulation generation.

All simulations used different waveforms, spike trains and norms, 
except for the two-step drift simulations, in which all parameters were 
kept fixed to determine the effect of probe site configuration. These 
two-step drift simulations therefore only differed in their exact waveform 
shapes across depths due to the difference in the probe site positions.

Simulation noise and ‘unwhitening’. We added random noise, with 
a flat frequency spectrum in time up to 300 Hz, to each channel in the 
simulation. This noise was scaled to have an s.d. of 0.76. Next the simu-
lation was ‘unwhitened’: the simulation was multiplied by the inverse 
of a whitening matrix estimated from one of the 11 recordings used. 
Different whitening matrices were used for each simulation, except for 
the two-step drift simulations, where it was the same matrix for both. 
Finally, to save the simulation as int16, the simulation was multiplied 
by 200, cut off at ±32,767 and converted to int16. For each simulation 
we saved a corresponding ‘.meta’ file, which SpikeInterface expects 
for processing IMEC Neuopixels probe recordings. For the aligned site 
probe, we added a probe type to the spike GLX loader in SpikeInterface. 
The unwhitened simulation is shown in Extended Data Fig. 4a in com-
parison to a real recording high-pass filtered in Extended Data Fig. 4b 
(we cannot ‘un-high-pass’ filter the simulation).

Comparison to other benchmarking approaches. Here we compare 
our approach to previous spike-sorting benchmarking performed in the 
literature. The first approach is to use datasets where the ground-truth 
spiking of a single unit is known. These datasets are acquired by per-
forming cell-attached recordings while simultaneously recording with 
a probe. Then spike sorting is performed on the probe and compared 
to the ground-truth spiking to determine spike-sorting performance. 
As these are very difficult experiments, existing ground-truth datasets 
were acquired in anesthetized animals and are very short2,46–52. This 
makes these datasets much easier to spike sort compared to long, 
realistic awake recordings with drift and with relatively more neuronal 
firing. When SpikeForest used these ground-truth datasets to compare 
various spike-sorting algorithms (‘PAIRED’ recordings, https://spikefor-
est.flatironinstitute.org/)45, they found that IronClust, Kilosort2 and 
SpyKING CIRCUS performed similarly on these recordings. This is con-
sistent with our own benchmarking results on the ‘no drift’ recordings, 
where many of the spike-sorting algorithms recovered units with high 
norms equally well (Extended Data Fig. 7b,e); however, most recordings 
in awake animals have drift and contain many low norm units that can 
be isolated by Kilosort.

Another approach is to create so-called ‘hybrid ground-truth 
datasets’. Either ground-truth units, as acquired above, or manually 
curated units are used6,14,45. These units can be inserted into other real 
recordings, or the same recording in a different position after being 
subtracted off, to ensure appropriate background noise. Multiple 
ground-truth units can be inserted in a dataset in this fashion; however, 
these hybrid datasets depend on finding the neurons in the first place 
and they also depend on correcting for the initial drift of the dataset. 
Alternatively, these ground-truth units can be used to create simula-
tions with drift. Such simulations must account for two important 
properties: (1) waveform shapes change as the electrode moves (as 
demonstrated in Extended Data Fig. 4a,b) and (2) the background noise 
must ‘look’ like background neurons. To accomplish (1), we obtained 
waveforms at various drift positions from real recordings, as outlined 
above, to simulate the waveforms at various depth positions. To accom-
plish (2), we added 600 ‘multi-units’ with low norms to the simulation 
to create more realistic background, on top of adding Gaussian noise 
with a matched frequency spectrum (Extended Data Fig. 4c).

The final approach is to instead simulate waveforms, either using 
some specified properties3 or using the electrical field of a biophysi-
cally simulated neuron53–56. These simulators do not produce wave-
forms as diverse as real neurons from recordings, likely because we lack 
a full understanding of how the tissue geometry interacts with action 
potentials and the probe to create all the diverse spike shapes that can 
be observed. Various types of noise and background can be added to 
these neurons. For example, these simulated neurons can be added 
to background signal from other recordings3. Alternatively, noise can 
be added by simulating neurons further away from the probe55. Other 
simulators use spatially correlated noise with parameters extracted 
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from the data53,56. The MEAREC simulator includes the option for probe 
drift; however, it is unclear how much the waveform shape changes over 
drift positions in their simulations as this depends on the geometry of 
the electrical fields.

Other probes
We illustrated Kilosort4 results on two other types of recording devices. 
First, we used the DANDI dataset 000231 (https://dandiarchive.org/
dandiset/000231/0.220904.1554), which contains data from previous 
work26, recorded with 64-channel linear silicon probes (Cambridge 
Neurotech H3). These probes have contacts arranged in a single col-
umn with 20-μm vertical spacing and an 11 × 15 μm contact area. The 
probe spanned layers 2/3 to layer 6 of mouse barrel cortex in a headfix 
preparation. Second, we used the DANDI dataset 000410 (https://
dandiarchive.org/dandiset/000410/draft) from previous work27, which 
was recorded with 32 independent tetrodes driven by an implanted 
microdrive targeting area CA1 of the dorsal hippocampus in freely 
moving rats.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We used datasets shared by N. Steinmetz and the IBL16,22 (available at 
https://rdr.ucl.ac.uk/articles/dataset/Recording_with_a_Neuropix-
els_probe/25232962/1 and https://ibl.flatironinstitute.org/public/). 
We also used datasets from the DANDI archive at https://dandiarchive.
org/dandiset/000410/draft (ref. 26) and https://dandiarchive.org/
dandiset/000231/0.220904.1554 (ref. 27). The simulated datasets are 
shared at https://doi.org/10.25378/janelia.25298815.v1.

Code availability
Kilosort4 is available at https://doi.org/10.5281/zenodo.10863771 
under a GPL-3 license57 (v.2, 2.5 and 3 will remain available at the same 
link as downloads under GPL-2 licence).
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Extended Data Fig. 1 | Kilosort4 graphical user interface. The GUI for Kilosort4 enables the user to load in and view the binary file both raw and whitened. Next the 
user runs the spike-sorting pipeline. The message log box allows the user to monitor the progress of the spike-sorting algorithm.
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Extended Data Fig. 2 | Kilosort adapts to other probes. a, Single-channel 
principal components (PCs) and templates identified from either the entire 
IBL repository (predefined), from two individual neuropixel recordings, from 
a 64-channel linear probe or from tetrodes. b, Eight out of 65 single units 
identified from a public dataset recorded with a 64-channel linear probe. (top) 

Waveforms across channels. Panel title represents the number of spikes for that 
unit. (bottom) Autocorrelograms. c, Same as a for eight single units out of 127 
identified in a publicly available tetrode dataset. Groups of 4 nearby channels 
form a tetrode and are mostly independent from other tetrodes.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02232-7

Extended Data Fig. 3 | Kilosort false positives from the Spikeinterface 
paper are due to unrealistically long spike durations. a, Segment of a real 
Neuropixels recording used for comparison. High-pass filtering was applied at 
100Hz (rather than 300 Hz) to better illustrate true spike durations. b, Same as a 
for a segment of a biophysical simulation. cd, Waveforms extracted from the real 
and simulated recordings respectively. Waveforms were superimposed across 
channels, using a color code to illustrate channels further from the center (yellow 
means further). To measure spike duration and spatial extent we used trough-to-

peak (T2P) and max-distance at half-max (MDHM) respectively. e, Distribution of 
waveform statistics from the real recording and simulation (n = 292 for real data 
and n= 250 for simulations, center lines indicate median and error bars indicate 
5 and 95 percentiles). f, False positive clusters reported by spikeinterface are 
mostly spikes that were temporally split due to their very long durations.  
g, Benchmarks for original biophysical simulation and a 2x sped up version.  
h, Number of false positives decreases when the simulation is sped up 2x, which 
makes spike durations more similar to real recordings.
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Extended Data Fig. 4 | Simulation features. a, Example simulation after independent noise was added and “unwhitening" was performed. b, Example segment of a 
real recording high-pass filtered with a cutoff of 300 Hz. c, Four additional example units like in Fig. 3c. d, The units in c after drift correction with the interpolation 
method from Kilosort 2.5/3/4.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02232-7

Extended Data Fig. 5 | Real drift examples. These are inferred drift traces from the IBL dataset grouped into: a, no/small drift, b, medium drift, c, high drift, d, fast 
drift and e, step drift. Note that in many cases different types of drift are combined.
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Extended Data Fig. 6 | Recovered drift traces from simulations. a-f, Ground truth simulated drift + the drift identified by Kilosort4. (Left) Estimated and true drift 
traces. (Right) Scatter plot of estimated and true drift traces.
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Extended Data Fig. 7 | Accuracy as a function of firing rate, amplitude/norm 
and spatial extent. a-c, Scatter plots of unit properties (firing rate, norm, spatial 
extent respectively) versus accuracy, for the no drift simulation. Lines show the 

average accuracy in bins of equal numbers of points. d-f, Average accuracy curves 
for all types of simulations and all unit properties (firing rate, norm, spatial 
extent respectively).
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