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SQANTI3: curation of long-read 
transcriptomes for accurate  
identification of known and novel isoforms
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SQANTI3 is a tool designed for the quality control, curation and annotation 
of long-read transcript models obtained with third-generation sequencing 
technologies. Leveraging its annotation framework, SQANTI3 calculates 
quality descriptors of transcript models, junctions and transcript ends. 
With this information, potential artifacts can be identified and replaced 
with reliable sequences. Furthermore, the integrated functional annotation 
feature enables subsequent functional iso-transcriptomics analyses.

Long-read sequencing, driven by biotechnology companies such as 
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), 
was recognized as the method of the year 2022 by Nature Methods1–3 
for providing single-molecule reads spanning thousands of bases and 
advancing genomics and transcriptomics research. When applied to 
gene expression analysis, long-read RNA sequencing (lrRNA-seq) has 
the potential to capture full-length transcripts and elucidate isoform 
diversity in both normal and disease conditions4–6. Software tools  
have been developed for lrRNA-seq-based transcript identification7–9, 
quantification10,11, differential splicing analysis6 and functional inter-
pretation12.

One of the most striking results in lrRNA-seq studies is the iden-
tification of thousands of novel transcripts, even in well-annotated 
genomes5,10,13. However, long-read technologies are error prone, and 
biases due to RNA degradation, library preparation issues and sequenc-
ing errors, as well as read mapping and transcript reconstruction inac-
curacies, often lead to false transcript identification. Several studies 
have evaluated the accuracy of lrRNA-seq methods and algorithms14–17. 
These works have consistently highlighted significant disagreements 
between experimental and computational approaches at identify-
ing transcripts from long-read data, especially for novel transcripts 
not present in the reference annotations. Disagreements involve the 

annotation of splice junctions and the definition of transcription 
start sites (TSS) and transcription termination sites (TTS)16, which 
are particularly difficult to discriminate from RNA degradation in the 
sequenced samples. Given the large number of novel isoforms reported 
by most lrRNA-seq studies, quality control and curation of the data are 
crucial steps in long read-based transcriptome definition.

We hereby present SQANTI3, a tool for the evaluation of long-read 
transcript models used as an evaluation engine in the LRGASP  
(Long-read RNA-seq Genome Annotation Assessment Project)16. 
SQANTI3 builds on SQANTI18, a widely used tool for quality control of 
lrRNA-seq data (a comparison of SQANTI and SQANTI3 functionality 
is given in Supplementary Note 1).

The SQANTI3 workflow consists of three modules (Fig. 1a). First, 
quality control (QC) classifies long-read transcript models accord-
ing to SQANTI3 structural categories, which consist of the SQANTI 
splice junction-based transcript classes: full-splice-match (FSM); 
incomplete-splice-match (ISM); novel-in-catalog (NIC); novel-not- 
in-catalog (NNC); antisense; fusion; genic genomic; and intergenic 
(Fig. 1b); and novel subcategories based on TSS and TTS annotations 
(Fig. 1c).

Of these, ‘reference match’ is defined as an FSM transcript in which 
both the 3ʹ and 5ʹ ends are within 50 bp of the reference transcript’s 
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always be feasible, SQANTI3 alternatively offers a rules mode, in which 
(sub)category-level exclusion criteria are manually defined by the user. 
After filtering, however, known genes may be completely removed 
when all of their transcripts are classified as artifacts. To mitigate the 
risk of excluding transcripts and genes that show evidence of expres-
sion, SQANTI3 includes a third rescue module in which artifacts are 
assigned to the most suitable reference or long-read transcript model 
by applying a two-step process that recovers reference transcripts for 
discarded FSM transcripts, and orthogonal data-supported alternatives 
for ISM, NIC and NNC (Extended Data Fig. 1). Additionally, SQANTI3 
enables functional annotation through the IsoAnnotLite tool, which 
maps pre-annotated functional domains, motifs and sites onto the 
long-read transcript models using a genomic coordinate-matching 
strategy (Methods). The result is a sample-specific transcriptome 
in which isoform expression changes can be interrogated for their 
potential functional implications. An example of complete functional 
iso-transcriptomics analysis enabled by SQANTI3 is given in Supple-
mentary Note 2.

To demonstrate SQANTI3, we retrieved PacBio complementary 
DNA data from the human WTC11 cell line from LRGASP16 for which 
Illumina, CAGE-seq and Quant-seq data were also available. Transcript 
models were generated from long reads using IsoSeq3 (Methods). 
In total, 228,379 transcript models were constructed, with 209,220 
(91.6%) belonging to 17,467 known genes (Fig. 2a). Nearly one-third of 
all transcripts were classified as ISM (67,804; 29.69%), while 37% of them 
were categorized as novel isoforms of annotated genes (48,878 NIC and 
35,743 NNC). Only 56,795 transcripts (24.87%) were annotated as FSM, a 
relatively small fraction considering that WTC11 is a well-studied human 
cell line. This result may reflect reference catalog incompleteness, or 
inaccuracies in the long-read technology or the transcript reconstruc-
tion algorithm. These biases can be further investigated using SQANTI3.

Given that splice junction novelty was previously discussed and 
evaluated using NIC and NNC SQANTI classes18, in this study we show 

TTS and TSS, respectively, and can be considered as perfect hits when 
comparing lrRNA-seq transcript models to the reference. Larger varia-
tions at each or both ends are captured by the alternative 3ʹ and 5ʹ sub-
categories. Similarly, SQANTI3 divides the ISM class based on whether 
missing splice junctions are located at the 5ʹ (3ʹ fragment), 3ʹ (5ʹ frag-
ment), or both ends (internal fragment). If splice junctions are lost due 
to intron retention, these transcripts are labeled as Intron Retention. 
In total, SQANTI3 defines 22 structural categories and subcategories 
(complete definitions are given in the ‘Code availability’ section). The 
SQANTI3 QC module additionally computes up to 48 transcript-level 
and 18 junction-level quality features. These QC indicators describe, 
among other characteristics, the presence of noncanonical splice 
junctions, the existence of intrapriming, and potential reverse tran-
scriptase switching events. Moreover, SQANTI3 QC can assess the 
reliability of TSS and TTS annotations by processing complementary 
data such as CAGE (capped analysis of gene expression)19, Quant-seq20 
or other genomic region data (Fig. 1d) and calculating the distance 
and overlap between transcript ends and these regions. The software 
also integrates the processing of short-read data to support splice 
junction annotations and introduces the TSS ratio metric, that is, the 
ratio of short-read coverage downstream to that upstream of the TSS. 
5ʹ end-degraded transcripts are expected to display uniform cover-
age on both sides of the TSS (that is, TSS ratio ≈ 1), while a true TSS is 
expected to have significantly lower upstream coverage, resulting in a 
TSS ratio > 1. SQANTI3 QC main output files are the classification table, 
which includes all quality features for each annotated transcript model, 
and the QC report, which provides multiple summary statistics and 
diagnostic plots that help identify biases and false positives.

The second module in the SQANTI3 workflow is artifact filtering 
based on QC descriptors. Two modes are available. The machine learn-
ing mode builds a random forest artifact classifier using QC features 
as predictive variables and a set of true- and false-positive transcripts 
for model training. Given that the definition of a training set might not 
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how SQANTI3 improves the description of 3ʹ and 5ʹ end variability 
of lrRNA-seq transcript models. First, the reliability of the TSS ratio 
metric for accurate TSS identification was evaluated by comparing 
SQANTI3 ratios with empirical evidence from CAGE-seq data. Among 
all identified TSS, those with additional support from sample-specific 

CAGE-seq had significantly higher TSS ratios (Fig. 2b, P = 2 × 10−16,  
Wilcoxon test). Specifically, 88.2% of transcripts supported by 
CAGE-seq had a TSS ratio greater than 1.5, which was used as the  
cut-off value for short read-based TSS support in downstream analyses 
(Methods). Overall, we observed substantial agreement between our 
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three 5ʹ end metrics, namely, same-gene TSS annotation, CAGE-peak, 
and TSS ratio, in terms of TSS support (Extended Data Fig. 2).

Next, we evaluated the consistency of SQANTI3 5ʹ end descriptors 
across SQANTI3 structural categories. As expected, the vast majority of 
TSS in FSM transcripts had both CAGE-seq support and TSS ratio > 1.5, 
whereas this was not the case for ISM transcripts, confirming that these 
metrics recapitulate the reference annotation (Fig. 2c). Interestingly, 
11.2% (7,599) of ISM transcripts had TSS with both CAGE peak overlap 
and a TSS ratio above 1.5, with two-thirds of them also matching a 
same-gene annotated TSS. Furthermore, 4,591 (8%) FSM transcripts 
had a low TSS ratio and lacked support from the reference annotation 
and CAGE-seq peaks (Fig. 2c). These findings suggest that SQANTI3 5ʹ 
end features constitute valuable tools for verifying novel alternative 
TSS both in the ISM and FSM categories.

Regarding 3ʹ end diversity, SQANTI3 QC was used to determine 
the support for detected TTS through three distinct types of evidence: 
Quant-seq data, the PolyASite database annotation, and the presence 
of a polyadenylation (polyA) motif in the final 50 bp of the transcript 
sequence. When examining the correlation between them, the major-
ity of transcripts (165,612) had a TTS supported by all three sources of 
evidence. This was followed by instances in which a polyA motif was 
identified near an annotated polyA site (25,696). In only 1% of cases 
(2,269), the Quant-seq peak overlapped with an unannotated polyA site 
(Extended Data Fig. 3). Furthermore, the identified motifs were concen-
trated at a distance of 16–18 bp from the end of the transcript, aligning 
with available experimental evidence21. This pattern held even for tran-
scripts that were not validated with Quant-seq (Extended Data Fig. 4). 
These results suggest that long-read sequencing methods have higher 
sensitivity in detecting alternative 3ʹ ends compared with Quant-seq, 
possibly because Quant-seq necessitates high expression to call a polyA 
site. Transcripts that were likely to be a product of intrapriming (defined 
as 60% of As downstream of the TTS18), rarely contained a polyA motif 
or the polyA was located closer to the 3ʹ end than expected (Extended 
Data Fig. 5). Overall, these findings further validate the detection of 
polyA motifs as a reliable indicator of a bona fide TTS.

Furthermore, an in-depth analysis of transcript end variability 
using SQANTI3 subcategories suggests that unsupported ISM tran-
scripts are more likely to be 5ʹ degradation products (Supplemen-
tary Note 3). Interestingly, subcategory analysis also showed that an 
important fraction of FSM transcripts have notable differences at 3ʹ 
and 5ʹ ends with respect to the reference annotation, with orthogonal 
data supporting many of the alternative TTS and TSS, indicating that 
although FSM transcripts are usually regarded as ‘known transcripts’, 
alternative transcripts are also present in this transcript category 
(Supplementary Note 3).

SQANTI3 QC analyses suggest that a combination of artifacts 
and true novel transcripts populate the IsoSeq3 transcriptome. The 
SQANTI3 filter module identifies and removes potential artifacts using 
either the machine learning or the rules mode. In the machine learning 
filter, the trained classifier is used to obtain transcript-level artifact 
probabilities, reporting the QC features that have contributed the 
most to the discrimination of artifacts and transcripts during model 
training and their values for true or artifact transcripts in each SQANTI3 
category (Fig. 2d,e and Supplementary Note 4). Previous work dem-
onstrated the efficiency of the machine learning filter in removing 
transcript models with erroneous junction definitions (that is, NIC and 
NNC) and other low-abundance transcript classes18. Here, we show that 
the improved SQANTI3 machine learning filter, which incorporates 3ʹ 
and 5ʹ end descriptors, can also curate FSM and ISM transcript models 
(Fig. 2e and Extended Data Fig. 6). Alternatively, for users requiring 
precise control over data filtering, the rules mode enables ad hoc 
definition of transcript inclusion criteria. Importantly, both modes in 
the filter module enable strategic adaptation to the type and amount 
of available supporting data. Supplementary Note 4 describes the 
performance of the SQANTI3 filter module in three scenarios with 

varying data availability, that is, a low-input setting (equivalent to the 
previous SQANTI machine learning filter), and two high-input settings, 
using public database information or orthogonal same-sample data 
(Methods). We observed that the high-input setting permitted more 
thorough control of transcript end quality.

Filtering resulted in the removal of a large number of transcript 
models for many data scenarios (Fig. 2f). As a consequence, a substan-
tial number of genes were completely excluded because none of the 
associated transcripts passed the filtering criteria, despite evidence 
of expression provided by long reads mapping to these loci. SQANTI3 
rescue was designed to mitigate these losses by identifying the most 
likely transcript model for each discarded artifact. During the rescue 
step, discarded ISM, NIC and NNC transcripts are first mapped to the 
reference transcriptome, which results in the identification of multiple 
potential replacement transcripts per artifact. When applying this strat-
egy to machine learning high-input filtered data, most of these rescue 
candidates belonged to the reference transcriptome (Extended Data 
Fig. 6). After successive steps to validate the candidates and reduce 
redundancy (Methods), 11,599 artifacts (89%) were re-incorporated 
into the transcriptome, 94.1% of which were assigned to a reference 
transcript and 5.9% were assigned to a novel long read-defined tran-
script model, with a total of 2,884 new genes being added. Notably, 
only 11% of artifacts remained unassigned to a suitable replacement 
transcript after the rescue process (Fig. 2f). Hence, a large number of 
artifacts could be matched to already-identified transcript models, 
suggesting that an important fraction of detected artifacts may be the 
consequence of errors that affect correct transcript detection. Moreo-
ver, rescued genes and transcripts had consistently higher expression 
and functional scores (TRIFID scores) in the APPRIS database22 than 
those that remained excluded (Extended Data Fig. 7). In summary, these 
results demonstrate that the SQANTI3 rescue strategy can recover 
functionally relevant known genes and transcripts that would other-
wise be discarded due to lrRNA-seq limitations. The SQANTI3 QC, filter 
and rescue modules are also effective in characterizing and curating 
transcriptomes generated using other types of lrRNA-seq data (for 
example, direct RNA sequencing23) and analysis tools (for example, 
TALON7; Supplementary Note 5).

To validate the ability of SQANTI3 to obtain a correctly curated 
transcriptome, we benefited from the usage of spike-in RNA variants 
(SIRVs) in the LRGASP WTC11 PacBio dataset. We modified the SIRV refer-
ence annotation to simulate two real-life scenarios leading to transcript 
artifacts: an over-annotated false-positive scenario, in which 39 falsely 
annotated SIRVs-like models were included in the transcriptome; and a 
novel true-positive scenario, in which 26 true transcripts were removed 
from the reference, even though they were still present in the control 
RNA mix (Methods). Although the initial IsoSeq3 reconstruction yielded 
almost perfect sensitivity (94%), precision was low (32%) (Fig. 2g). Both 
machine learning and rules filtering improved precision and lowered 
sensitivity, while performing the rescue step restored sensitivity values 
without significantly affecting precision (Fig. 2g). F-scores showed 
that overall performance steadily improved after every step of the 
SQANTI3 curation pipeline, with the highest F-score being observed 
when using the machine learning filter. In agreement, the false discovery 
rate consistently decreased after filtering and rescue, especially when 
the machine learning filter was applied (Fig. 2g). Rules filter-based 
strategies were less effective at removing false positives, which resulted 
in an almost constant over-annotation detection rate, whereas machine 
learning-based approaches decreased the over-annotation detection 
rate effectively. Finally, both filters yielded a constant novel detection 
rate (Fig. 2g). These results show the power of SQANTI3-based curation 
to validate known and novel transcripts and effectively leverage the 
potential of long-read methods to discover new transcripts.

In conclusion, this work shows that SQANTI3 is a comprehensive 
and flexible tool for the structural characterization and quality control 
of lrRNA-seq-derived transcriptomes. It can integrate orthogonal 
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data to improve the accuracy of transcript models and provides a 
range of filtering options to accommodate different research goals. 
For genome annotation, we recommend using extensive orthogonal 
data and applying machine learning-based filtering to obtain a set of 
high-confidence transcript models. In other applications that seek to 
detect rare novel transcripts, more lenient filtering may be applied to 
allow for discovery, especially when follow-up validations are planned. 
Finally, for isoform-resolved differential expression studies, filtering 
based on consistent detection across samples is advisable. With the 
ability to curate novel transcripts and provide functional annotation, 
SQANTI3 is an essential tool in the long-read transcriptomics field.
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Methods
Novel features in SQANTI3
SQANTI3 quality control module. The quality control module is the 
cornerstone of the SQANTI3 pipeline. It is designed to characterize 
transcriptomes built using lrRNA-seq data and make QC decisions 
according to the purpose of the study. Combining Python and R scripts, 
SQANTI3 QC compares the de novo transcriptome against a refer-
ence annotation and outputs an easy-to-explore classification table 
file. This file feeds the graphical output, is used as input for the filter 
module, and is generated for the reference annotation when running 
SQANTI3 rescue.

New subcategories for full splice and incomplete splice matches. SQANTI3 
QC expands the long-read transcript model classification scheme 
defined by SQANTI18 by characterizing the variability at the ends of 
the transcript models to create subcategories for reference-associated 
transcript categories, that is, FSM and ISM.

FSM can be directly associated with known transcript models 
based on their splice junction, but differences at their ends are not 
negligible. When differences are small, meaning that the FSM transcript 
ends match the reference with a difference of ≤50 bp upstream or 
downstream from the annotated TSS and TTS, the transcript models are 
assigned to the reference match subcategory. Conversely, transcripts 
with a ≥50 bp distance to the annotated TSS or TTS are considered 
‘alternative’, and annotated to one of the three additional subcatego-
ries: alternative 5ʹ end; alternative 3ʹ end; or alternative 5ʹ or 3ʹ ends. For 
ISM, which are fragments of annotated splice junction combinations, 
subcategories are defined based on the missing fraction of the known 
transcript. ISM can therefore be classified as 3ʹ fragments, 5ʹ fragments, 
or internal fragments, depending on whether they lost exons at in their 
5ʹ, 3ʹ, or both ends. An additional subcategory, ISM with intron reten-
tion, was defined to classify transcripts for which the loss of a splice 
junction in the reference is due to an intron retention event. Finally, the 
mono-exon subcategory was included for both structural categories 
given that, despite their lack of splice junctions, they can be associ-
ated with known transcripts by overlap. Specifically, if a mono-exon 
transcript overlaps a mono-exonic reference, it will be classified as 
FSM, whereas if the reference is multi-exonic and the query sequence 
lies within the boundaries of an annotated exon, it will be considered 
an ISM. NIC and NNC categories remain the same as they were defined 
in SQANTI18.

Integration of evidence around 5ʹ and 3ʹ ends. In addition to short- and 
long-read data for coverage- and expression-based validation, SQANTI3 
QC can make use of additional data to generate metrics related to TSS 
and TTS support, namely CAGE, Quant-seq data or other region-based 
sources of information providing TSS and TTS evidence. Specifically, 
the QC module accepts BED (browser extensible data) files containing 
the genomic coordinates of specific regions called (for example, CAGE 
peaks) as input. The overlap between each TSS and TTS reported in the 
lrRNA-seq transcriptome and the supplied regions are verified, flag-
ging cases where transcript ends fall inside a peak. Additionally, the 
distance between the TSS or TTS and the middle point of the closest 
peak is computed. Only peaks upstream of the TSS or downstream of 
the TTS are interrogated for this purpose.

Processing of short-read data. To facilitate the integration of matching 
short-read data, SQANTI3 has been upgraded to accept FASTQ Illumina 
data and run STAR (spliced transcripts alignment to a reference)24  
and Kallisto25 internally for mapping and quantification purposes 
(Supplementary Methods).

First, a genome index is created and short reads are mapped to 
identify individual splice junctions using STAR. The reference annota-
tion is not used in this process, to make splice junction identification 
completely independent from prior annotations. Mapping parameters 

used in STAR are adapted from the ENCODE-DCC protocol for RNA-seq 
(https://github.com/ENCODE-DCC/rna-seq-pipeline/), however, to 
improve the detection and quantification of novel splice junctions, 
the –twopassMode option is activated26. After running STAR, an SJ.out.
tab and a BAM (binary alignment map) file are generated for each 
replicate. The SJ.out.tab file contains the short-read quantification of 
splice junctions defined by long reads, whereas the BAM file is used 
to calculate the novel TSS ratio metric. Taking the genomic position 
of all of the long read-defined TSS in the query annotation, two BED 
files containing the 100 bp regions downstream (inside the first exon) 
and upstream (outside the first exon) of the TSS are created. Using 
BEDTools27, short-read coverage across both genomic segments is 
measured and the TSS ratio is calculated using the following formula:

TSS ratio = coverage inside + 0.01
coverageoutside + 0.01

For each TSS, SQANTI3 QC computes as many ratio values as short-read 
sequencing replicates are provided, although only the highest ratio is 
retained by default. Alternatively, users can select other metrics for TSS 
ratio aggregation across samples, namely the mean, median and third 
quartile. Details are available in the SQANTI3 software documentation 
(see ‘Code availability’).

For transcript model quantification, SQANTI3 runs Kallisto 
internally when short-read paired-end data are provided. First, an 
index is built using the transcript sequences extracted from the query 
annotation and the reference genome. Then, short reads are pseu-
doaligned to these genome-corrected sequences to quantify them 
using –bootstrap-samples 100 as the only non-default parameter.

SQANTI3 filter module. Machine learning-based filter. SQANTI3 
substantially improves the SQANTI machine learning-based filter 
(machine learning filter)18. In brief, the filter is based on the training 
of a random forest classifier to calculate the probability that a given 
transcript model is an isoform or an artifact. The training process is 
based on SQANTI3 QC attributes and on the selection of true-positive 
and true-negative transcript sets that will show differences in these 
attributes.

In SQANTI3, the definition of true-positive and true-negative sets 
has been modified to enable either user-defined transcript lists for model 
training or an automated selection of true-positive and true-negative 
transcripts based on SQANTI3 categories and subcategories when no 
true-positive and true-negative lists are supplied. True-positive and 
true-negative lists should each contain at least 250 transcripts for the 
filter to run, and lower sizes have been banned to prevent unstable 
behavior in model training. By default, NNC noncanonical isoforms 
are taken as true negative, whereas the Reference Match subcategory 
is used as the true positive, because these transcript models have both 
reference-supported junctions and ends. In these cases, attributes 
related to junction type (canonical or noncanonical) and to the distance 
to the reference TSS or TTS are automatically excluded to prevent biases 
and overfitting. In addition, the size of these sets is now automatically 
balanced, downsizing the largest to match the number of transcripts in 
the smallest training list. The maximum training set size can be adjusted 
by the user to alleviate the computational burden of model training, 
even in cases in which true positive and true negative are automatically 
defined. Relative to filtering criteria, the SQANTI3 implementation of 
the machine learning filter has been designed to be more stringent on 
the isoform than on the artifact condition, requiring that the probability 
that the transcript is a true isoform be ≥0.7 by default. This threshold, 
nevertheless, can be modified by the user, and the probability distribu-
tion generated by the classifier is included as part of the machine learn-
ing filter report to assist this decision. Finally, the machine learning filter 
now allows users to force the inclusion or exclusion of some specific 
isoform groups. For FSM transcripts, users may indicate that all of them 
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should be included as true isoforms in the filtered transcriptome. In 
addition, given that mono-exonic transcripts are not evaluated during 
machine learning filtering due to the lack of junction-related attributes, 
these can be automatically removed from the transcriptome if desired; 
otherwise, they will not be subject to filtering.

A key improvement to the machine learning filter in SQANTI3 is 
the use of the novel TSS and TTS validation metrics and additional data 
incorporated during QC for classifier training, namely CAGE-seq peaks, 
the short read-based TSS ratio metric, polyA motif information, and 
Quant-seq peaks. As a result, the filter can now detect artifacts belong-
ing to the FSM and ISM categories, which were automatically flagged as 
true isoforms in the original release. By default, all available variables in 
the SQANTI3 classification file are used for model training, except those 
related to genome structure (for example, chromosome or strand), to 
the associated reference transcript or gene, and the SQANTI categories 
and subcategories. Moreover, the SQANTI3 machine learning filter 
includes the possibility to exclude variables, to prevent overfitting in 
cases in which one or more of these variables have served as criteria 
for true-positive and true-negative set definitions. Additional details, 
including how to run the machine learning filter, are available at the 
SQANTI3 wiki (see ‘Code availability’).

Rules filter. To make the filter module more flexible and accommodate 
cases in which the definition of true-positive and true-negative sets is 
not possible, a rules-based strategy for artifact removal has also been 
included in SQANTI3. A JSON file28 is used to specify the characteristics 
that make an isoform reliable.

The JSON file is structured in two different levels of hierarchy: 
rules and requisites. A rule is made of one or more requisites, all of 
which must be fulfilled for an entry to be considered a true transcript. 
This means that requisites will be evaluated as AND in terms of logical 
operators. If different rules (that is, sets of requisites) are defined for 
the same structural category, they will be treated independently from 
one another. In that case, to pass the filter, transcripts will need to 
pass at least one of these independent rules, meaning that rules will 
be evaluated as OR in terms of logical operators. Rules can be set for 
any numeric or categorical column in the classification file. Numeric 
value thresholds can be defined as a (closed) interval of accepted values 
or by setting only the lower limit. For categorical QC attributes, users 
may define one or more acceptable levels. More details and examples 
of how to correctly define the rules are available at the SQANTI3 wiki 
(see ‘Code availability’).

The default filter includes two sets of rules. FSM transcripts are 
removed solely based on intrapriming, that is, if they have ≥60% of 
As in the sequence immediately downstream of the TTS of the tran-
scripts. Transcripts from other categories are required to be negative 
for intrapriming and reverse transcriptase switching, as well as to have 
all of their junctions supported by at least three short reads or to have 
only canonical junctions. However, the JSON-based rule definition ena-
bles users to apply ad hoc filtering criteria to each SQANTI3 category, 
which may involve thresholds for multiple QC attributes and any type 
of available orthogonal data.

SQANTI3 rescue module. The SQANTI3 rescue algorithm was con-
ceived to be run after removing potential artifacts from the transcrip-
tome using the SQANTI3 filter module with the goal of avoiding the 
loss of transcripts and genes that constitute part of the transcriptional 
signal, but for which a correct transcript model could not be generated 
when processing the long-read data. In practice, this is done by select-
ing a replacement transcript from the reference that is ultimately added 
to the set of long read-defined, filter-passing transcript models to 
generate an expanded, final version of the transcriptome. This strategy 
is based on two principles: consistent quality, meaning that rescued 
transcript models should meet the QC criteria of the filtering settings 
used to call isoforms, and non-redundancy, meaning that when the 

identified replacement transcript for a given artifact is already part of 
the filtered transcriptome, no transcript model is added. The SQANTI3 
rescue algorithm operates in four steps.

The first step in this module, hereby referred to as automatic 
rescue, applies to FSM artifacts, which may originate when TSS or 
TTS validation fails. In this case, reference transcripts associated with 
at least one removed FSM transcript are automatically added to the 
transcriptome. When multiple removed FSM transcripts have the 
same associated reference transcript but different TSS, the reference 
sequence is added only once. Artifact transcripts from the ISM, NIC and 
NNC categories are considered as rescue candidates and will continue 
to be analyzed by the rescue pipeline. ISM artifacts are considered 
only if they do not have an FSM counterpart associated with the same 
reference transcript.

Second, a group of rescue targets, that is, potential replacement 
transcripts for the rescue candidates, is defined. This includes all long 
read-defined and reference transcript models for which at least one 
same-gene rescue target was found. Matches between each rescue 
target and its same-gene candidates are next found by mapping can-
didate sequences to targets, a process known as rescue by mapping. 
To achieve this, minimap2 (ref. 29) is run in the long-read alignment 
mode using the -a parameter, combined with the -x map-hifi (that 
is, high-fidelity read alignment) preset option to reflect the accuracy of 
the processed transcript sequences. Secondary alignments are allowed 
and set to the default number of 6 to enable multiple mapping hits to 
be reported per candidate. This process yields a series of alignments 
that pair each rescue candidate to multiple possible targets, pairs that 
are hereby referred to as mapping hits.

Third, to ensure that reference transcriptome targets included 
in the rescue process comply with the same quality require-
ments as long-read targets and to minimize the risk of retrieving 
nonsample-specific transcripts, SQANTI3 QC and filter modules are run 
on the reference transcriptome, supplying the same additional data and 
quality criteria as used for the long-reads transcript models. Finally, the 
rescue-by-mapping process is completed by applying a series of criteria 
to select suitable targets for inclusion in the final transcriptome. First, 
mapping hits are disregarded if the rescue target did not pass the filter, 
be it machine learning or rules. When multiple mapping hits per rescue 
candidate exist that pass the filter in the machine learning strategy, the 
target transcript with the highest machine learning filter probability 
(long-read or reference) will be selected for rescue. If multiple hits 
pass the rules filter, all targets will be considered, given that there are 
no further refinement criteria available in this case. If the best match 
target is a long read-defined transcript model that is already included in 
the transcriptome, no further action is performed because the artifact 
is already represented in the dataset. The remaining reference targets 
are then evaluated for potential redundancy against the curated tran-
scriptome, and added only if not already present.

By default, the rescue module runs only the automatic rescue step, 
enabling the recovery of high-confidence reference transcripts using 
FSM evidence only. However, users can modify this behavior if they 
wish to perform a more comprehensive rescue using ISM, NIC and NNC 
artifacts to find matching replacement transcripts. More information 
is available at the SQANTI3 wiki (see ‘Code availability’).

IsoAnnotLite and tappAS integration. IsoAnnotLite is a Python script 
for the transfer of isoform-level functional feature annotations from an 
existing tappAS annotation GFF3 (general feature format version 3) file 
to long read-defined transcripts processed using SQANTI3 QC. During 
this process, long read-defined transcripts, that is, feature acceptors, 
receive annotations from transcripts that are already annotated with 
functional information and therefore act as feature donors. The result-
ing GFF3 file is compatible with the tappAS software for isoform-level 
functional analysis. In the case that a reference GFF3 annotation file 
is not provided, the output transcriptome will be formatted into a 
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tappAS-compatible GFF3 file including only structural information, 
enabling quantitative but not functional analysis within tappAS.

The script uses the classification, junction and GTF file generated 
by SQANTI3 QC, and can be run simultaneously with the QC script 
by supplying the –isoAnnotLite flag and providing a tappAS GFF3 
functional annotation file via the –gff3 argument. IsoAnnotLite is 
executed with -novel as the only non-default parameter to force 
all transcripts to be treated as novel transcripts, meaning that each 
long-read transcript or feature acceptor is annotated using functional 
information from all feature donors belonging to the same gene in 
the reference GFF3. When the -novel argument is not supplied, the 
non-novel acceptor transcript will receive only annotations from donor 
transcripts with matching identification numbers. More information 
on IsoAnnotLite parameters and their effect on the annotation process 
is available in the SQANTI3 documentation (see ‘Code availability’).

The IsoAnnotLite algorithm includes the following steps. First, 
positional information for feature acceptors, that is, transcripts in the 
lrRNA-seq transcriptome, is converted to genome positions using the 
information in the SQANTI3 QC output. Similarly, transcript-level func-
tional feature positions from the donor transcripts are transformed into 
genomic coordinates using the information in the reference GFF3 file. 
Next, functional features are transferred across transcript models by 
matching genomic positions, that is, features from donor transcripts for 
which the genomic positions span a feature acceptor will be annotated 
as belonging to that transcript. It should be noted that different transfer 
rules have been implemented depending on the type of feature that is 
being handled. To transfer features of the untranslated region, genomic 
feature positions must be inside the transcript’s exons and outside its 
coding sequence (CDS) region. For CDS transcript features (namely 
transcript-level features situated in the coding region), the feature must 
be contained in the acceptor transcript’s exons as well as inside the CDS 
region; and if a feature has start and end positions situated in different 
exons, the end and the start of the exons for the donor and acceptor 
transcripts must be the same for IsoAnnotLite to transfer the feature. 
For protein features, the donor and acceptor transcripts are first veri-
fied to be coding and have the same CDS. If all CDS exons are the same 
for both transcripts, all protein features are automatically transferred. 
If not, IsoAnnotLite requires the genomic positions of at least one CDS 
exon to be a partial match, that is, for the feature donor and acceptor to 
share part of one exon in the transcript’s CDS. If at least one CDS genomic 
region overlaps between both transcripts, IsoAnnotLite checks for pro-
tein features that fall inside that region and can therefore be transferred. 
For gene-level characteristics (for example, Gene Ontology terms), 
information is always transferred across matching gene identification 
numbers. Finally, IsoAnnotLite verifies whether the same feature has 
been transferred from multiple donor transcripts to the same acceptor, 
and performs the removal of duplicated annotations.

Data
The WTC11 cell line is an induced pluripotent stem cell line derived from 
human fibroblasts, often used as a model for cell differentiation30. The 
data used in this paper were generated as part of LRGASP16, in which this 
cell line was deeply sequenced using different technologies. We used 
only the cDNA PacBio data for reconstructing transcript models. Raw 
data used in this study (subreads) are accessible through the ENCODE 
database, under experiment accession ENCSR507JOF. Additionally, raw 
short-read data from the same samples were retrieved from ENCODE 
experiment accession ENCSR673UKZ. In both cases, sequenced RNA 
samples included Lexogen’s Spike-In RNA Variants SIRV-Set 4 (cat. no. 
141). This included 69 short SIRVs, 15 long SIRVs and 92 mono-exonic 
ERCC (External RNA Controls Consortium) transcripts. Short SIRVs 
(191 bp–2.5 kb) are designed to reproduce different splicing patterns 
with respect to their reference gene, creating a multi-isoform scenario. 
In contrast, long SIRVs (4–12 kb) do not contain splicing. The 69 short 
SIRVs resemble multi-exonic genes with alternatively spliced isoforms, 

and were used as ground truth to evaluate performance after each step 
in the SQANTI3 pipeline.

CAGE-seq peak data for the WTC11 cell line were obtained from 
LRGASP (GEO accession GSE185917), while Quant-seq data were down-
loaded from ENCODE experiment ENCSR322MWL. Reads had been 
processed to obtain a collection of sample-specific peaks, and these 
were filtered to include only peaks found in at least two replicates, 
resulting in 46,722 CAGE-seq and 45,813 Quant-seq peaks16. Reference 
annotations of TSS and TTS were obtained from the Reference Tran-
scription Starting Sites31 (refTSS, v3.1) database and from the PolyASite 
database32 (v2.0), respectively. A list of common human polyA motifs 
was obtained from ref. 21.

Data processing
Transcriptome reconstruction with IsoSeq3. The PacBio cDNA 
lrRNA-Seq datasets used in the present study, that is, WTC11 and H1-DE 
(Supplementary Note 2), were processed using the IsoSeq3 software 
(v3.4.0) for de novo long-read transcriptome reconstruction, provided 
by PacBio (https://isoseq.how/). We followed the recommended pipe-
line by PacBio to build a transcriptome starting from subreads:

 1. For each replicate in any given dataset, the ccs function was run 
using default parameters and setting –min-rq 0.9 to define 
the minimum predicted accuracy.

 2. The lima function was next run using the –peak-guess and 
–isoseq arguments and default parameters. This enables the 
identification of primers and the removal of chimeric reads.

 3. Primer sequences were then trimmed using IsoSeq3 refine, 
with the –require-polya argument to keep only reads in 
which both primers and a polyA tail were identified, that is, 
full-length non-chimeric (FLNC) reads.

 4. Replicates (and samples) were pooled together for the IsoSeq3 
cluster step.

 5. Transcript collapse was then performed to minimize transcript 
model redundancy using cDNA Cupcake (https://github.com/
Magdoll/cDNA_Cupcake/). After mapping transcripts to the 
genome with minimap2 (ref. 29), the collapse_isoforms_by_
sam.py script was run using the –dun-merge-5-shorter flag 
to prevent the removal of alternative TSS.

For further details on the exact code used to run IsoSeq3, see  
Supplementary Methods.

Running SQANTI3 QC. SQANTI3 QC was run using the human  
GENCODE annotation (v39) and default parameters for all three data-
sets. The different types and sources of orthogonal data used are 
reported in Supplementary Note 4.

Fisher’s exact test was used to assess the capability of the TSS ratio 
and polyA motifs to recapitulate the information provided by experi-
mental data. This was done by building contingency tables in which 
transcripts constituted the counted events, the columns represented 
whether or not transcripts had support by CAGE-seq or Quant-seq 
peaks, and the rows represented whether transcripts were validated 
by a TSS ratio > 1.5 or by the presence of a polyA motif, respectively.

Running SQANTI3 filter. Rules filter. For the WTC11 dataset, the rules 
filter was defined as follows. The 5ʹ ends were considered valid if they 
overlapped a CAGE-Seq peak OR an annotated refTSS site; the distance 
to any other annotated TSS in the same gene was less than 50 bp; or 
they had a TSS ratio > 1.5. Similarly, 3ʹ ends were accepted if they were 
supported by Quant-seq data OR by polyA site annotation; the dis-
tance to any other annotated TTS was less than 50 bp; or there was a 
canonical polyA motif close to the TTS. FSM and ISM transcripts were 
required to have support in both their 5ʹ and 3ʹ ends to pass the filter. 
For the rest of the transcript models, it was required that all splice junc-
tions were supported by at least three short reads or were canonical 
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junctions. Additionally, transcript models were filtered out if labeled 
as an intrapriming artifact (60% of As in the 20 bp downstream of the 
reported TTS at the genomic level), if one or more splice junctions 
were flagged as generated by reverse transcriptase switching, or if 
they were mono-exonic.

Machine learning filter. The definition of true-positive and true-negative 
transcript model sets is critical for the performance of the machine 
learning filter. Given that TSS and TTS orthogonal data were available, 
the true-positive set was defined using FSM multi-exonic transcript 
models with CAGE-seq support at the 5ʹ end, Quant-seq support at the 
3ʹ end, and canonical splice junction. Meanwhile, the true-negative set 
consisted of non-FSM multi-exonic transcripts lacking support in at 
least one of their ends or having a noncanonical splice junction. In total, 
3,000 transcript models with these properties were randomly sampled 
for each set. Importantly, the attributes used to define true-positive 
and true-negative sets, that is, CAGE-seq and Quant-seq support and 
canonical status of the splice junction, were removed from the set of 
variables used for model training to prevent overfitting. To achieve this, 
classification column names were supplied to the –remove_columns 
option in the SQANTI3 machine learning filter.

Running SQANTI3 rescue. To perform the rescue step, the reference 
annotation was first characterized using SQANTI3 QC and the same 
additional data used during lrRNA-seq transcriptome QC (Supplemen-
tary Methods). For WTC11, the GENCODE v39 human transcriptome was 
used as both query and reference annotation. Of note, this additionally 
included SIRVs. Importantly, SQANTI3 ignores reference transcripts 
shorter than 200 bp by default to avoid spurious matches to noncoding 
genes and annotated fragments that should not be captured through 
lrRNA-Seq. Given that SQANTI3 ignores by default reference transcripts 
shorter than 200 bp to avoid spurious matches, to appropriately char-
acterize the reference, we set –min_ref_len 0 in SQANTI3 QC to avoid 
the incorrect classification of short transcripts.

Next, SQANTI3 rescue was run using the SQANTI3 QC classification 
file from the reference and the SQANTI3 filter output obtained after 
filtering the long read-defined transcriptome as input. In addition, for 
post-machine learning filter rescue runs, we supplied the pre-trained 
random forest classifier used for transcriptome filtering. For post-rules 
filter rescue runs, the JSON file containing the rules and requisites used 
upon filtering was supplied as input to SQANTI3 rescue.

SIRV evaluation metrics. To assess the ability of SQANTI3 to accept 
or reject transcripts accurately, Lexogen SIRVs33 introduced during 
library preparation were used. Given that SQANTI3 uses the refer-
ence annotation to categorize the transcript models and this affects 
the curation process, the annotation of the SIRVs was modified to 
include novel isoforms and isoforms annotated but not present in the 
sample. To achieve this, the annotation of the SIRV genes was added 
to the GENCODE human reference transcriptome (v39), including the 
insufficient and the over-annotated versions available at the Lexogen 
website https://www.lexogen.com/wp-content/uploads/2021/06/
SIRV_Set4_Norm_Sequences_20210507.zip.

We considered an isoform as true positive if it matched a transcript 
model of the complete and correct annotation as an FSM reference 
match. Depending on the spike-in matched, it could be a known or 
novel true positive if it was present in the modified annotation or not, 
respectively. When the transcript model could be associated with the 
transcript present in the sample but differed by more than 50 bp in 
any of the ends, this was counted as a partial true positive. Transcripts 
matching a false SIRV present in the reference were computed as an 
over-annotation false positive. The rest of the transcripts that were 
classified as NIC or NNC compared with any annotation (complete or 
modified) were reported as false positives. Moreover, we measured the 
number of isoforms considered novel during the SQANTI3 curation 

process, which includes novel true positive (TP) and false positive (FP). 
Using these figures, sensitivity, precision, F-score, false discovery rate 
(FDR), over-annotation detection rate (ODR) and novel detection rate 
(NDR) were calculated as follows:

Sensitivity = knownTP + novel TP
no.of SIRVs introduced

Precision = knownTP + novel TP
no.of SIRVsdetected

Fscore = 2 x Sensitivity x Precision
Sensitivity + Precision

FDR = FP + Over − annot FP + Partial TP
no.of SIRVsdetected

ODR = Over − annot FP
no.of SIRVsdetected

NDR = novel TP + FP
no.of SIRVsdetected

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this manuscript are publicly available under the fol-
lowing accession codes: for WTC11 analysis, lrRNA-seq data were 
retrieved from ENCODE ENCSR507JOF, srRNA-seq data were retrieved  
from ENCODE ENCSR673UKZ, CAGE-seq data were retrieved from 
GEO GSE185917, and Quant-seq data were retrieved from ENCODE 
ENCSR322MWL; for K562 analysis, ENCODE ENCSR917JIA experiment 
data were used, including long-read transcriptome (ENCFF584GRG), 
srRNA-seq (ENCSR792OIJ) and CAGE-seq data (ENCSR000CJN); for 
H1-endoderm analysis, data were retrieved from ENCODE, includ-
ing lrRNA-seq data from accessions ENCSR271KEJ (H1-hESC) and  
ENCSR127HKN (H1-DE), srRNA-seq data from accessions ENCSR588EJX 
(H1-hESC) and ENCSR266XAJ (H1-DE), and Quant-seq data from acces-
sions ENCSR198UNH (H1-hESC) and ENCSR198UNH (H1-DE). Reference 
data from PolyASite32 and refTSS31 were used to validate 3ʹ and 5ʹ ends. 
IsoAnnot annotation for human used the InterProScan (https://www.
ebi.ac.uk/interpro/), UniProt (https://www.uniprot.org/) and Modi-DB 
(https://mobidb.org/) databases to functionally annotate reference 
transcripts. All of the files used to generate the results in this paper are 
publicly accessible at http://conesalab.org/SQANTI3/. For an easier 
exploration of WTC11 transcript models identified with IsoSeq3 and 
their characterization with SQANTI3, a public UCSC Genome Browser 
Track hub was generated (http://conesalab.org/SQANTI3/WTC11/
SQANTI3_hub/hub.txt) including the orthogonal data used for valida-
tion. We also make the results of the differentiation of hESC H1 cells 
to endoderm available in a ready-to-use format on tappAS (http://
conesalab.org/SQANTI3/H1_endo/tappAS_files/). Source data are 
provided with this paper.

Code availability
The SQANTI3 software is available at https://github.com/ConesaLab/
SQANTI3, with extensive documentation on the GitHub wiki site https://
github.com/ConesaLab/SQANTI3/wiki. All results in this study were 
generated using SQANTI3 v5.1. Code used for generating the figures 
in the main text and in the Supplementary Notes is available at https://
github.com/ConesaLab/SQANTI3.
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Extended Data Fig. 1 | SQANTI3 Rescue workflow. 1) If an FSM-supported 
reference transcript is lost during the filtering, the version of the reference is 
automatically rescued. 2) The rest of the LR-defined transcript models filtered 
out (rescue candidates) are mapped against the reference transcriptome 
combined with the accepted LR-defined isoforms (rescue targets), allowing 
several hits per candidate. 3) Reference transcriptome was previously evaluated 
and filtered with the same data and criteria as the LR-defined transcripts. 4) 

Rescue is completed by evaluating targets. They need to pass the filtering and not 
increase the redundancy, meaning that if the target is an LR-defined transcript 
present or it is a reference transcript already represented as an FSM in the filtered 
transcriptome, these targets will not be added to the final annotation. LR: Long-
read, ML: Machine Learning, FSM: Full-Splice-Match, ISM: Incomplete-Splice-
Match, NIC: Novel-In-Catalog, NNC: Novel-Not-In-Catalog.
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n=129K

refTSS
n=112K

TSS ratio
n=150K

97.3K
called by all

Extended Data Fig. 2 | Agreement in TSS validation using different data sources. of additional information. Number of TSS identified using the TSS ratio 
(threshold=1.5) based on matching short-reads RNA-seq data, sample-specific CAGE-seq data and the refTSS database. TSS: Transcript Starting Site.
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Extended Data Fig. 3 | Agreement in TTS validation using different data sources. Number of TTS identified using sample-specific Quant-seq data, presence of 
polyA motif and the PolyASite database. WTC11 PacBio lrRNA-seq data. TTS: Transcript Termination Site.
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Extended Data Fig. 4 | Frequency distribution of the transcript model distances between their detected polyA motif and the closest reference polyA site. Data 
are stratified by SQANTI3 structural category and separated according to the existing Quant-seq data support. WTC11 PacBio lrRNA-seq data.
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Extended Data Fig. 5 | Distribution of transcript model distances between 
their detected polyA motif and the closest reference polyA site. Data are 
broken-down by SQANTI3 structural category and separated depending on 
whether transcript models were flagged as potential intrapriming artifact.  

Boxes indicate median (middle line), 25th (Q1) and 75th (Q3) percentiles  
(box hinges); whiskers represent min = Q1 - 1.5 ⋅ Interquartile Range (IQR) and  
max = Q3 + 1.5 ⋅ IQR; dots constitute outliers. FSM: Full-Splice-Match. ISM: 
Incomplete-Splice-Match, NIC: Novel-In-Catalog, NNC: Novel-Not-In-Catalog.
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Extended Data Fig. 6 | Relationship between the SQANTI3 structural 
categories of discarded transcripts (rescue candidates) and their rescue 
targets in the Machine Learning (ML) - High Input Sample filtering scenario. 
Rescue candidates are shown in the y-axis, stratified by structural category. 
Candidates correspond to transcripts discarded by the ML filter, that is artifacts. 
Rescue targets are shown in the x-axis, spread across structural categories 
and including reference transcriptome hits. Targets correspond to transcripts 
mapped by artifacts during the rescue process. In this mapping process, each 
candidate can map to multiple targets, which are similar to the candidate in 

sequence and exon structure. Heatmap color therefore corresponds to the 
number of hits (log10) involving each possible pair of structural categories, 
indicating the amount of structural similarity among categories detected during 
rescue. Within the tiles, the total number of candidate target pairs is shown, 
including the mean number of hits per candidate for each category pair between 
parentheses. FSM candidates only match reference targets, since they are only 
considered for automatic rescue. WTC11 PacBio lrRNA-seq data. FSM: Full-Splice-
Match, ISM: Incomplete-Splice-Match, NIC: Novel-In-Catalog, NNC: Novel-Not-
In-Catalog.
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a

b

Extended Data Fig. 7 | Expression and functional properties of rescued 
transcripts. a, Distribution of expression values (TPM) of known transcripts 
detected as Full-Splice-Match or Incomplete-Splice-Match. b, TRIFID scores 
of known transcripts identified in each filtering and rescue scenario. Filtered 
transcripts (orange) did not pass the corresponding filter and were not eventually 

rescued. Transcripts filtered but recovered by introducing an isoform from the 
reference (dark blue) represent the rescue strategy’s fundamental purpose. In 
exceptional cases, transcripts models not initially detected were included in the 
final transcriptome (yellow) via rescue.
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