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Multiscale biochemical mapping of the 
brain through deep-learning-enhanced 
high-throughput mass spectrometry

Yuxuan Richard Xie    1,2, Daniel C. Castro    2,3, Stanislav S. Rubakhin    2,4, 
Timothy J. Trinklein2,4, Jonathan V. Sweedler    1,2,3,4,5,6   & Fan Lam    1,2,5,6,7 

Spatial omics technologies can reveal the molecular intricacy of the brain. 
While mass spectrometry imaging (MSI) provides spatial localization of 
compounds, comprehensive biochemical profiling at a brain-wide scale in 
three dimensions by MSI with single-cell resolution has not been achieved. 
We demonstrate complementary brain-wide and single-cell biochemical 
mapping using MEISTER, an integrative experimental and computational 
mass spectrometry (MS) framework. Our framework integrates a 
deep-learning-based reconstruction that accelerates high-mass-resolving 
MS by 15-fold, multimodal registration creating three-dimensional (3D) 
molecular distributions and a data integration method fitting cell-specific 
mass spectra to 3D datasets. We imaged detailed lipid profiles in tissues 
with millions of pixels and in large single-cell populations acquired from 
the rat brain. We identified region-specific lipid contents and cell-specific 
localizations of lipids depending on both cell subpopulations and 
anatomical origins of the cells. Our workflow establishes a blueprint 
for future development of multiscale technologies for biochemical 
characterization of the brain.

Genomic and transcriptomic tools have transformed neuroscience 
by allowing us to visualize, untangle and understand the spatiotem-
poral expression patterns of thousands of genes in the brain, as well 
as how they are related to various functions and diseases1–3. Beyond 
gene expression profiles, the biochemical compositions and dynam-
ics of metabolites, lipids, peptides and proteins have essential roles in 
many neurobiological processes4,5, and they have been implicated in 
neurodevelopment6, learning, memory7, aging8,9 and a myriad of neu-
rological or neurodegenerative diseases10. Approaches to characterize 
these molecular compositions offer invaluable insight complementary 
to transcriptomics. However, comprehensive biochemical profiling of 

both tissue and single cells at a whole-organ level remains challenging. 
Recent technical advances in single-cell measurements using isolated 
populations of individual cells and mass spectrometry (MS) have great 
potential to solve these bottlenecks, prompting single-cell metabo-
lomics to be listed as one of the technologies to watch in 202311. MS is 
recognized as a key method of choice for metabolomic and proteomic 
measurements due to its unique capability of untargeted, sensitive and 
specific detection of numerous biomolecules in both tissues12,13 and 
single cells14–17. Spatial organizations of biomolecules in the brain have 
been mapped at cellular and subcellular resolution using advanced MS 
imaging (MSI) methods18–21. Nevertheless, profiling of small metabolites 

Received: 5 June 2023

Accepted: 8 January 2024

Published online: 16 February 2024

 Check for updates

1Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA. 2Beckman Institute for Advanced Science and Technology, 
University of Illinois Urbana-Champaign, Urbana, IL, USA. 3Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 
Urbana, IL, USA. 4Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA. 5Carle-Illinois College of Medicine, University of 
Illinois Urbana-Champaign, Urbana, IL, USA. 6Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA. 
7Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.  e-mail: jsweedle@illinois.edu; 
fanlam1@illinois.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02171-3
http://orcid.org/0000-0003-1664-9114
http://orcid.org/0000-0002-9127-6242
http://orcid.org/0000-0003-0437-1493
http://orcid.org/0000-0003-3107-9922
http://orcid.org/0000-0002-4124-0663
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02171-3&domain=pdf
mailto:jsweedle@illinois.edu
mailto:fanlam1@illinois.edu


Nature Methods | Volume 21 | March 2024 | 521–530 522

Article https://doi.org/10.1038/s41592-024-02171-3

a deep-learning model to reconstruct high-resolution MS data from 
low-mass resolving measurements (Fig. 1b). In short, we model the 
underlying high-dimensional transient signals S as points on a 
low-dimensional nonlinear manifold embedded in the high-dimensional 
space. These low-dimensional embeddings Z can be effectively learned 
by training a deep autoencoder (DAE) network, using experimental 
and/or simulated full transients with the desired mass resolution. The 
presence of low-dimensional representations implies that 
high-mass-resolution spectra can be reconstructed from substantially 
shorter transients than are conventionally acquired. We realized this 
by training a ‘regressor’ network jointly with the DAE to estimate the 
low-dimensional embeddings Z from only short transients ̂SSS, which 
were subsequently decoded (by the same decoder from the DAE) into 
high-mass-resolution data (Extended Data Fig. 1a and Methods). For 
3D MSI, the networks were trained on only a small number of tissue 
sections and applied to reconstruct data for the remaining sections 
consisting of millions of pixels (Extended Data Fig. 1b and Methods). 
For SCMS, a small subset of cells were used for training and applied to 
large cell populations (Extended Data Fig. 1c), allowing much higher 
data collection throughput. Particularly, an MSI dataset containing 
more than 1.5 million pixels required only 20 h of acquisition time, 
which would have taken about 300 h using the conventional acquisition 
approach. This allowed us to image 16-µm-thick serial sections from 
rat brains that covered a range of ~10 mm (along z) with a raster width 
of 50 µm used in MSI. In conjunction with the MSI, 13,566 single cells 
isolated from five brain regions (the neocortex, hippocampus, thala-
mus, striatum and corpus callosum) were probed using an image-guided 
MALDI SCMS23 approach (Fig. 1a). Detailed experimental parameters 
for MSI and SCMS can be found in Methods.

To enable biochemical characterization of the brain and knowledge 
discovery from such unprecedented data, we developed and integrated 
several data-driven methods for analyzing the high-dimensional, mul-
tiscale 3D MSI and SCMS data (Fig. 1c). First, the MSI data were mapped 
to MRI and the Waxholm Space atlas through a customized nonlinear 
image registration procedure (Fig. 1c, left), which enabled a coherent 
volumetric MSI reconstruction from the sections imaged. Through 
registration, we extracted the mass spectra of 11 major brain structures 
across the 3D volume and identified spatially differential biochemical 
profiles. Next, we classified the brain structures on the basis of their 
lipids for tissue typing, which identified enriched lipid species in each 
region or tissue type. To connect the tissue MSI and SCMS across dif-
ferent scales, we built cell-type-specific ‘chemical dictionaries’ and 
introduced a joint union-of-subspaces (UoSS) fitting technique that 
resolved cell-specific contributions to the spatio-chemical contents 
at the brain-wide tissue level (Fig. 1c, right).

Validation of the deep-learning-based MSI reconstruction
Using a carefully designed, biochemically relevant simulated MSI data-
set that contained rich chemical details and brain-mimicking spatial 
variations, we trained and validated the proposed deep-learning-based 
method for reconstructing high-mass-resolution mass spectra and 
ion images from noisy short transients (Extended Data Fig. 2a,b and 
Methods). Our method showed near-ground-truth-level fidelity with 
a gain of more than 10 dB in signal-to-noise ratios (SNRs) over the noisy 
reference using only 5% data. We compared the performance of our 
model for spectral and spatial feature recovery in the simulated dataset 
to that of the standard FT reconstruction and a previously described 
linear subspace approach24,25 (Extended Data Fig. 2c,d). Compared to 
the standard FT reconstruction from full transients, our method also 
yielded a higher SNR, owing to the denoising effects of the learned 
low-dimensional representation.

To evaluate our method on experimental data, we trained the 
model using high-resolution MSI data acquired from rat brain tissue sec-
tions using an FT-ICR mass spectrometer. We then validated the model 
using reference full-transient data acquired on different days from 

and lipids in large brain regions in three dimensions at single-cell resolu-
tion with simultaneous brain-wide coverage and chemical detail (impor-
tant for untargeted and unbiased molecular characterization) has not 
yet been achieved. We provide several innovations to existing workflows 
that enable multiscale biochemical profiling at a scale not previously 
attempted. First, as existing high-resolution MSI is throughput-limited, 
we integrate deep-learning approaches to enhance high-mass-resolving 
Fourier-transform MS (FTMS) acquisition by tenfold, enabling imaging 
of many tissue sections with brain-wide coverage and reconstruction 
of three-dimensional (3D) molecular distributions or atlases. Second, 
high-throughput single-cell MS (SCMS) allows populations of indi-
vidual cells to be characterized22; however, isolated cells lack spatial 
context of tissue. We integrate both workflows (high-throughput tissue 
MSI and SCMS) to map the chemical profiles of single cells onto tissue 
sections, allowing multiscale characterization of spatial–biochemical 
organization of the brain.

More specifically, we introduce MEISTER, a framework of MS for 
integrative single-cell and tissue analysis with deep-learning-based 
reconstruction that integrates high-throughput MS platforms with 
several technical innovations: (1) a deep-learning-based signal recon-
struction approach capable of producing high-resolution mass spectra 
with greatly enhanced throughput for both tissue MSI and SCMS; (2) a 
multimodal image registration technique that produces coherent 3D 
reconstruction of MSI data from many tissue sections and affords quan-
titative analysis of regional chemical profiles; and (3) a computational 
approach that exploits dictionary learning concepts to create and map 
cell-specific chemical profiles to tissue imaging data for multiscale 
integration. We validated MEISTER using computational simulations, 
as well as experimental tissue MSI and SCMS data. With MEISTER, we 
achieved 3D mapping of the rat brain with an unprecedented combina-
tion of large volume coverage, high spatial resolution (50-μm lateral 
and 16-μm sections) over millions of pixels and high chemical content 
(>1,000 lipid features). We also profiled 13,566 single cells that were 
isolated from five rat brain regions and built cell-type-specific chemical 
dictionaries, which were then mapped to the tissue images, to obtain 
spatially resolved cell type distributions across the brain. To further 
demonstrate the capabilities of our framework, we studied how lipids 
associate with the brain’s anatomical structures. We extracted lipid 
profiles from 11 brain regions by registering serial MSI sections to a 
rat magnetic resonance imaging (MRI) brain atlas using a data-driven 
nonlinear image registration method that generated volumetric recon-
struction of thousands of lipid features over a large brain volume while 
identifying region-specific lipid contents. With the single cell-to-tissue 
data integration approach, we identified heterogeneous lipid distri-
butions and differential lipid features at both tissue and single-cell 
levels, discovering relationships of single-cell biochemical profiles 
to region-specific spatial distributions of lipids. We demonstrated 
the potential of MEISTER as a general multiscale tissue biochemical 
characterization approach by also applying it to another tissue type, 
rat pancreas, and to molecules beyond lipids, for example, peptides.

Results
A deep-learning-enabled, high-throughput multiscale MSI 
framework
MEISTER integrates high-throughput MS experiments, a deep- 
learning-based signal reconstruction method and data-driven 
high-dimensional MSI analysis to enable brain-wide, multiscale profil-
ing of brain biochemistry. To resolve detailed chemical contents, we 
collected both high-resolution tissue MSI and SCMS data, leveraging 
a high-throughput experimental platform using matrix-assisted laser 
desorption/ionization (MALDI) Fourier-transform ion cyclotron reso-
nance (FT-ICR) MS. Achieving brain-wide coverage and cell-specific 
profiling requires probing a large number of tissue sections and cells 
(Fig. 1a), which is time-prohibitive on high-mass-resolution platforms 
such as FT-ICR (Methods, ‘Signal modeling’). To this end, we developed 
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tissue sections not seen during training. For the noise-contaminated 
reference (transient duration of 0.731 s, 1 million temporal points), 
images from peaks that were indicated in the single-pixel mass spec-
tra showed ions with distinct spatial distributions, whereas the sig-
nals were unresolved in the reduced data with short transients (first 
64,000 temporal points) due to poor mass resolution (Supplementary 
Fig. 1a,b). The deep-learning-based reconstruction from the reduced 
data successfully resolved nearby mass features, providing enhanced 
signal strength over the subspace-based reconstruction also from 
the same reduced data (Fig. 2a,b and Supplementary Fig. 1b). Our 
method yielded quantitatively better spectral and spatial fidelity with 
respect to the reference than reduced data and subspace reconstruc-
tion. This was further supported by subsequent principal component 
analysis (PCA) and spatial segmentation through k-means clustering 
on the reconstructed spectral features (Extended Data Fig. 2e–g and 
Supplementary Fig. 2), with our method producing less noisy spatial 
parcellation. Our evaluation suggests that the model can learn robust 
nonlinear low-dimensional features from complex and noisy imaging 
data, while accurately predicting those features from short transients, 
even for the highly heterogeneous brain tissue.

Furthermore, we examined the model performance for 
reconstructing SCMS data. Specifically, we trained a model using 
high-resolution SCMS data from approximately 4,000 cells, and we 
tested it on 1,000 independent cells (Methods). We found high corre-
lation scores (Pearson r > 0.95) between full-resolution reference and 
reconstructed single-cell spectra. Consistent molecular profiles across 
individual cells (Extended Data Fig. 3a) resulted in nearly identical out-
comes by uniform manifold approximation and projection (UMAP) and 
k-means clustering (Extended Data Fig. 3b). Even with larger chemical 
heterogeneity, our model was able to effectively recover the variations 
within and across cell populations (Extended Data Fig. 3c).

High-resolution 3D MSI with large volume coverage
High-mass-resolving MSI with 3D tissue coverage has been shown26,27. 
However, the combination of mass and spatial resolution and organ 
coverage for volumetric imaging with FTMS has been limited, due to 
the inherent throughput constraint; for example, resolution may be 
sacrificed (pixel size of >50 μm) when imaging multiple sections for 3D 
imaging or the number of sections may be reduced to maintain a small 
pixel size. The higher throughput afforded by MEISTER allowed us to 
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Fig. 1 | The MEISTER framework for multiscale biochemical profiling  
using high-mass-resolution MS enhanced by computational methods.  
a, Obtained from surgically extracted brain, serial tissue sections are imaged for 
3D MSI using a fast acquisition strategy, and single-cell populations prepared by 
tissue dissociation are probed with high-throughput image-guided MS.  
b, A deep-learning model reconstructs high-mass-resolving and high-SNR MS 
data from the low-mass-resolution measurements acquired with fast acquisitions 
by exploiting a low-dimensional manifold structure for high-dimensional MS 

data, producing large datasets with millions of pixels, which was previously 
time-prohibitive with the conventional acquisition. LR, low resolution; HR, high 
resolution. c, Our multifaceted data analysis pipeline uses various data-driven 
methods for multimodal image registration to align MSI with 3D anatomical MRI 
for volumetric reconstruction, identifying differential lipid distributions, tissue 
typing using MS data and integrating MSI and SCMS data for joint analysis and 
resolving cell-type-specific contributions at the tissue level across the brain.
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spatially profile metabolites and lipids for many serial tissue sections 
that cover a large volume of the brain. To demonstrate this capabil-
ity, we imaged 37 coronal and 39 sagittal sections of the rat brain, and 
we used data with the targeted mass resolution from a few tissue sec-
tions for training (Methods). We were able to efficiently reconstruct 
high-mass-resolution, high-SNR spectra from raw data acquired with 
short transient duration (that is, <10% collection time per transient) 
for all remaining serial sections for approximately 2 million total pixels 
in each 3D dataset (Extended Data Fig. 4a and Supplementary Fig. 3). 
Reconstructed data exhibited substantially improved quality with a 
greater than tenfold increment in SNRs over the raw data processed 
by traditional FT analysis (Fig. 2c–e and Extended Data Fig. 4b,c), while 
maintaining high mass accuracy on several expected lipid signals in rat 

brain and low mass errors on tentatively assigned lipids (Extended Data 
Fig. 4d). Our method is also applicable to different organ systems and 
molecules other than lipids. To demonstrate its generalizability, we 
imaged and trained models on rat pancreas tissue sections (Extended 
Data Fig. 5a,b and Methods). Faithful detection and reconstruction of 
rat pancreatic peptides including glucagon, insulin 1 C-peptide and 
insulin 2 C-peptide from reduced transient data are shown (Extended 
Data Fig. 5c).

To enable spatially resolved biochemical profiling across the brain, 
we designed and implemented a multimodal registration strategy to 
align the misaligned reconstructed MSI sections to a high-resolution 
rat brain MRI atlas28 to form a volumetric reconstruction. Inspired 
by a previously proposed approach, we applied parametric UMAP29 
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the test data contain n = 69,847 pixels and n = 574 ion images for peak and spatial 
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interquartile range. b, Comparisons of mass spectra and corresponding ion 
images to the reference (full transient; top row) show enhanced signal strength 
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reference, subspace and MEISTER images. c, Averaged mass spectra from three 

different tissue sections for the reduced data (top) and our reconstruction 
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demonstrating mass-resolution (R) enhancement. d, Ion images obtained 
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to embed the MSI hyperspectral data cube into ‘feature’ images for 
co-registration with MRI anatomical images (Extended Data Fig. 6a). 
By learning the embedding process, our method can simultaneously 
obtain low-dimensional representations of the entire 3D MSI data 
cube (Extended Data Fig. 6b and Supplementary Fig. 4a,b). These 
low-dimensional features are effective in delineating tissue morphol-
ogy for cross-modality image registration (Extended Data Fig. 6b,d 
and Supplementary Fig. 4c,d). Images of three selected UMAP dimen-
sions of each two-dimensional (2D) tissue section were converted 
to a single grayscale image to yield anatomical contrast, which was 
then registered to its corresponding MRI slice by affine and B-spline 
registration (Extended Data Fig. 6c and Methods). The obtained trans-
formations could then be applied to all ion images, resulting in the 
final high-quality volumetric reconstruction of the ion distributions  
(Fig. 3a,b, Extended Data Fig. 6e,f and Supplementary Fig. 5). To the 
best of our knowledge, this is the first time that a 3D reconstruction 
of the biochemical distribution of the brain with the combination of 
coverage, spatial resolution and chemical detail (for example, >1,000 
lipid features, as discussed below) has been generated.

Brain region-specific lipid profiling enabled by 3D MSI
Brain lipids serve as both inter- and intracellular signaling molecules 
and have important functional roles in the formation of morphologi-
cally distinct membranes of the diverse neuronal cells30,31. Previous 
studies on brain lipids showed that lipid enrichments may be distinct 
across different brain anatomical structures8,32,33. With our data, of a 
total of 1,156 lipid features annotated by LIPID MAPS34, 728 matched 
with an error <3 parts per million (ppm) error were extracted from 3D 
MSI reconstruction for downstream analysis (Fig. 3). We performed 
both single-pixel analysis of individual tissue sections through UMAP 
visualization (Fig. 3c and Supplementary Fig. 5) and supervised clas-
sification with gradient-boosted trees. Accurate brain region classifica-
tion of pixels based on lipid profiles could be achieved with an average 
classifier area under the curve (AUC) of 0.96 ± 0.02 (Supplementary 
Fig. 6a and Methods). We also investigated the feature attributions to 
interpret model decisions and selected the lipids that were contribut-
ing most to the anatomical classifications (Methods). Multivariate 
analysis of the 3D data was performed on the mass spectrum inten-
sity profiles of each brain region (averaged per region, per tissue sec-
tion). UMAP embeddings showed a preservation of the relative spatial 
organizations of brain regions (Fig. 3d and see Methods for details 
on anatomical definitions), as well as differentiation among tissues 
that are gray-matter-dominant, white-matter-dominant or a mixture 
of both (others). Our analysis uncovered the anatomically differen-
tial lipid compositions of the brain, as shown by the ion images and 
feature attribution maps of the top-scoring features (Fig. 3e and Sup-
plementary Fig. 7). A near-perfect classification accuracy of anatomi-
cal structures was achieved (Supplementary Fig. 6e) using averaged 
region-specific lipids, indicating that MEISTER robustly uncovered 
anatomically specific biochemical profiles for the entire tissue volume. 
The mean intensities of the most discriminative lipid features from the 
classification model were summarized (Supplementary Fig. 6f). Among 
these features, we identified highly elevated region-specific lipids by 
comparing one structure against the rest within the tissue volume; 
for instance, phosphatidylcholine (PC) O-20:4 and hexosylceramide 
(HexCer) 40:1;O3 were elevated in the hippocampal region and the 
corpus callosum, respectively. We further examined how sphingolip-
ids, a lipid category critical to brain development and function, are 
regionally distributed (Fig. 3f). HexCer exhibited higher levels in the 
thalamus, brainstem and superior colliculus, which contain a large 
number of nerve fiber projections responsible for sensation. Ceramide 
(Cer), abundant in the myelin sheath around the nerve fibers, was found 
elevated in subcortical white matter such as the corpus callosum and 
corticofugal pathway, with a similar trend observed for sphingomyelin 
(SM). In subcortical areas, a higher level of lysophosphatidylcholine 

(LPC) was also found, perhaps due to its emphasized role in myelina-
tion and neuronal membrane synthesis35.

Multiscale single-cell and tissue imaging data integration
Our high-throughput multiscale tissue MSI and SCMS data enabled inte-
grative analysis to combine their powers for investigating cell-specific 
biochemical composition in tissues. High-throughput 3D MSI allows 
brain-wide biochemical characterization (for example, lipid mapping as 
demonstrated above), but the information at each tissue pixel contains 
convolved biochemical fingerprints of multiple cell types. MSI with 
subcellular-level resolution has been demonstrated18,19 but with limited 
tissue coverage. Furthermore, brain cells often are not organized into 
regular grids but interwind in complex ways. On the other hand, SCMS 
data acquired from individual cells dissociated from brain tissues pro-
vide cell-specific mass spectra but with limited spatial information. To 
integrate these two types of measurements, we reconstructed SCMS 
data from 13,566 cells sampled from five brain regions (same anatomical 
definitions as for tissue data; Methods) and annotated SCMS data using 
the lipid features from the tissue MSI data (considering the presence of 
both intracellular and extracellular lipids; Methods, ‘Cross-annotation 
strategy’), resulting in 344 cross-annotated lipids in single cells. Using 
these lipid species, we obtained 18 single-cell clusters defined by lipid 
contents, with each cluster containing mixed cell populations from 
different anatomical regions (Fig. 4a). We characterized the distinct 
chemical profiles among cells across different clusters, as well as 
identified region-specific lipid markers, suggesting both intra- and 
inter-regional diversity of cellular lipids (Extended Data Fig. 7a). Single 
cells within the corpus callosum and the striatum contained a higher 
level of sphingolipids, consistent with observations from the tissue 
MSI data (Extended Data Fig. 7b). Differential single-cell lipid marker 
analysis was carried out for other brain regions, showing agreement 
between cellular- and tissue-level lipidomes (Extended Data Fig. 7c,d).

To integrate tissue and single-cell data and resolve cell- 
type-specific contributions at each image pixel, we developed a new 
UoSS fitting strategy exploiting cell-specific chemical dictionaries. 
Specifically, we performed non-negative matrix factorization (NMF) 
to extract sets of chemical ‘bases’ that represent chemical variations 
within each cell cluster (Methods). These bases are ‘dictionaries’ that 
promote sparsity and parts-based representations that delineate the 
biochemical components in each cell cluster36,37, ideal for stratify-
ing cellular biochemical signatures. For each of the 18 clusters, we 
extracted 20 non-negative single-cell dictionary items (Fig. 4b and 
Supplementary Fig. 8b), and we used a UoSS linear regression model 
to fit all components to tissue MSI data while forcing model weights 
to be non-negative (Methods). The weights could then be interpreted 
as the cell-type-specific contributions and yielded deconvolved cel-
lular features at every tissue pixel (Fig. 4c). By analyzing the weights of 
individual cell type clusters with respect to brain regions, we identified 
distinct lipid spatial organizations at the single-cell level. For example, 
two clusters (0 and 2) were more enriched in cortex and hippocampal 
regions (Fig. 4c), consistent with the observation in Fig. 4a. Although 
these two clusters had similar cell numbers from each region, one was 
more localized to the granular layer of the dentate gyrus and pyramidal 
layer, whereas the other was more general to cornu ammonis (CA) areas. 
Similarly, several clusters showed strong spatial contributions toward 
the thalamus, corpus callosum and striatum (Fig. 4c). From single-cell 
fitting, we found a moderate to high spectral and spatial correlation of 
the fitted signal intensity to the original tissue signal intensity, indicat-
ing the alignment of SCMS and MSI data (Fig. 4d,e). Note that some lipid 
features (101 of 344) showed negative correlation between the original 
tissue image and the UoSS model fit using single-cell dictionaries. 
These might represent extracellular lipid components, false-positive 
annotations or modeling errors (Discussion).

To further elucidate the spatial organization of cell subpop-
ulations within a certain anatomical region, we jointly examined 
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hippocampus-only SCMS and tissue MSI data (Fig. 5). A total of 2,692 
cells (103 annotated lipid features) were analyzed with MSI data 
through the joint fitting of eight identified cell clusters (with diction-
aries estimated using NMF). Single-cell lipids displayed heterogene-
ous distributions within the hippocampus, with unique lipid markers  

(Fig. 5a and Supplementary Fig. 9). The fitted contributions of 
single-cell dictionaries suggest different spatial organizations of 
hippocampal cell subpopulations (Fig. 5b,c). Large model weights 
were found in the dentate gyrus and CA3 for cluster 0, the granu-
lar layer of CA1 for cluster 1 and the molecular layer for cluster 5, 
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approximating the morphological structure of the hippocampus 
(Fig. 5b). We further analyzed the extracted dictionary items, which 
showed strong correlation with the lipid fold change (Fig. 5d), serving 
as indicators of the cluster-specific lipid signatures. Features were 
then selected on the basis of the magnitude of the averaged basis 
values, which are a good proxy for lipid specificity to cell clusters. 
For example, consider lysophosphatidylethanolamine (LPE) O-(16:0) 
and phosphatidylglycerol (PG)(48:8) (indicated in dictionary items 
for cluster 1; Fig. 5e). The corresponding tissue distributions for 

these two lipids showed agreement with the fitted model weights 
from cluster 1 (Fig. 5b,f).

To demonstrate the applicability of our joint analysis approach to 
other tissue types, SCMS data of 13,739 rat pancreatic cells consisting 
of islets, vasculature and acinar cells (Methods) were acquired and 
reconstructed. A total of 428 features were annotated using pancreas 
tissue MSI data. Using the cross-annotated features, we obtained ten 
single-cell clusters, each containing relatively uniform cell populations 
(Extended Data Fig. 8a,b). Fitting the extracted single-cell dictionaries 
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to tissue data (Extended Data Fig. 8c), we were able to map spatially 
dependent cell-specific contributions and resolve tissue organizations 
of cell populations (Extended Data Fig. 8d). For example, we observed 
islet populations with distinct spatial localization within the islet region 
(clusters 0 and 2), likely corresponding to subpopulations of islet cells.

Discussion
We demonstrated integrative 3D tissue and single-cell biochemical 
mapping of the brain at a large scale using MEISTER. This is enabled 
by a synergy of unique experimental capabilities and innovations in 
computational aspects including deep-learning-based reconstruction, 
image registration and spatially resolved cell-specific dictionary learn-
ing and fitting. While the power of deep learning has been illustrated 
in various imaging modalities including MSI38–40, our method exploits 
unique signal characteristics in FTMS data and a special network design. 
Instead of training a deep neural network to generate high-resolution 
mass spectra from a low-resolution counterpart or interpolating miss-
ing pixel values directly41, we jointly learn low-dimensional embeddings 
of the high-dimensional data and train a regression network to predict 
these embeddings from reduced transients, providing a strong gener-
alization ability for both tissue and SCMS data. We validated that train-
ing can be achieved using different sections or animals, and it works 
well for new datasets. Through the unique capability of MEISTER, we 

resolved thousands of brain lipid features over millions of pixels across 
a 3D volume and large cell population, while substantially reducing 
the data collection time. Our method should be readily adaptable to 
different types of molecules in addition to lipids and peptides (for 
example, small metabolites and proteins) and other organ systems.

MEISTER relies on several alignment steps for knowledge extrac-
tion from integrating high-dimensional MSI and SCMS data. First, 
while alignment between MSI and other imaging modalities has been 
performed42–47, we chose to register MSI data to brain MRI that was 
acquired from the intact brain (without deformation) and offered 
a coherent 3D volumetric ‘atlas’ for registration. We realize that the 
majority of prior approaches emphasized on extracting feature images 
from individual 2D sections, which can lead to incoherent image reg-
istration across different serial sections in large 3D MSI datasets. Our 
pixel-wise parametric UMAP strategy generated feature images with 
a similar contrast to MRI images (Extended Data Fig. 6) and provided 
structurally informative features across the entire 3D dataset for 
easier registration. The 3D registration capability can also enable 
richer analysis leveraging both in vivo MRI and ex vivo MSI. Second, 
we align SCMS and MSI data through cross-annotation to facilitate 
integrative analysis. Recent progress has made false discovery rate 
(FDR)-controlled metabolite annotation for MSI possible48,49. However, 
it is difficult to leverage such methods to annotate image-guided SCMS 
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data due to lack of spatial information, which is a crucial statistical 
consideration in the annotation algorithm. Rather, we leverage the 
biochemical information that mutually exists in tissue and single cells, 
which are searched against the ‘tissue feature database’. This approach 
boosts confidence in selecting biologically viable features, as retain-
ing mutual features can minimize the inclusion of the experiment- or 
sample-specific artifacts. Another advantage for cross-annotation is 
to consider only molecules that are present in the intracellular spaces 
for more accurate single-cell-to-tissue mapping. Meanwhile, we think 
it is possible to extend our approach to look at changes in extracellular 
spaces (for example, in different diseases) by interrogating the fitting 
residual, as well as lipid species filtered out by cross-annotation. For the 
UoSS fitting, modeling errors may occur due to falsely cross-annotated 
features from the tissue data caused by mass shifts and an inappropri-
ate ppm window or due to nonlinearities between MSI and SCMS data. 
These may have contributed to the poor lipid fits with negative correla-
tion shown in Fig. 4e. A close examination of those poorly fitted lipid 
components may lead to important insights into potential directions 
for improvement in future research.

Computational methods for integrating single-cell sequencing 
and spatial transcriptomics (ST) data have been explored50, including 
deconvolution of cell type fractions51–53, joint clustering for mapping 
single-cell transcriptomics to ST data54 and estimating the number of 
cells per ST spot55. Our work is the first attempt for similar cross-scale 
integration for large metabolomics and lipidomics data. Our UoSS 
regression model is also distinct in that it does not assume only a ‘refer-
ence signature’ but a more general mathematical representation of the 
ensemble chemical profiles for each cell type, capturing the intrinsic 
variations within each cell cluster. We used all the cross-annotated lipid 
species making the approach ‘unbiased’. In addition to identifying brain 
region-specific lipid variability, clustering of single cells suggests that a 
continuity of lipid-defined cell type diversity exists across brain regions 
(Fig. 4a). Similar observations have been made by transcriptomics of 
single cells from various brain regions, supporting the idea that many 
cell types are shared between brain regions56,57. We demonstrate a 
proof of concept for linking single-cell and spatial organizations of 
lipids, paving the way to build biochemical cartography of tissue and 
primary cells.

Previous studies have used liquid chromatography–tandem MS 
(LC–MS2) measurements to study differential lipid contents within 
different brain regions and cell types8,32. Comparing the LC–MS2-based 
shotgun lipidomics and our MS imaging-based lipid profiling, we found 
agreements in region-specific distributions of major lipid classes, 
including HexCer, Cer and SM that are more enriched in regions such 
as the corpus callosum with higher myelin content32 (Fig. 3d,e). Our 
multiscale imaging-based approach offers not only the capability of 
resolving hundreds of lipid molecules, but also a new tool for under-
standing spatial–biochemical tissue architecture with cellular speci-
ficity, transforming how we study brain chemistry just as how spatial 
transcriptomics transforms the determination of gene expression. 
We envision future endeavors on creating multiscale biochemical 
atlases, with increasingly powerful profiling technology for metabo-
lites, lipids, peptides and proteins, as well as integrative analysis with 
other omics data.
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Methods
Experimental details
Animals. The male Sprague-Dawley outbred rats (Rattus norvegicus) 
used in this study were sourced from Inotivco (www.inotivco.com). 
These rats were provided with ad libitum access to food and housed 
on a 12-h light cycle. All animal euthanasia procedures were carried 
out in strict accordance with the guidelines set forth by the Illinois 
Institutional Animal Care and Use Committee, as well as the federal and 
ARRIVE guidelines to ensure the humane care and treatment of animals.

Tissue dissociation and preparation of single cells. A total of three 
2.0- to 2.5-month-old male rats were used for brain tissue isolation. Each 
isolated tissue region was individually treated with a papain dissocia-
tion system (Worthington Biochemical) and incubated for 120 min at 
34 °C with oxygenation. The treated tissue regions were then mechani-
cally dissociated in ice-cold modified Gey’s balanced salt solution 
(mGBSS) containing (in mM) 1.5 CaCl2, 5 KCl, 0.2 KH2PO4, 11 MgCl2, 
0.3 MgSO4, 138 NaCl, 28 NaHCO3, 0.8 Na2HPO4 and 25 HEPES, pH 7.2, 
and supplemented with 0.08% paraformaldehyde to stabilize cells 
against damage during dissociation and other methodological steps. 
A solution of 80% glycerol and 20% mGBSS was added to a final glycerol 
concentration of 40% (v/v). The cells were stained with Hoechst 33342 
(0.1 μg ml−1 in mGBSS), and a 30-μl aliquot of cell suspension was plated 
onto an indium tin oxide (ITO)-coated unpolished float glass slide, Rs = 
70–100 Ω (Delta Technologies). After ~16 h, glycerol was aspirated off 
the dissociated cells before rinsing with 150 mM ammonium acetate. 
Each slide held three biological replicates of each brain region, placed in 
discrete but random locations on the ITO-coated glass slide to mitigate 
batch and spatial-dependent artifacts.

Islet isolation was performed as previously described58,59 with 
some modifications. Briefly, the pancreas was surgically removed and 
treated with lyberase. Islets were manually collected by mechanical dis-
sociation of tissue using a micropipette under visual control using an 
inverted microscope. Islets, acinar tissue and vasculature regions were 
incubated for 20 min at 37 °C in Trypsin LE solution before mechanical 
dissociation into single cells and deposition onto ITO-coated glass 
slides.

Tissue sectioning. Coronal and sagittal brain slices were obtained 
from the rats in this study. The entire rat brain was quickly removed 
and flash-frozen after decapitation, before being sectioned. Sagit-
tal brain slices were prepared at a temperature of −20 °C and sliced 
into 16-μm-thick tissue sections using a cryostat-microtome (3050 S, 
Leica Biosystems). The tissue slices were then thaw-mounted onto 
ITO-coated glass slides for MALDI matrix application. The pancreata 
from three male rats were surgically removed and immediately fro-
zen. Six 16-µm-thick adjacent sections were cut from the frozen pan-
creata using a cryostat-microtome and similarly thaw-mounted onto 
ITO-coated glass slides for matrix application.

Matrix application. The MALDI matrix 2,5-dihydroxybenzoic acid 
(DHB) was prepared to a concentration of 30 mg ml−1 in 70% methanol 
for brain samples. For pancreatic samples, DHB was prepared at a con-
centration of 10 mg ml−1 in 50% ethanol. The matrix was applied using an 
HTX-M5 Sprayer (HTX Technologies), with a spray spacing of 2.5 mm at 
a temperature of 75 °C using a flow rate of 100 μl min−1. The distance of 
the sprayer nozzle was 50 mm from the sample, and a spray pressure of 
10 psi with a spray nozzle motion velocity of 1,200 mm min−1 was used. 
Four passes were used to apply the MALDI matrix.

Image-guided SCMS analysis. The brightfield and fluorescence 
microscopy images were obtained using an Axio Imager M2 (Zeiss) 
equipped with an AxioCam ICc 5 camera and a ×63 camera adapter. 
For transmitted light, a visible light (Vis) light-emitting diode (LED) 
lamp was used, while, for fluorescence, an X-cite Series 120 Q mercury 

lamp (Lumen Dynamics) was used. The imaging was performed using 
DAPI (excitation 335–383 nm; emission 420–470 nm) dichroic filter 
cubes. The images were acquired in mosaic mode with a ×10 objective 
and 10% tile overlap. The resulting tiles were stitched together before 
being exported in TIFF file format using ZEN 2.0 Pro edition (Zeiss) 
software. The single-cell coordinates, geometry files and an Excel file 
required for the target automation function on ftmsControl (v.2.1.0, 
Bruker) were obtained using microMS, as described previously23. To 
ensure data quality, cells were filtered from lists of analyzed struc-
tures on the basis of their distance from each other, with cells closer 
than 200 μm being removed, and on the basis of their size, with any 
free nuclei resulting from cell lysis being removed. High-throughput 
single-cell analysis was performed using a SolariX 7 T FT-ICR mass 
spectrometer (Bruker), with a mass window of 50–1,000 m/z (rat brain) 
or 150–6,000 m/z (rat pancreas). MALDI mass spectra were acquired 
in positive mode using a Smartbeam-II UV laser in ‘ultra’ mode, which 
produces a 100-μm-diameter laser-spot size. Each MALDI acquisi-
tion comprised one ICR accumulation, consisting of 150 or 500 laser 
shots, for brain and pancreatic samples, respectively, at a frequency 
of 1,000 Hz.

Signal modeling. A transient can be modeled as a temporal signal that 
contains many frequencies corresponding to different ions, following 
the generic signal model proposed by Marshall60,61:

s (t) = ∑
i
Ai • exp (−

t
τi
) cos (ωit) + ε (t) .

For ion i, constant Ai represents the initial signal amplitude, τi is 
the decay rate of the excited ICR signal due to ion collisions, ωi is the 
ion cyclotron frequency and ε is the independent noise. The theoretical 
mass resolution is calculated as:

m
Δm =

1.274 × 107zB0Taqn
m

where B0 is the magnetic field strength and Taqn is the transient acqui-
sition time. Given a fixed B0, the theoretical mass resolution is, thus, 
proportional to Taqn; a certain Taqn is required for a target high mass reso-
lution. We used the described signal model for the MSI data simulation.

Simulation of MSI data. We followed a previously described proce-
dure to simulate the MSI data25. Briefly, transients were generated 
through the generic signal model discussed above with a list of 30 
chemical formulas. Frequencies were reverse-calculated for all pos-
sible ions including H+, Na+ and K+, adducts were assigned to each 
formula and theoretical isotopic distributions were calculated using 
the Python version of the BRAIN algorithm62. Allen Brain Atlas (ABA) 
mouse brain annotation was used as the spatial reference63 to generate 
eight pseudo-tissue regions with different combinations of chemical 
formulas. All transients were simulated for 262,144 temporal data 
points in a total of 26,497 pixels. Independent Gaussian noise was added 
to each simulated transient.

Model design for MEISTER
Reconstruction model. The signal reconstruction model consists of 
three parts: (1) an encoder network encoding input high-resolution 
transient signals into lower-dimensional latent features; (2) a regres-
sion network transforming corresponding low-resolution signals to 
their latent features; and (3) a decoder network decoding the estimated 
low-dimensional latents back to high-resolution signals. We use a DAE 
architecture to learn low-dimensional features directly from raw 
high-resolution transient signals for both tissue and single-cell meas-
urements. Each transient signal s(rn, t) is sampled with a specific tem-
poral sampling rate, with t = {t1, t2,… tNT } , where NT is the number of 
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discrete time points and the duration T for a defined mass resolution, 
and n = 1, 2, …, Nr, where Nr corresponds to the number of pixels in MSI 
or number of cells in SCMS data. Denoting SSS = {s(rn, ti)}

N,NT
n,i=1 as the ensem-

ble of training data, our objective is to train the network to encode S 
into a set of low-dimensional features and produce reconstructions 
̂SSS = { ̂s(rn, ti)}

N,NT
n,i=1 that are as close to S as possible. Specifically, our net-

work can be described mathematically as:

ZZZ = EEE(SSS;WWWEEE,BBBE)

̂SSS = DDD(ZZZ; WWWDDD,BBBDDD)

where Z represents a 32-dimensional latent vector encoding S, E(·) and 
D(·) denote the encoder and decoder functions, respectively, each 
containing three fully connected layers with 512, 256 and 64 neurons 
(symmetric design). Denoting the whole network as ϕ(⋅;ΘΘΘ) (combining 
encoder and decoder) with Θ = [WWWEEE,BBBEEE,WWWDDD,BBBDDD] containing all the net-
work parameters, the mean squared error (MSE) loss was minimized 
during training:

Θ = argmin
Θ

‖SSS − ϕ(SSS;Θ)‖22 + λ‖Θ‖
2
2

We then trained a regressor network R(·) to map the low-resolution 
measurements SSS′ = {s′(rn, tj)}

Nr ,NT′
n, j=1 , with Nr transients (Nr ≫ N) and first 

NT′ temporal points corresponding to a shorter acquisition duration 
T′ (T′ ≪ T ), to the latent features Z′:

ZZZ’ = RRR(SSS′;WWWRRR,BBBRRR)

which can be decoded into full-resolution transients. Denoting all the 
regressor network parameters as ΘR = [WWWRRR,BBBRRR], the model was trained 
by minimizing the MSE between Z (encoded from S) and the regressor 
output Z′:

ΘR = argminΘR
‖ZZZ −RRR(SSS′;ΘR)‖

2
2 + ‖ΘR‖

2
2

Low-resolution measurements S′ can then be transformed into 
high-resolution data by:

̂SSS = DDD(RRR(S′;ΘR);WWWDDD,BBBDDD)

Evaluation on simulated and experimental MSI data. First, we vali-
dated MEISTER’s signal reconstruction performance on simulated 
MSI data. We trained MEISTER on 2,000 randomly sampled pixels 
containing noisy transients (simulation data described above), and 
we performed reconstruction on all pixels containing reduced noisy 
transients (taking the first 10,000 temporal points). We compared the 
reconstructed data against the ground-truth high-resolution data with-
out Gaussian noise. All sets of transients (clean, noisy, noisy reduced 
and reconstructed) were transformed into mass spectra and converted 
to peak intensity lists, which consist of peak centroids identified from 
the ground-truth spectra. Peak and spatial correlation scores against 
the ground truth were computed as the Pearson correlation coeffi-
cients between each peak list and ion image pairs. Encoded features of 
the latent space were extracted from the bottleneck layer and subjected 
to UMAP for visualization.

For the experimental data, we trained the networks using a set of 
high-resolution data (1 million temporal points) acquired on rat sagit-
tal and coronal brain sections and the corresponding low-resolution 
data (64,000 temporal points). Reconstruction was performed on the 
160-µm, 1-mm and 2-mm sections away from the training sections to val-
idate the model’s generalizability across tissue volume. High-resolution 
data were acquired from these tissue sections (serving as the reference) 
and reduced to 64,000 temporal points as the input to the MEISTER 

reconstruction model. Reduced (zero-padded), reconstructed and 
reference transients were then transformed into mass spectra and 
converted to peak intensity lists. For each tissue section, the peak 
centroids were determined on the average mass spectra obtained 
from the high-resolution reference data. Peak and spatial correlation 
scores were calculated the same way as for the simulation, but against 
the high-resolution reference. SNRs were defined as the ratios between 
the signal intensity and the standard deviation of the noise, which was 
obtained over a spectral region without apparent signals. k-means 
clustering was performed for different reconstructions with k = 6. The 
components and scores for the first five principal components (PCs) 
were compared between reconstructed and reference data.

MEISTER for 3D MSI. For 3D MSI of rat coronal sections, training data 
(transients collected for 1 million temporal points) were collected on 
three tissue sections with a total of 124,370 pixels. For rat sagittal sec-
tions, data from two tissue sections in a total of 105,954 pixels were used 
for the model training. Training sections were roughly 2 mm apart to 
ensure the coverage of diverse tissue types. The autoencoders were 
trained for 20 epochs, and the regressors were trained for 50 epochs. 
A batch size of 128 and the Adam optimizer were applied to train both 
networks. We then acquired low-resolution data with 64,000 temporal 
points (mass resolution 10,000 at m/z 400) for all remaining tissue 
sections (37 coronal and 39 sagittal). During reconstruction, these 
low-resolution signals served as input for the regressor network, which 
predicted 32-dimensional latent vectors for each signal. The predicted 
latent vectors were decoded to transient signals with 1 million temporal 
points (mass resolution 160,000 at m/z 400) by the previously trained 
decoder. Finally, high-resolution mass spectra were generated from 
the decoded transients.

MEISTER for image-guided SCMS. We trained MEISTER using 3,840 
random cells (data with 1 million temporal points) from five brain 
regions (neocortex, hippocampus, thalamus, striatum and corpus 
callosum) using microMS. The autoencoder and regressor were trained 
for 20 and 50 epochs, respectively, with a batch size of 64. The model 
was validated on a validation set containing 1,000 cells. The spec-
tral correlation scores were calculated between the reference peak 
intensity and the reconstructed peak intensity. To show that MEISTER 
reconstruction provides consistent downstream analysis, we compared 
UMAP and Leiden clustering results between the reference (validation 
set) and reconstructed single-cell data, and we visualized the single-cell 
distributions of m/z features over UMAP (Extended Data Fig. 3). A total 
of 13,566 cells (64,000 temporal points) were reconstructed (1 million 
temporal points) to obtain high-resolution single-cell mass spectra.

Analysis of 3D MSI data
Data preparation. To prepare for data analysis, we first determined the 
peak centroids on the average mass spectra for each tissue section, and 
we extracted the intensities of the peak centroids for all pixels. The peak 
lists were then processed by m/z binning in 3-ppm increments to align 
peaks affected by potential mass shift. After extracting peak lists from 
a 3D dataset, we retained m/z bins common across all tissue sections 
for further analysis. Each pixel was normalized by total ion count (TIC). 
The processed data were finally converted into imzML file format.

Data-driven image registration. To enable 3D reconstruction and 
analysis of MSI data with respect to brain anatomy, we registered MSI 
serial sections to T2*-weighted anatomical MRI from the Waxholm 
Space atlas of the Sprague-Dawley rat brain. To ensure precise and accu-
rate registration across serial sections, we adapted parametric UMAP 
to extract both structurally informative and consistent feature images 
from high-dimensional MSI data. Previous work has demonstrated 
using low-dimensional feature images (embeddings) obtained using 
nonparametric dimensionality reduction methods (both t-distributed 
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stochastic neighbor embedding (t-SNE) and UMAP) for image regis-
tration tasks. However, feature images from different tissue sections 
can provide disparate morphological contrasts, because data are 
essentially embedded into different embedding space for each tissue 
section. Embedding the entire 3D MSI dataset can overcome such an 
issue, but it is computationally intractable for t-SNE and UMAP optimi-
zation over millions of input pixels with thousands of dimensions. The 
major advantage of the parametric version of UMAP is to use a neural 
network to learn a relationship between data and embedding. Thus, 
a small subset of pixels can be sampled from 3D MSI data for training 
the network, which can rapidly embed a large number of pixels into a 
single embedding space. We used an autoencoder in conjunction with 
UMAP, of which the encoder is trained to minimize UMAP loss and the 
decoder is trained to minimize reconstruction loss. The autoencoder 
input and output size is set to be the number of m/z features, followed 
by fully connected layers with 256, 128 and 64 neurons. The UMAP loss 
function between two data points i and j is the cross-entropy, defined as:

CUMAP = ∑
i≠j
vij log (

vij
wij

) + (1 − vij) log (
1 − vij
1 −wij

)

Ten percent of total pixels were randomly sampled as training data, 
and the network was trained for 20 epochs. For each tissue section, 
embedding vectors from three UMAP dimensions were encoded into 
red, green and blue (RGB) channels to form feature images, which were 
then converted to grayscale ready for registration.

The anatomical images from the MRI atlas were selected on the 
basis of the tissue sectioning distance with manual inspection. We 
applied a two-step multimodal image registration to align grayscale 
MSI feature images as the moving images with the reference anatomical 
images. First, rigid affine registration was performed to roughly align 
the two with nine hand-selected initial transformation points. After 
rough alignment, a nonrigid cubic B-spline registration was performed 
with mutual information as the similarity measure with 200 maximum 
optimization steps. The registration quality was evaluated by the Dice 
index (DI), which assesses the image mask overlap between the ith brain 
region labels from the atlas and the human-annotated masks from the 
jth registered tissue section (Supplementary Fig. 10):

DIij =
2|Labelij ∩ Annotationij|
|Labelij| + |Annotationij|

The transformation matrices were applied to each MSI section 
to visualize registered ion images. The region-specific mass spectral 
profiles were extracted from pixels on the basis of the atlas brain region 
labels.

Brain region-specific analysis. To analyze regional lipid distributions 
at the single-pixel level, we extracted all MSI pixels belonging to 11 brain 
structures on the basis of MRI atlas labels, including the neocortex, 
hippocampus, thalamus and hypothalamus as gray matter-dominant 
regions, the corpus callosum and corticofugal pathway as white 
matter-dominant regions and the superior colliculus, basal forebrain, 
brainstem, striatum and septal regions as regions (others) that contain 
collections of clusters of cell bodies, as well as processes for signal com-
munication. For individual tissue sections, the extracted pixels were 
first subjected to UMAP for visualization and used to train gradient 
boosting tree (GBT) models to predict the brain regions, a multiclass 
classification task. Training and testing set sizes were set to 0.8 and 
0.2. GBT models were further interpreted through SHAP (SHapley 
Additive exPlanations) values. In SHAP, each pixel provides the lipid 
feature attributions toward predicting certain brain regions, which can 
be used to generate feature attribution maps for ion images. The most 
contributing lipid features were selected by ranking mean absolute 
SHAP values. Regional average lipid profiles were obtained from every 

tissue section, which was repeated for the aforementioned analysis. 
Differential analysis of lipid features was performed for each brain 
region to obtain the log2 fold change and P-values tested by Wilcoxon 
rank-sum test and adjusted by Benjamini–Hochberg. For putative lipid 
annotation, we searched the m/z values against LIPID MAPS34 experi-
mental and virtual databases with a ±0.005 m/z threshold for chemical 
formula and lipid species assignments. From the combined list, the 
matches were sorted according to their ppm errors from the accurate 
masses. In cases when experimentally or structurally validated lipids 
(biologically relevant lipids present in LIPID MAPS) were matched, they 
were given priority for assignment.

Joint analysis of MSI and SCMS data
Cross-annotation strategy. We applied a straightforward strategy 
to annotate lipids in SCMS data using features observed in MSI data. 
Similar to putative annotation, features in MSI served as a database 
to search the SCMS peak lists for matching lipids within a 3-ppm m/z 
window. Features present in less than 5% of cells were discarded, and 
cells with less than 5% total number of features were filtered out. Using 
an alternative method, we first annotated the tissue MSI data using 
METASPACE with the CoreMetabolome database and obtained the 
monoisotopic m/z features from the annotation results with a 50% 
FDR. These monoisotopic ions were then used to search the SCMS data.

Integrative analysis using UoSS fitting. The m × n single-cell lipid 
feature matrix X was first processed by TIC normalization, with m being 
the number of cells in each identified cluster and n being the number of 
lipid features. Leiden clustering was performed on the first 40 PCs with 
the parameters n_neighbors = 30, min_dist = 0.5 and resolution = 0.25, 
using cosine as the distance metric. The single-cell matrix X(l) of cell 
cluster l can be decomposed into:

XXX(lll) =WWW(lll)DDD(lll)

where W(l) represents the m × k weight matrix (with k being the number 
of dictionary items capturing the chemical variations within each 
cluster) and D(l) is the k × n non-negative dictionary matrix that contains 
sparse representations of lipid signatures in the lth single-cell cluster. 
We chose k = 20 for the NMF algorithm. The union-of-dictionary items 
concatenated across L clusters UUU = [DDD(0);DDD(1);…DDD(LLL)] was fitted to the  
p × n tissue imaging data matrix Y, where p is the number of tissue pixels, 
by a constrained linear least-squares fitting, with model weights con-
strained to be non-negative:

YYY = CUCUCU

CCC = argmin
CCC

‖YYY −CUCUCU‖2F ,CCC ≥ 0

The p × k × L tissue weight matrix C has the row vectors 
CCCpi , = [cpi ,0, cpi ,1… cpi ,L]  and cpi ,l  contains the weights for pixel pi and k 
dictionary items from the lth single-cell cluster. The vector norm |cpi ,l|2 
was taken corresponding to the summarized contributions from all 
dictionary items of the lth cluster. The vector norms were mapped back 
to original pixel locations to visualize the spatial contributions of 
single-cell lipid signatures at the tissue level.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The processed 3D MSI, SCMS and other relevant imaging data that 
support the findings of this study are publicly available and free 
to download from Illinois Data Bank64 at https://doi.org/10.13012/
B2IDB-9740536_V1. Due to large file sizes, raw data including simulated 
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and experimental high-mass-resolution transients can be available  
upon reasonable request to the corresponding authors to arrange 
data sharing.

Code availability
The code used in this study is free for noncommercial use and available 
on GitHub (https://github.com/richardxie1119/MEISTER).
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Extended Data Fig. 1 | MEISTER model design. a, MEISTER reconstruction 
model that contains an autoencoder to learn latent features from high-resolution 
signals, and a regressor network that maps low-resolution signals to encoded 

latent features. MEISTER training workflow for b, 3D MSI using high-mass 
resolution data acquired on a small number of tissue sections, and c, SCMS using 
high-mass resolution data acquired on a subset of individual cells.
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Extended Data Fig. 2 | Evaluating model performance on simulated and 
experimental MSI data. Comparisons of a, mass spectra from the simulated 
MSI data. b, ion images extracted from several m/z features, showing enhanced 
spectral and image quality enabled by MEISTER reconstruction. c, Correlation 
coefficient and error distributions by evaluating mass spectra and ion images 
against the ground truth. the simulation data contain n = 26497 pixels and 
n = 152 ion images for peak and spatial correlation respectively. Data in boxplots 
are shown as median values (center) with the interquartile range (box), and 
the whiskers extend to 1.5 times the interquartile range. d, UMAP embeddings 

of encoded features of the simulated high-resolution data and the features of 
reconstruction from low-resolution data. Colors indicate different pseudo-
tissue regions. e, K-means clustering for the experimental reference, subspace 
reconstruction, and MEISTER reconstruction. f, Pearson correlation coefficients 
between top-5 PCs extracted from the experimental reference versus from the 
data reconstructed by subspace (top) and MEISTER (bottom). g. Comparison of 
number of annotated lipids (top) and correlation of ion images (bottom) using 
METASPACE with FDR set to 20%.
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Extended Data Fig. 3 | Reconstructing image-guided SCMS data.  
a, Experimental high-resolution single-cell mass spectra versus MEISTER 
reconstructed mass spectra. High peak correlation scores were obtained on 1000 
validation cells (bottom box plot). b, Downstream analysis of the reference (full 
transients) and reconstructed data shows nearly identical clustering patterns 

through k-means (k = 4; 1-4 denote cluster numbers and each cluster of cells are 
coded with a different color) and ion distributions at the single-cell level. c, Peak 
correlation scores for cells sampled from five different brain regions. Data in 
boxplots are shown as median values (center) with the interquartile range (box), 
and the whiskers extend to 1.5 times the interquartile range.
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Extended Data Fig. 4 | Acquisition and reconstruction of 3D MSI data of rat 
coronal sections using MEISTER. a, Number of pixels versus the slice order 
for the 3D rat coronal data set. b, Average mass spectra for 37 coronal sections 
obtained from MEISTER reconstruction. c, Comparison of the raw (reduced) and 

reconstructed mass spectra (left) in a small m/z window, and representative ion 
images (right). d. Distribution of ppm mass errors of 728 matched lipid features 
(left) and comparisons of mass spectra and mass resolution for several common 
brain lipids (right).
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Extended Data Fig. 5 | Generalizability to imaging peptides in rat pancreas. 
a,b, Averaged mass spectra of rat pancreas tissue sections from the reduced data 
(top) and our reconstruction (bottom) for m/z range of 400 to 2000 (a; lipids) 
and 3200 to 3600 (b; peptides). Inlet displays a zoomed-in m/z window with 
signals of protonated glucagon for high-resolution reference (top), reduced 

(middle) and reconstructed (bottom) data. High-fidelity reconstruction by the 
proposed method w.r.t. the reference can be observed. c, Ion images of different 
sections obtained from deep learning reconstructed tissue MSI data for m/z 
788.4922, glucagon, insulin 1 C-peptide, and insulin 2 C-peptide.
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Extended Data Fig. 6 | Data-driven registration to align 3D MSI and 
anatomical atlas. a, The proposed workflow leveraging pixel-wise parametric 
UMAP to efficiently align MSI data from serial tissue sections to a 3D MRI volume. 
b, Across serial sections in z-axis, parametric UMAP embeddings (top, colored 
by point density) formed consistent and structurally informative feature images 
(middle) and k-means clusters (bottom), c, Nonlinear image registration aligning 
the hyperspectral UMAP image to the target MR image via sequential affine 
and B-spline registration. The combination produced excellent alignment and 
enabled coherent volumetric reconstruction of MSI sections. d, The cluster 

proportions for 7 clusters varying with the slice order. e, Differential signal 
intensity distributions for lipids across 11 brain anatomical structures (for 
n = 27 tissue sections) identified using the ROI labels from a rat MRI atlas, that 
is, cholesterol shown here with distinct regional differences. The bars indicate 
the mean value intensity values, and the error bars indicate the 95 percent 
confidence intervals of the intensity distributions. f, Anatomical masks from 
the atlas (top) and manual annotations of MSI post registration (bottom). Dice 
Indices are shown in red indicating good alignment.
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Extended Data Fig. 7 | Identification of brain region-specific lipid features 
at the single-cell level. a, Top five single-cell lipid features identified to be 
brain-region specific (left), and top two lipid features identified to be cluster-
specific (right). Lipid features were selected based on p-values and log2 of fold 
change obtained by differential analysis. Rows and columns correspond to cells 
organized by the clusters and lipid features organized by regions respectively. 
Region and cluster specific lipids can be identified. For instance, PI 42:6;O is 
significantly elevated (adj. p-value = 9.6*10-268) in cells from cortex. Inspecting 
the PI 42:6;O column in the heatmap, we can observe that most cells in cluster 
0, 2, 3, 4 contain this particular lipid. b, Tissue and single-cell distributions of 
lipid markers identified by region-specific lipid analysis, demonstrated by data 
of two representative lipids, SM (32:4);O3 and PG O-(44:7). Bottom: regional 

distributions of SM and PG signal intensities quantified by log2 of fold change at 
the single-cell level. n is the number of lipid features for each lipid classes. Data in 
boxplots are shown as median values (center) with the interquartile range (box), 
and the whiskers extend to 1.5 times the interquartile range. c, d, Highly-specific 
lipid markers (significance indicated by p-values) were identified for different 
brain regions, showing agreement between single-cell and tissue imaging data 
for c, corpus callosum and d, cortex regions. For c, d, top left: single-cell UMAP, 
top right: corresponding ion images, bottom left: relations between clusters, 
mean signal intensity for single cells in cluster, and size of cell fraction per 
cluster, bottom right: relation between mean of signal intensities, brain locations 
of collected signals. p-values were tested by Wilcoxon rank-sum (two-sided) and 
adjusted by Benjamini-Hochberg procedure.
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Extended Data Fig. 8 | Integrative analysis of MSI and SCMS data from rat 
pancreas. a, A total of 13,739 cells from rat pancreas with 428 cross-annotated 
features (tissue and single cells) are subjected to UMAP and Leiden clustering 
analysis. 10 cell clusters were identified (left), which can also be mapped to 
three major pancreatic cell types (right). Inlet shows the distributions of insulin 
1 and 2 C-peptides within single cells. b, Top two features identified to be 

cluster-specific across all clusters. c, Cell-cluster-specific dictionaries extracted 
from representative cluster 0, 2, 4, and 8. d, Estimated spatial contributions of 
individual cell clusters across pancreas tissue. Each row shows results of mapping 
the contributions of one cluster to individual pixels, revealing distinct spatial 
organizations of islet, vasculature, and acinar cells.
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