nature methods

Brief Communication

https://doi.org/10.1038/s41592-024-02213-w

Open-top multisample dual-view light-sheet
microscope for liveimaging of large

multicellular systems

Received: 18 August 2023

Accepted: 15 February 2024

Published online: 20 March 2024

Franziska Moos"*4, Simon Suppinger ® "4, Gustavo de Medeiros® '3,
Koen Cornelius Oost', Andrea Boni®, Camille Rémy?, Sera Lotte Weevers ®'?,
Charisios Tsiairis"?, Petr Strnad ®?

& Prisca Liberali®"?

W Check for updates

Multicellular systems grow over the course of weeks from single cells

to tissues or even full organisms, making live imaging challenging.

To bridge spatiotemporal scales, we present an open-top dual-view and
dual-illuminationlight-sheet microscope dedicated to live imaging of large
specimens at single-cell resolution. The configuration of objectives together
with a customizable multiwell mounting system combines dual view with
high-throughput multiposition imaging. We use this microscope toimage
awide variety of samples and highlight its capabilities to gain quantitative
single-cell informationin large specimens such as mature intestinal
organoids and gastruloids.

Visualizing single-cell dynamics shaping complex tissues and under-
standing the underlying mechanismsis an overarching goalinbiology.
However, these complex biological phenomena often cross large spa-
tiotemporalscales, as multicellular systems can grow over the course
of days. Furthermore, biological processes and especially in vitro
models are often affected by sample-to-sample heterogeneity. A micro-
scope for liveimaging of such systems must provide high throughput
within each experiment to draw robust conclusions. Additionally, it
must provide sufficient spatiotemporal resolution and image quality
for large light-scattering samples while minimizing light dosage and
keeping the sample accessible. Light-sheet microscopy overcomes
some of these challenges due toits low phototoxicity and high optical
sectioning'. For large specimens, multiview or SimView light-sheet
microscopy has provided improved image quality by acquiringimages
from opposing directions using sample rotation or multiple objec-
tivelenses*”. These techniques are, however, limited in throughput?®.
Further, open-top’,inverted'’ or single-objective approaches such
as oblique plane®, SCAPE™ or DaXi" light-sheet microscopes have
beendeveloped to enable multisample imaging, in which the sample
is supported from the bottom'®" while granting direct accessibil-
ity from the top. However, these systems do not allow imaging from
opposing detection sides.

Here we present an open-top, dual-view and dual-illumination
light-sheet microscope, combining the advantages of multiview imag-
ingwithanopen-top geometry and amultiwell sample holder enabling
long-term multiposition three-dimensional (3D) live imaging of large
specimens. We show its capabilities to achieve high image quality in
avariety of model systems such as intestinal, liver and salivary gland
organoids, gastruloids, Hydra and human colon cancer organoids,
reaching sizes of up to 550 um and recordings for up to 12 days. We
obtain quantitative features and present a detailed single-cell analy-
sis through tracking and segmentation for intestinal organoids and
gastruloids.

This microscope contains two opposing illumination objectives
(Nikon 10x, numerical aperture (NA) 0.2, effective NA 0.06) each tilted
slightly upward from the horizontal plane, illuminating the sample
from two sides, and two opposing detection objectives imaging from
two directions (Nikon 16x, NA 0.8: the system is also mechanically
compatible with Nikon 25%, NA1.1) (Fig.1a-e and Extended DataFigs.1
and2). Thisgeometry creates space above theillumination objectives
(Fig.1b,e) forasample holder containing an array of up to four sample
chambers (Fig. 1f). Immersion medium (water) is placed in a reser-
voir filling the space between the detection objectives. To obtain two
opposing light-sheets illuminating the sample at the largest possible
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angle minimizing striping artifacts and illuminating uniformly, we
used super-long working distance air objectives, coupled the illumi-
nation light into the immersion medium through a glass window and
designed a correction triplet lens compensating for aberrations. The
objective area has environmental control (humidity, temperature and
CO,). An additional beam path uses one of the detection objectives
as a condenser illuminating the sample to acquire transmitted light
images. With this objective configuration, the resolution is limited
by sampling (measured lateral full-width at half-maximum (FWHM)
0.8 um; Extended Data Fig. 3). Technical specifications are listed in
Supplementary Table 1. For sample mounting, we developed custom-
izable chambers produced from fluoroethylene propylene (FEP) foils
in a thermoforming process™ allowing a variety of sample specific
configurations (Fig. 1f, Extended Data Fig. 4 and Methods). Using this
mounting strategy, we can ensure growth and environmental condi-
tions similar to experiments performed in standard plates providing
consistency between microscopy data and other experiments.

In former work'®, we used the predecessor of the here presented
microscope (one detection objective)” to track cells in developing
intestinal organoids. However, the achieved imaging depth was not suf-
ficienttotrack cellsinlarger specimens, including mature organoids.
Thenewly devised approach overcomes this hurdle. We simultaneously
imaged crypt and villus formation of maturing mouse intestinal orga-
noids over the course of 3 days (Fig. 1g and Supplementary Video 1),
using the cell cycle reporter, FUCCI2 (ref. 18). Dual-color imaging
with single-cell resolution within a depth of 360 pm and a temporal
resolution of 10 minutes (Supplementary Video 1), allowed the visu-
alization of the in toto dynamics of the organoids in unmatched detail.
Visualizing single cells throughout the entire sample volume requires
dual-detection. Weillustrate this by comparing the xzsections of indi-
vidual detection objectives to the fused data (Fig. lhand Methods). The
sections of the single views show an expected degradation withincreas-
ing imaging depth, whereas the fused data are composed of optimal
quality fromboth views (Supplementary Video 2). This strategy isalso
necessary to image entire animals such as the cnidarian Hydra. We
recorded Hydraregeneration for 2.5 days starting from newly formed
spheroids cut from adult animals' and observed the formation of the
body axis along with the development of oral and aboral structures,
with unmatched temporal resolution (Fig. 1i,j and Supplementary
Videos 3 and 4). We also assessed the difference between single and
dual-view detectionby comparingimage quality along increasing imag-
ing depths (Extended DataFig. 5 and Supplementary Information). The
results highlight theimportance of dual-detectioninlarge specimens.

To illustrate the versatility of our system, we imaged a variety of
samples from200 to 550 pmin size and for up to 12 days of continuous
imaging (Supplementary Table 2 for imaging details of acquisitions):
murine liver organoids (Fig. 1k,I and Supplementary Videos 5 and 6),
human colon cancer organoids? (Extended Data Fig. 6a and Supple-
mentary Videos 7 and 8), murine parotid salivary gland organoids
(Extended Data Fig. 6b and Supplementary Video 9) and gastruloids

(Extended Data Fig. 6¢ and Supplementary Video 10). Additionally,
our chamber design allows us to perform parallel perturbation experi-
ments (Supplementary Video 11 and Supplementary Information).

After establishing that the microscope enables both long-term
and highly dynamic imaging while allowing multiposition imaging
(Supplementary Video 12), we characterized its capabilities to obtain
high-quality single-cell data. We performed live imaging of intesti-
nal organoids expressing FUCCI2 (ref. 18) and performed endpoint
fixation and immunofluorescence assessing their cell type composi-
tion (Fig. 2a)'*. Due to minimal movement of the sample even after
immunofluorescence staining, we overlaid the last live-imaging time
point with the stained organoids via 3D registration (Extended Data
Fig. 6d and Methods). The Paneth cell marker Lysozyme (Lys) and the
secretory cell marker DII1 were used to detect cells of interest. Triple
positive cells (hCdtl'/Lys"/DII1") were back-tracked to monitor Paneth
cell maturation and their cell cycle arrest in GO/G1. As expected, the
initial position of the maturing Paneth cells was predictive of the
eventual position of the organoid crypt (Fig. 2b,c). Next, we compared
hCdt1*/Lys*/DII* Paneth cells with hCdt1*/Lys™/DII” cells in the crypt
(predominantly intestinal stem cells) and the villus of the organoid
(mostly enterocytes) (Fig. 2d). We further identified enterocytes and
Paneth cells, which were already terminally differentiated before the
recording began. For other cells, especially in the crypt, we identified
their moment of emergence, allowing us to track their full matura-
tion with an average cell cycle length of 21.9 h at the time of fixation.
Assessing the cell type specific time of emergence, we conclude that
Paneth cells emerge earlier than hCdtl single positive cells suggest-
ing specific cell cycle lengths and an order of specification (Fig. 2e-g
and Extended Data Fig. 6e-g). Such insights into cellular behavior
and maturation processes would not have been attainable without
the combination of live imaging and immunofluorescence within the
entire organoid volume.

Unlike most other samples weimaged, gastruloids are dense struc-
tures” and thus are challenging to image with single-cell resolution.
We used this model system to display the capability of our microscope
to obtain motility and shape features of individual cells. Standard
gastruloid protocols use Wnt activation (Chiron99021, Chir)***, to
increase mesoderm formation efficiency. This potentially induces an
epithelial to mesenchymal transition-like behavior and anincrease in
cellmigration®. To analyze the cell shape within gastruloids, we gener-
ated chimeras (Fig. 2h) expressing amembrane reporter (Lck-GFP) ina
subset of the cells (-10%). Subsequently, we recorded the dynamics of
gastruloids before (42 h after aggregation), during (66 h after aggre-
gation) and after the Wnt pulse (90 h after aggregation) for 5.5 hours
with 10 minute intervals (Supplementary Video 13). Additionally, we
embedded the gastruloids in 40% Matrigel to prevent mechanical
rotations in the sample chambers. 3D segmentation of single cells
using Cellpose® (Fig. 2i,j) allowed the calculation of major/minor
axis ratios, showing an increase in cellular elongation peaking dur-
ing Chir treatment (Fig. 2k). At later stages (90 h after aggregation),

Fig.1| Open-top dual-view light-sheet microscope with examples of time-
lapse acquisitions of various multicellular systems. a, Model of the dual-view
light-sheet microscope, showing the incubator (IN), sample mounting area (SA),
transmitted light (TL) and sample positioning unit (PS). Blue and green dashed
lines indicate the positions of the cross-sections showninband c. b, Cross-
section of the model of the microscope showing the illumination objectives
(111, 112) in blue. ¢, Cross-section of the model of the microscope showing the
two detection objectives (Detl, Det2) ingreen. d, Top view showing the two
detection (detection1and 2) and twoillumination objectives (illumination 1

and 2) with space for sample chambers. The green arrows indicate the direction
of the emission light; the blue arrows indicate the excitation light. e, Side view of
the objective arrangement. The zoom-in shows an image with the illumination
beams and the bottom of a sample chamber. f, Model of the sample holder

with four different sample chambers. g, Maximum intensity projections (MIPs)

along the zaxis showing three time points from an acquisition with organoids
expressing the Fucci2-reporter (hGem-mVenus and hCdtl-mCherry). The yellow
lineindicates the position of the cross-section in h. Scale bar, 50 um. h, Cross-
section inxz plane of the intestinal organoid in g using detection 1, detection 2
and the fused data. Scale bar, 50 pm. i, MIPs along the z axis showing three time
points from time-lapse acquisition of Hydra expressing an ectoderm-reporter
(ecto [B-act::RFP]). The yellow line indicates the position of the cross-section
inj.Scalebar, 50 pm.j, Cross-section inxz plane of the Hydra showniniusing
detection 1, detection 2 or the fused data. Scale bar, 50 pm. k, MIPs along the z
axis showing three time points from a time-lapse acquisition of liver organoids
expressing mg-GFP and H2B-mCherry. Scale bar, 50 pum. 1, 3D rendering of
theliver organoid shownin k. The zoom-in shows a region with and without
membrane signal. Scale bar, 50 pm.
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asubpopulation of cells displayed long cell protrusions (Fig. 2i). This
observation led to the hypothesis that cell motility is increasing along
gastruloid development. Using the Fiji plugin Mastodon® we tracked
Lck-GFP* (green fluorescent protein positive) cells (Fig. 2I,m) and
found that the median velocity of migration (um h™) increased along
gastruloid development. The strongest acceleration occurred during
the Wnt pulse exhibiting a 1.4-fold increase in median speed com-
pared to the time window before the Wnt pulse (Fig. 2n). Gastruloids
imaged post-Wntactivation exhibited the longest track length (Fig. 20).

a b

Evaluation of the 3D mean-square displacement (m.s.d.,,) suggested
anincreased speed and a change in migration behavior of cells tracked
from 90 h onward (Fig. 2p). Together, these findings demonstrate an
increase in migration, suggesting that Wnt activation enhances cell
motility and potentially coordinated migration in gastruloids®. The
observed changesin cell shape, and increased motility, suggest at least
a partial epithelial to mesenchymal transition-like transition®. This
trend remains consistent between gastruloids embedded in Matrigel
and gastruloids in suspension (Extended Data Fig. 6h,i).
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Fig. 2| Single-cell analysis of intestinal organoids and gastruloids.

a, Intestinal organoid expressing hGem-mVenus and hCdtl-mCherry (left)
stained for Lysozyme (Lys) and DLL1(middle). If not indicated differently.

b, MIPs of stills of an intestinal organoid expressing hCdtl-mCherry. Overlaid
are the tracks of back-tracked cells color coded over time. The dashed line
corresponds to the z projections shownin c. ¢, The z projections of the intestinal
organoid showninb of detection1, detection 2 and the fused data. Overlaid are
tracks from back-tracked cells showing temporal progression. d, Zoom-ins
ofintestinal crypts shown in a. Asterisks indicate triple positive cells for
hCdt1'/DlI1*/Lysozyme". e-g, Quantification of hCdt1, Lysozyme and DII1
intensities over time for individual cells at indicated final positions: hCdt1, Lys,
Dll1 positive crypt cells (e); hCdtl-positive villus cells (f) and hCdtl-positive
cryptcells (g). h, The z planes of gastruloids expressing Lck-GFP at three time
points (42 h pre-Wnt, 66 h peri-Wnt and 90 h post-Wnt). i, Individual cells
partly highlighted in h from gastruloids 42, 66 and 90 h after cell seeding.

Arrowsindicate cell protrusions. j, Representative 3D segmentation (Cellpose) of
Lck-GFP positive cells of gastruloid 42 h after cells seeding. k, Comparison of the
major/minor axis ratio 42, 66 and 90 h after seeding, showing the median (values
depicted in figure) and the first and third quartile. 1, MIPs of a gastruloid overlaid
with the tracked cells over time. m, Violin plots of cell velocity (um h™) grouped
by observation windows, showing the median (values depicted in figure) and

the first and third quartile. n, Cell tracks of individual cells of gastruloids imaged
for 5.5 hmounted at 42, 66 and 90 h postseeding centered at the origin of the
coordinate system, color coded for the temporal progression. o, Track length per
cell for the individual imaging windows of Lck-GFP gastruloids. Violin plots of cell
velocity (um h™) grouped by observation windows, showing the median (values
shownin figure) and the first and third quartile. p, The m.s.d. averaged over all
cells for the individual imaging windows of Lck-GFP chimera gastruloids. Scale
bars, 50 um, a-d,h,j,I; 20 pm (i).

Nature Methods


http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02213-w

In summary, we present a dual-view and dual-illumination
open-top light-sheet microscope suitable for long-term multiposi-
tion imaging of a wide range of samples at single-cell resolution and
with quality suitable for cell segmentation and tracking of cells in the
entire organoid. Sample specific and flexible mounting was achieved by
using a comparatively” simple thermoforming process to manufacture
sample holders of various shapes.

Discussion

Previously, different open-top light-sheet microscopes have been devel-
oped to combine the 3D imaging capabilities of light-sheet microscopy
with multiwell plates®>52%-31, Another solution proposed the use of
two opposing illumination objectives to minimize shadowing effects".
None of these approaches offers detection from two opposing sides.
Onthe contrary, multiview light-sheet microscopy was developed* **.
However, these approaches are limited in throughput due to a con-
straint geometry or require sample embedding, which is not always
suitable. Our system combines the advantages of an open-top geometry
with amultiview approach.

In the future, this microscope will be a promising platform for
further technical advancements, such aslaser ablation or optogenetic
stimulations. Integration of adaptive optics or imaging of optically
cleared specimens could further enhance image quality.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-024-02213-w.

References

1. Huisken, J., Swoger, J., Del Beng, F., Wittbrodt, J. & Stelzer, E. H. K.
Optical sectioning deep inside live embryos by selective plane
illumination microscopy. Science 305, 1007-1009 (2004).

2. Huisken, J. & Stainier, D. Y. R. Selective plane illumination
microscopy techniques in developmental biology. Development
136, 1963-1975 (2009).

3.  Weber, M. & Huisken, J. Light sheet microscopy for real-time
developmental biology. Curr. Opin. Genet Dev. 21, 566-572
(2011).

4. Tomer, R, Khairy, K., Amat, F. & Keller, P. J. Quantitative high-speed
imaging of entire developing embryos with simultaneous
multiview light-sheet microscopy. Nat. Methods 9, 755-763
(2012).

5. Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel, L.
Multiview light-sheet microscope for rapid in toto imaging.

Nat. Methods 9, 730-733 (2012).

6. Schmid, B. et al. High-speed panoramic light-sheet microscopy
reveals global endodermal cell dynamics. Nat. Commun. 4, 2207
(2013).

7. Swoger, J., Verveer, P., Greger, K., Huisken, J. & Stelzer, E. H. K.
Multi-view image fusion improves resolution in three-dimensional
microscopy. Opt. Express 15, 8029-8042 (2007).

8. Falk, H. J., Tomita, T., Monke, G., McDole, K. & Aulehla, A.
Imaging the onset of oscillatory signaling dynamics during
mouse embryo gastrulation. Development 149, dev200083
(2022).

9.  McGorty, R. et al. Open-top selective plane illumination
microscope for conventionally mounted specimens. Opt. Express
23, 16142-16153 (2015).

10. Maioli, V. et al. Time-lapse 3-D measurements of a glucose
biosensor in multicellular spheroids by light sheet fluorescence
microscopy in commercial 96-well plates. Sci. Rep. 6,

37777 (2016).

1. Strnad, P. et al. Inverted light-sheet microscope for imaging
mouse pre-implantation development. Nat. Methods 13,
139-142 (2016).

12. Hotte, K. et al. Ultra-thin fluorocarbon foils optimise multiscale
imaging of three-dimensional native and optically cleared
specimens. Sci. Rep. 9, 17292 (2019).

13. Dunsby, C. Optically sectioned imaging by oblique plane
microscopy. Opt. Express 16, 20306-20316 (2008).

14. Bouchard, M. B. et al. Swept confocally-aligned planar
excitation (SCAPE) microscopy for high-speed volumetric
imaging of behaving organisms. Nat. Photonics 9, 113-119
(2015).

15. Yang, B. et al. DaXi—high-resolution, large imaging volume and
multi-view single-objective light-sheet microscopy. Nat. Methods
19, 461-469 (2022).

16. de Medeiros, G. et al. Multiscale light-sheet organoid imaging
framework. Nat. Commun. 13, 4864 (2022).

17. Serra, D. et al. Self-organization and symmetry breaking in
intestinal organoid development. Nature 569, 66-72 (2019).

18. Abe, T. et al. Visualization of cell cycle in mouse embryos with
Fucci2 reporter directed by Rosa26 promoter. Development 140,
237-246 (2013).

19. Ferenc, J. et al. Mechanical oscillations orchestrate axial
patterning through Wnt activation in Hydra. Sci. Adv. 7,
eabj6897 (2021).

20. Oost, K. C. et al. Specific labeling of stem cell activity in human
colorectal organoids using an ASCL2-responsive minigene. Cell
Rep. 22,1600-1614 (2018).

21. Suppinger, S. et al. Multimodal characterization of murine
gastruloid development. Cell Stem Cell 30, 867-884.e11
(2023).

22. Beccari, L. et al. Multi-axial self-organization properties of
mouse embryonic stem cells into gastruloids. Nature 562,
272-276 (2018).

23. vanden Brink, S. C. & van Oudenaarden, A. 3D gastruloids: a
novel frontier in stem cell-based in vitro modeling of mammalian
gastrulation. Trends Cell Biol. 31, 747-759 (2021).

24. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own
model. Nat. Methods 19, 1634-1641(2022).

25. Mastodon v.1.0.0-beta-26. GitHub https://github.com/mastodon-
sc/mastodon (2022).

26. Hashmi, A. et al. Cell-state transitions and collective cell
movement generate an endoderm-like region in gastruloids. eLife
11, e59371(2022).

27. Beghin, A. et al. Automated high-speed 3D imaging of organoid
cultures with multi-scale phenotypic quantification. Nat. Methods
19, 881-892 (2022).

28. Yang, B. et al. Epi-illumination SPIM for volumetric imaging
with high spatial-temporal resolution. Nat. Methods 16,
501-504 (2019).

29. Millett-Sikking, A. et al. High NA single-objective light-sheet.
GitHub https://github.com/AndrewGYork/high_na_single_
objective_lightsheet (2019).

30. Sparks, H. et al. Dual-view oblique plane microscopy (dOPM).
Biomed. Opt. Express 11, 7204-7220 (2020).

31. Glaser, A. K. et al. Multi-immersion open-top light-sheet
microscope for high-throughput imaging of cleared tissues.
Nat. Commun. 10, 2781 (2019).

32. McDole, K. et al. In Toto imaging and reconstruction of
post-implantation mouse development at the single-cell level.
Cell 175, 859-876.e33 (2018).

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02213-w
https://github.com/mastodon-sc/mastodon
https://github.com/mastodon-sc/mastodon
https://github.com/AndrewGYork/high_na_single_objective_lightsheet
https://github.com/AndrewGYork/high_na_single_objective_lightsheet

Brief Communication

https://doi.org/10.1038/s41592-024-02213-w

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative
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Methods

Allanimal experiments are approved by the Basel Cantonal Veterinary
Authoritiesand conducted in accordance with the Guide for Care and
Use of Laboratory Animals.

Patient samples were collected with freely given, specific,
informed and unambiguous consent and ethics approval for orga-
noid derivation and data collection (Biobanks Review Committee,
UMC Utrecht, subbank numbers 12/093). Patient-derived organoids
identified by the HUB code P-19bT CRC organoids are cataloged at
www.huborganoids.nl and were requested at techtransfer@hubor-
ganoids.nl. Distribution to third (academic or commercial) parties
can be authorized by the Biobank Research Ethics Committee of the
University Medical Center Utrecht (TCBio) at request of Hubrecht
Organoid Technology (HUB).

Microscope

The presented light-sheet microscope consists of two illumination
paths, two detection paths and atransmitted light beam path. Forillu-
mination 60 mW 488 nm (LuxX 488-60), 80 mW 515 nm (LuxX 515-80),
50 mW 561 nm (OBIS 561-50) and a100 mW 638 nm (LuxX 638-100, all
lasers from Omicron-Laserage Laserprodukte) laser are used. Lasers
are combined in a laser combiner (LightHUB+, Omicron-Laserage
Laserprodukte) and coupled into a single-mode optical fiber with a
0.7 mm collimated beam output.

The collimated illumination light from the fiber is first reflected
by a mirror (BBO5SEO2, Thorlabs) mounted in a kinematic mount
(POLARIS-K05S2, Thorlabs) and passed through afilter wheel (FW212C,
Thorlabs) containing neutral density filters (NE510B, NE5S20B, NE530B,
Thorlabs) to further attenuate the intensity by a factor of 10, 100
or1000.

The laser beam is reflected by a system of four galvanometric
mirrors (6210H, Novanta Cambridge Technology) that are placed
in custom-made aluminum mounts. By a compound movement of
the four scanners, the beams can be translated and rotated on the
image plane (xy) to generate light-sheets by scanning as well as being
translated and rotated in yz plane for focus adjustment. After passing
throughascanlens made fromtwo achromaticlenses (47-718, Edmund
Optics), theillumination beam passes through a tube lens made from
two achromaticlenses (49-281and 49-283, Edmund Optics) followed
by a custom triplet lens (plano-concave, r = 41.67, 7980-0F, biconvex,
r=49.87, S-TIH4, plano-concave, r = 41.67, S-TIH53, Optimax) and a
10x air objective with an NA of 0.2 (T Plan EPISLWD 10x, Nikon) and a
glass window. The illumination beam reaches the sample at an angle
of 30° with the horizontal axis crossing an air glass and glass water
interfaces. The custom-designed correction triplet lens compensates
for chromatic and spherical aberrations caused by different mediain
thelight path to achieve diffraction limited resolution.

To switch between the two illumination beam paths, a D-shaped
pickoff mirror (PFD10-03-PO01, Thorlabs) placed at an angle of 45°
after the scan lens is used to reflect the beam either to the light path
ofillumination1or 2. Bothillumination paths contain acustom-made
retroreflector system that contains two prism mirrors (15-599, Edmund
Optics) mounted on a linear stage (UMR25, Newport) to adjust beam
collimation at the back focal plane of the illumination objective and
axial position of the illumination beam focus.

Onthedetectionside, the fluorescence signalis collected by each
ofthe two x16 waterimmersion objectives with aNA of 0.8 (CFI75 LWD
x16 W, Nikon) and a working distance of 3 mm, which oppose each
other. Thesignalis reflected by two mirrors to match the 200 mm focal
length of the tube lens (T12-LT-1X, Nikon) and passes through motorized
filter wheels (LEP filter wheel, Ludl) each equipped with the following
emission filters FFO1-515/LP-25, FF01-523/610-25, FF01-542/27-25 (all
from Semrock) and ZET405/488/561/640mv2 (Chroma Technologies).
The fluorescenceimages are acquired using ORCA-Fusion sCMOS cam-
eras (C14440-20UP, Hamamatsu). Each camera is mounted together

with the filter wheel on a custom aluminum mount that is placed on a
manually adjustable liner stage (M-UMRS.25, Newport) to bring the
two views in focus. The ORCA-Fusion camera contains a sensor with
2,304 x 2,304 pixels. With this combination of detection objective and
camera, we achieve a pixel spacing of 0.406 pm and a field of view of
935 x 935 pm. For this camera and objective configuration, the reso-
lution is limited by pixel sampling (FWHM in Matrigel based on bead
measurementsis 0.8 pm lateraland 2.9 pm axial; Extended DataFig. 3).

In one of the detection beam paths, a light-emitting diode light
(LED770L, Thorlabs) isreflected by a750 nm short-pass dichroic mirror
(FF750-SDi02, Semrock) to the objective that serves as acondenser to
acquire transmitted lightimages, while the emitted fluorescence light
still passes through the dichroic mirror to the camera.

Toacquire onesample plane, both cameras must be positioned to
have a common focal plane and both light-sheets must be aligned to
beinthefocal plane of the cameras. The alignment can be done by the
following procedure: first, the illuminationbeams are moved with the
galvanometric mirror tobeinthe focal plane of one camera. Then, the
second camerais moved with micrometer screws to be aligned with the
illumination beams and focal plane of the first camera.

The light-sheet is generated by scanning of the Gaussian beam
withinthe focal plane. To acquire animage plane, the sampleis illumi-
nated within the camera exposure time first from one side and then
fromthe other side. Two cameras acquire the two views simultaneously
and the data coming from the two views can be fused after the acquisi-
tion to one stack. To generate a 3D stack, the sample is moved and the
focal planes and light-sheets are kept in a fixed position.

The microscope was designed using Solidworks 2018 SP 1.0.

Chamber fabrication

Chambers are produced from FEP using a vacuum thermoforming pro-
cess. FEP foil (Adtech Polymer Engineering) with a thickness of 127 pm
iscutinquadratic sheets of approximately 15 x 15 cm. A sheet of foil is
then clamped inside a vacuum forming machine (Jintai JT-18, Yuyao
Jintai Machine Factory), where the foil is heated up for 8 min. After the
foil has heated up, custom-made aluminum pieces are placed below
the foil and serve as molds. Under vacuum, the foil is formed around
the molds for 30 s (Extended Data Fig. 4a,b). Chambers are then cut
out manually from the thermoformed FEP foil and placed inside the
sample holder (Extended Data Fig. 4c).

The chambersfitinto the 6 mm spaceinbetween the two detection
objectives and allow access for pipetting from the top and meeting the
requirements of different biological samples. For specimens embed-
dedinamatrix such as Matrigel, we developed chambers with astraight
bottom (Fig. 1f) with a small width to minimize degradation of image
quality caused by Matrigel. For samples grown in suspension such as
Hydra or gastruloids, we designed chambers with pocket sizes adapted
to the size of the specimens. Since the sample holder and the molds
for the imaging chambers can be produced easily with 3D printing or
aluminum milling, a wide range of different geometries are possible,
giving maximal flexibility.

Chamber mounting

To mount the chambers into the microscope, individual thermofor-
med chambers are fixed in a 3D printed sample holder that has room
for four chambers. This holder is placed onto axyz motorized sample
positioning stage assembled by combining three piezo stages (2x CLS
3232-S, 1x CLS 3282-S, SmarAct). This system allows a maximal travel
distance across the chambers of roughly 50 mm (long axis). Since
water immersion objectives are used for detection, the chambers are
lowered into awater reservoir with the objectivesimmersed below the
water surface. The water reservoir and the sample stage are covered by
alid to minimize water evaporation. The sample handling area of the
microscope is inside an incubator box to ensure an environmentally
controlled areafortemperature (CUBE2, Life Imaging Services) and CO,
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(LS2Live gas controller, Viventis Microscopy). To ensure optimal tem-
perature and CO, concentration, both values are measured in the
sample area. For temperature, a pt100 probe (TF101P-1m with GMH
3710, Greisinger) is placed inside the immersion water about 10 mm
from the sample and for CO, concentration a sensor (GC-0006,
CO2Meter) is used to measure CO, concentration in the sample area.

Microscope control software and electronics

All parts of the microscope are controlled by a microscope control
software (Viventis Microscopy). The controller and sensor module
of the positioning system (MCS2-MOD, MCS2-S, SmarAct) and the
driver of the galvanometric scanners (673, Novanta Cambridge Tech-
nology) are powered and connected according to the manufacturer’s
instructions in a custom electronics enclosure. Digital and analog
signals to control lasers and galvanometric scanners are generated
by an field-programmable gate array-based real-time controller
(Viventis Microscopy).

Microscope used for benchmarking experiments

For the comparison of the microscope presented in this work, a micro-
scope system as described in refs. 16,17, with the following configura-
tion, is used: for excitation the light-sheet microscope is equipped
witha488 nm (LuxXPlus 488-60),a 561 nm (OBIS 561-50) and a 630 nm
(LuxXPlus 630-150) laser. For illumination, two x10 water immersion
objectives withan NA of 0.3 (CFI Plan Fluor 10XW, Nikon) are installed.
The light-sheet is generated by scanning the laser beam with a galva-
nometric scanner system and has a thicknesses (FWHM) of approxi-
mately 2.2 um. A x251.1 NA objective (CFI75 Apo 25XW; Nikon) is used
for detection. Theimages are acquired by an sCMOS camera (Zyla4.1,
Andor). Before the camera, afilter wheel is placed offering the follow-
ing filters: 488 LP Edge Basic Longpass Filter, F76-490; 561 LP Edge
Basic Longpass Filter, F76-561 and HC Dualband Emitter R 488/568,
F72-EY2, Semrock, AHF.

Image processing

For fusion of the data obtained from the two detection objectives,
the stacks coming from the two detection objectives are registered
to perfectly overlap by using the open-source Pythonimaging library
DIPY. Arigid-body transformation can be used to compensate for small
mechanical misalignments between the two detection objectives.

Second, to fuse the data coming from the two detection objec-
tives, the optimal z plane is identified to switch from one view to the
other to ensure the highest possible image quality in the fused image
stack. Therefore, for bothimage stacks animage quality score s calcu-
lated plane by plane based on the Shannon entropy of the normalized
discrete cosine transform as discussed in ref. 33. The metric allows to
set the switching z plane to that point, where the opposing detection
objective shows the higher image quality.

The stacks are then fused using a sigmoidal function centered at
the switching plane and aconstantintensity offsetis subtracted to com-
pensate for the background of the cameras. The code for data fusion
is available in the GitHub repository: https://github.com/fmi-basel/
gliberal-lightsheet-2023.

Image data are visualized using ImageJ v.2.9.0 and Paraview
v.5.10.1.

Light-sheet characterization

To evaluate the properties of the light-sheet, images with the static
beams were acquired. The images of the static beams were rotated in
Fiji suchthat the orientation of the static beam aligns with the horizon-
tal axis. Subsequently, line profiles were generated and the obtained
intensity profile was fitted with a Gaussian function:

—(X—u)z

fx)=a+bxe

with abeing a constant offset, b ascaling parameter,  the mean of the
functionand othe standard deviation. The FWHM was calculated with
FWHM =2 x+/2xIn(2) x 0.

With this approach, the beam width w, and Rayleigh length z,
were determined.

The effective NA of the illumination objectives was calculated
using the beam width with

ni

NAefr = Twg

where nis the refractive index and A the emission wavelength.

PSF quantification

The point spread function measurement was performed in 50%
Matrigel diluting fluorescent beads (Invitrogen TetraSpeck Micro-
spheres, 0.1 umT7279) ina concentration of 1:1,000. Stacks in different
positions within the sample chamber were acquired using anisotropic
pixel spacing (0.406 x 0.406 x 0.406 pum). For illumination, a488 nm
laser was used and emission was collected in the green spectrum. The
FWHM in the xy and xz plane was determined by fitting the intensity
distributioninthe corresponding planes with the Gaussian function as
described above. The average FWHM lateral and axial was determined
by averaging the quantifications of several beads in different depths
inside the sample chamber.

Single-cell tracking

Single cells of the intestinal organoid and the gastruloids were
tracked manually by making use of the Fiji Plugin Mastodon v.1.0.0-
beta 26 (ref. 25). For the intestinal organoids, we used the numerical
feature extraction of Mastodon to compute the mean intensity of
all the spots marking the position of the cells. The mean intensities
together with the spot positions for each track was exported as a.csv
datatable.

For the tracked cells of the gastruloid, we exported only the spot
positions for eachtrack asa.csv datatable.

The analysis of the cell tracks was done by custom-written Python
scriptsrelying on functions from open-source Python libraries numpy,
pandas, seaborn and matplotlib.

The m.s.d.;, for the trajectories r; (¢t) of the gastruloid cells
labeled with index i was calculated as follows™*:

N
ms.dap (6= 3 2 (170 = 10’
i=1

where Nis the number of cells and r;(0) the initial position of the cell.

Single-cell segmentation

Single-cell segmentation of the gastruloids was performed with Cell-
pose 2.0 v.2.2 (ref. 24). To train the model, a stack from a gastruloid
42, 66 and 90 h after cell seeding was used. Each plane of the stacks
was manually annotated, and all three stacks were used to train a
model for cell segmentation. To generate the masks in 3D we used the
two-dimensional prediction forimage plane, which were then stitched
together based on the overlap of the masks.

To extract features from the 3D segmentation we relied on the
3D feature extraction from Python library scikit-image using the
version v.0.20.0.dev0. The extracted features were analyzed with
custom-written Python scripts based on the open-source libraries
numpy, pandas, seaborn and matplotlib.

Sample preparation

All culturing methods and sample preparation steps are described in
detail in the Supplementary Methods and Supplementary Tables 2
and 3.
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Statistics and reproducibility
For all experiments, no statistical method was used to predetermine
sample size. No data were excluded from the analyses, except for the
analysis of cell shapes based on segmentations. False segmentations
were excluded by the cell volume and values for major and minor axis.
The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assessment.
In Fig. 1g, the experiment was repeated twice acquiring 10 and
12 organoids in parallel. In Fig. 1i the experiment was repeated twice
acquiring five and six Hydra in each acquisition. In Fig. 1k the experi-
mentwas repeated twice imaging eight and nine organoids in parallel.
InFig.2en=5,Fig.2fn=3andFig. 2g n = 8 cells were investigated.
In Fig. 2k, measurements were performed over 33 time points on the
3D volumes of three gastruloids per time window in three different
experiments (in total 27 gastruloids). Summing up individual time
points, a total of 14,356 datapoints (42 h), 19,149 datapoints (66 h)
and 21,495 datapoints (90 h) were analyzed. In Fig. 2m, the following
numbers of datapoints (from nine individual gastruloids) were tracked
perobservationwindow:n=1,983 (42 h),n=1,792(66 h)andn=1,728
(90 h).InFig.2n, tracks were generated for 24 cells over 32 time points
(42 h),19 cells over 33 time points (66 h) and 18 cells over 32 time points
(90 h). InFig. 20, the track length was measured for 62 cells (42 h),
56 cells (66 h) and 42 cells (90 h). In Fig. 2p, m.s.d. measurements
were performed over 32 time points for 62 cells (42 h), 56 cells (66 h)
and 42 cells (90 h).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

A representative subset of the imaging data for each model system
presented in the figures and videos is available on figshare. The full
datasets are available on request. Source data are provided with this
paper.

Code availability

Codes used to generate the findings of this study are available on the
publicly available GitHub repository https://github.com/fmi-basel/
gliberal-lightsheet-2023.
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Extended Data Fig. 2| Schemes and comparison of key parameters among

state-of-artlight-sheet microscopy methods. a) Scheme of the open top multi-

sample dual-view light-sheet microscopy (presented in this work). b) Scheme of
single objective light-sheet microscopy. ¢) Scheme of single objective multi-
view light-sheet microscopy. d) Scheme of open top light-sheet microscopy.

e) Scheme of single objective light-sheet microscopy in micro cavities. f) Scheme
of open top dual-illumination single detection light-sheet microscopy. g) Scheme
of multi-view light-sheet microscopy. h) Comparison of key aspects of different
state-of-art light-sheet microscopy methods. i) Comparison of technical
specifications of state-of-art light-sheet microscopy methods.
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Extended Data Fig. 3| Characterization of the light-sheet microscope.
a) Image of the static beams. Scale bar 50 pm. b) Image of the staticbeams
rotated in Fiji such that one beam matches the horizontal axis. Scale bar 50 pm.
c) Onessingle static beam rotated in Fiji. The dashed lines mark the positions of
theline profiles shownin d). Scale bar 50 pm. d) Quantification of the width of the
static beam. The intensity distribution was fitted with a Gaussian function and

Oum +100 um +200 um

the FWHM and the effective illumination NA was extracted (Methods). e) Imaged
PSFsin XY and XZ sectionsin 5 different depths inside a FEP chamber filled with
50% Matrigel. The O pm position marks the center of the chamber (Methods).

f) Quantification of the XY sections of the PSF shown in e) and extraction of their
FWHM. g) Quantification of the XZ sections of the PSF shown in e) and extraction
of their FWHM.
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Extended Data Fig. 4 | Production of the FEP chambers. a) Four aluminum molds placed in the thermoforming machine. The photograph shows the foil after being
successfully thermoformed around the molds. b) FEP foil with molds taken out of the machine after processing. ¢) Sample holder with four different FEP chambers
fixed inside.
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Extended Data Fig. 5| Comparison of the image quality using different light-
sheet microscopes. a) Cross section in XZ plane of the intestinal organoid shown
inFig.1g using Detection 1, Detection 2 and the fused data from both objectives.
Scale bar 50 um. b) Comparison of the image quality using the Shannon Entropy
of the Discrete Cosine Transform (DCT) as metric for Detection 1, Detection

2 and the fused data. The DCT is calculated for each z section of the image

stack corresponding to a. ¢) Cross section in XZ plane of ahuman colon cancer
organoid using Detection 1, Detection 2 and the fused data from both objectives.
The experiment was repeated two times with 7 and 8 organoids imaged. Scale
bar 50 um. d) Comparison of the image quality using the Shannon Entropy of
the DCT as metric for Detection 1, Detection 2 and the fused data. The DCT is
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calculated for each zsection of the image stack corresponding to c. €) Maximum
intensity projection (MIP) along the Z axis and a cross section in the XZ plane of
agastruloid stained with the nuclear marker DRAQS imaged with the light-sheet
microscope published in”. In total n = 9 gastruloids were imaged. Scale bar

50 pm. f) Image quality plot using Shannon Entropy of the DCT along individual z
sections of the image stack corresponding to e. g) Maximum intensity projection
(MIP) along the Z axis and a cross section in the XZ plane of a gastruloid stained
with the nuclear marker DRAQS imaged with the light-sheet microscope
presented in this work. In total n = 7 gastruloids were imaged. Scale bar 50 um.

h) Image quality plot using Shannon Entropy of the DCT along individual z sections
of theimage stack correspondingtog.
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Extended Data Fig. 6 | Showcase acquisitions, an example ofimage
registration and results of the single cell analysis of gastruloids in
suspension. a) MIPs along Z axis showing three time points from time-lapse
acquisition of human colon cancer organoids expressing STAR-sTom-NLS and
H2B-mNeon. The experiment was repeated two times with 7 and 8 organoids
imaged. Scale bar 50 pm. b) MIPs of a parotid salivary gland organoid expressing
H2B-mCherry at three different time points of a time lapse acquisition for
around 3 days. The experiment was repeated two times with 6 and 7 organoids
imaged. Scale bar 50 pm. ¢) MIPs of a gastruloid expressing H2B-iRFP at three
different time points of a time lapse acquisition over 20 hours shown together
with transmitted light. The experiment was repeated two times with12and 13
samplesimaged. Scale bar 50 um. d) Example of the registration of an organoid,
that was additionally fixed and stained after live imaging. Left image shows the
overlay of the MIPs before registration and the rightimage shows the results
after registration. Magenta shows the MIP of the last acquired timepoint and
cyan shows the MIP after fixation and staining. Scale bar 50 pm. e) Quantification
of hCdtlintensity over time for cells that are triple positive (hCdt1, DIl1 and

b Parotid salivary gland organoid
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Lysozyme) and are located in the crypt at the last time point. Each color
represents asingle cell ((n = 4).f) Quantification of hCdtl intensity over time

for hCdtl-positive cells, that are located in the villus at the last time point. Each
color represents asingle cell (n = 7). g) Quantification of hCdtlintensity over
time for hCdtl-positive cells, that are located in the crypt at the last time point.
Each color represents asingle cell (n = 9). h) Comparison of the ratio of major
and minor axis for the three different time windows investigated in gastruloids
imaged in suspension. Measurements were performed over 33 timepoints on the
3D volumes of 3 gastruloids per imaging window (42 h, 66 h or 90 h). Summing
up individual timepoints, a total of 3753 datapoints (42 h), 3340 datapoints (66 h)
and 8861 datapoints (90 h) were analyzed. Median (values in figure), firstand
third quartile are shown. i) Violin plot of the velocity of cellsimaged at 3 different
windows of gastruloid development showing the median (valuesin figure)

and the first and third quartile. The following numbers of datapoints (from 3
individual gastruloids) were tracked per observation window: n = 622 (42 h),

n =562 (66 h),n=539 (90 h). Gastruloids were imaged in suspension.
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Antibodies

Antibodies used The following primary antibodies were used in this study: Sheep anti DII1 (Catalog no. AF3970, RnD Systems) and rabbit anti
Lysozyme (Catalog no. AO099, Dako). Donkey anti rabbit Fab fragments conjugated to Alexa 647 and donkey anti goat Fab fragments
conjugated to Alexa 488 fluorophores were used as secondary agents (Catalog no. 705-607-003 and 711-547-003, Jackson Immuno
Research).
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Validation Primary antibodies were validated in a previous study: Serra, D., Mayr, U., Boni, A. et al. Self-organization and symmetry breaking in
intestinal organoid development. Nature 569, 66—72 (2019). https://doi.org/10.1038/s41586-019-1146-y.
Fab fragments were validated using non primary stained samples (negaive control) and single stained samples (only one staining per
sample). Further, the resulting stainigs were compared to controls using conventional secondary antibodies.

Eukaryotic cell lines
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Cell line source(s) Human: Female patient-derived organoids identified by the HUB code P-19bT CRC organoids are cataloged at
www.huborganoids.nl. Organoids were generated using a transposase-based integration method (movieSTAR: Tol2
insulator8xSTAR-min.pLGR5-sTomato-NLS-pA-PGK-H2BmNeonGreen-2A-Puro).

Mouse: both male and female mice were used to generate organoids. For "FUCCI experiments" organoids were generated
from B6/N x R26 Fucci2 (Tg/+) intestines. Organoids were subsequently infected with pGK Dest H2B-miRFP670 (Catalog no.
90237, Addgene. For the remaining organoid based experiments heterzygotic R26-mG/H2B-mCherry mice were used. These
mice originated from crosses of R26-mG (C57BL/6J, Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. and Luo, L. (2007), A
global double-fluorescent Cre reporter mouse. Genesis, 45: 593-605. https://doi.org/10.1002/dvg.20335) and R26-H2B-
mCherry (Abe, T., Kiyonari, H., Shioi, G., Inoue, K.-I., Nakao, K., Aizawa, S., and Fujimori, T. (2011). Establishment of
conditional reporter mouse lines at ROSA26 locus for live cell imaging. Genesis 49, 579-590).

mESC lines for gastruloid culture: E14 (male) and CGR8 (male) cell lines are of 129 background and were provided by the
laboratory of Matthias Lutolf (Institute of Human Biology, Basel).

Authentication Cell lines used in this study were not authenticated.

Mycoplasma contamination Cell and organoid lines were routinely tested for mycoplasma contamination. No mycoplasma contaminated material was
used in this study.

Commonly misidentified lines  no commonly misidentified cell lines were used for this study.
(See ICLAC register)
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
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Laboratory animals Mouse:
For mG/H2B-mCherry organoids heterzygotic R26-mG/H2B-mCherry mice were used. These mice originated from crosses of R26-mG
(C57BL/6J, Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. and Luo, L. (2007), A global double-fluorescent Cre reporter mouse.
Genesis, 45: 593-605. https://doi.org/10.1002/dvg.20335) and R26-H2B-mCherry (Abe, T., Kiyonari, H., Shioi, G., Inoue, K.-I., Nakao,
K., Aizawa, S., and Fujimori, T. (2011). Establishment of conditional reporter mouse lines at ROSA26 locus for live cell imaging.
Genesis 49, 579-590). Regarding husbandry, all mice have a 12/12 hours day/night cycle. Medium temperature is 22°C and relative
humidity is at 50%. Male and female mice with an age between 5 and 7 weeks were used.
In all other cases already established organoid lines were used.

Hydra:

This study used regenerating Hydra vulgaris (ecto[B-act::RFP]/endo[B-act::GFP] “Reverse Watermelon”). Tissue pieces of adult Hydra
were used to monitor Hydra regeneration and the formation of new intact individuals. Budding stage Hydra (more than two weeks
since detachment) were used.

Wild animals This study did not involve wild animals.




Reporting on sex Sex based information was not collected in this study. Hydra used in this study were propagated asexually.
Field-collected samples  This study did not involve samples collected from the field.

Ethics oversight Approved by Basel Cantonal Veterinary Authorities and conducted in accordance with the Guide for Care and Use of Laboratory
Animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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