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Fast and robust metagenomic sequence 
comparison through sparse chaining  
with skani

Jim Shaw    1   & Yun William Yu    1,2,3 

Sequence comparison tools for metagenome-assembled genomes (MAGs) 
struggle with high-volume or low-quality data. We present skani  
(https://github.com/bluenote-1577/skani), a method for determining 
average nucleotide identity (ANI) via sparse approximate alignments. skani 
outperforms FastANI in accuracy and speed (>20× faster) for fragmented, 
incomplete MAGs. skani can query genomes against >65,000 prokaryotic 
genomes in seconds and 6 GB memory. skani unlocks higher-resolution 
insights for extensive, noisy metagenomic datasets.

Consider the fundamental problem of computing sequence-to-sequence 
similarity between metagenome-assembled genomes (MAGs). Modern 
studies generate hundreds of thousands of MAGs1,2, and searching these 
MAGs against a database or computing all pairwise similarities takes bil-
lions of comparisons; this is infeasible with traditional alignment-based 
methods. Thus, large-scale sequence comparison for metagenomic 
data is dominated by sketching methods. Sketching methods sum-
marize datasets into small collections of k-mers; these sketches can 
be efficiently compared against one another and return an average 
nucleotide identity (ANI) estimate.

Unfortunately, sketching methods such as Mash3 or sourmash4 
may underestimate ANI when genome incompleteness is present5. 
The decrease has nothing to do with the genetic distance between the 
genomes; it is simply an artefact of the assembly being incomplete. 
Even ‘medium-quality’ MAGs typically only require >50% complete-
ness1, so this is an issue in practice. On the other hand, alignment-based 
methods are able to estimate ANI from only the orthologous regions, 
so incompleteness is not an issue. Additionally, the fraction of the 
genomes aligned to one another (the aligned fraction) is a useful sta-
tistic that pure sketching methods do not estimate. There is thus a need 
for algorithms that are fast, like sketching methods, yet robust to noise 
due to assembly artefacts, like alignment methods.

We developed skani, a fast, robust tool for calculating aligned 
fraction and ANIs in the >82% range. skani’s ANI method is robust 
against incomplete and fragmented MAGs, yet it is multiple orders of 
magnitude faster than alignment-based methods and over an order of 

magnitude faster than even the state-of-the-art FastANI6. skani uses a 
very sparse k-mer chaining7–9 procedure to quickly find orthologous 
regions between two genomes. This allows for sequence identity esti-
mation using k-mers on only the shared regions between two genomes 
(Fig. 1a), avoiding the pitfalls of alignment-ignorant sketching methods. 
Like BLAST-based ANI methods, skani breaks genomes into nonoverlap-
ping fragments, estimates the ANI for each fragment and then averages 
the ANI to output an ANI estimate. We then use a trained regression 
model to debias our ANI estimates (Methods).

We first verified that existing ANI methods are indeed sensitive 
to incompleteness and fragmentation in Extended Data Fig. 1. In a 
synthetic test, fragmented, incomplete yet identical genomes had ANI 
estimates that were systematically lower than 100% for all methods but 
ANIm10,11, a slow but accurate method. We subsequently chose ANIm as 
a baseline when comparing MAGs. Mash was the most affected, with up 
to a difference of 4% ANI at 50% completeness, which can cause two very 
similar genomes of up to 99% ANI to be classified as different species 
when subject to the standard 95% ANI species threshold6. FastANI was 
sensitive to fragmentation (low N50), which is why a minimum N50 of 
10,000 is used in the original study6, but that N50 requirement is not 
met in many real experiments1,12. We additionally show simulations 
with mutations and chimeric genomes in Supplementary Figs. 1–3.

Next, we showed on real MAGs that only skani and ANIm are robust 
to MAG quality for high-resolution ANI calculations. In Fig. 1b, we com-
pared subspecies level MAGs generated by Pasolli et al1, a large collec-
tion of medium-quality and high-quality short-read assembled MAGs. 
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To quantify the concordance of the clustering against ANIm, 
we used cophenetic correlation13 (Supplementary Note). In Fig. 1c  
and Extended Data Fig. 4, we see that skani has a better cophe-
netic correlation with respect to ANIm than all other compared 
methods. Notably, the ordering of the methods with respect to 
cophenetic correlation in Extended Data Fig. 4 is skani > sourmash 
max-contain14 > FastANI > mash; this exactly agrees with the order-
ing using R2 values from the contamination-incompleteness plots in  
Fig. 1b and Extended Data Fig. 2, implying that MAG assembly artefacts 
are indeed to blame for the clustering discordance.

We explore skani on three additional datasets: ocean eukaryotic 
MAGs15,16, ocean archaea MAGs12 and soil prokaryotic MAGs17, which 

As incompleteness and contamination increase, Mash and FastANI 
trend toward lower ANI, but this is not seen for ANIm (Extended Data 
Fig. 2) or skani. Extended Data Fig. 3 confirms our simulation results and 
shows that incompleteness and fragmentation are to blame for the bias.

Because ANI underestimations due to MAG quality are system-
atically biased, such ANI estimates can strongly impact downstream 
applications. We show in Fig. 1c that the cluster heatmaps obtained by 
average-linkage clustering for a species-level bin differ greatly between 
ANI methods. skani’s heatmap qualitatively resembles ANIm’s heatmap 
(Extended Data Fig. 2) more closely than the other methods, yet it 
is >500 times faster than ANIm and >50 times faster than FastANI for 
computing the distance matrix (Supplementary Fig. 5).
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Fig. 1 | a, Algorithm overview of skani. b, ANI sensitivity to contamination 
and incompleteness. We took all pairs of MAGs with >99% ANI according to 
ANIm from species-level bins generated by Pasolli et al.1 with >25 and <50 
genomes, leading to a diverse set of 41,494 pairs of genomes. We re-evaluated 
the ANI of each method and performed ordinary least-squares regression with 
incompleteness and contamination (averaged between the pair and obtained 
by CheckM22) as covariates. Estimated parameters and R2 values are shown; 
only hexagons with >20 data points are visible (see Supplementary Fig. 4 for 

density information). c, Average-linkage cluster heatmap for each method on bin 
number 2328 from Pasolli et al.1 (classified as Alistipes ihumii) with 195 genomes. 
Cophenetic correlation (CP) of each method’s dendrogram (with ANIm’s distance 
matrix as a ground truth) is shown. skani’s high cophenetic correlation indicates 
that its dendrogram is concordant with ANIm’s dendrogram, which we show in 
Extended Data Fig. 2. The Robinson-Foulds distances23 for skani, FastANI and 
Mash’s dendrograms against ANIm’s average-linkage tree are 0.489, 0.713 and 
0.823, respectively.
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in addition to the Pasolli et al. dataset gives four datasets in total. 
Extended Data Fig. 5 shows that skani’s results generalize to a diverse set 
of genomes, including eukaryotic MAGs with a median size of 17.6 Mbp  
(and 32 MAGs of size >100 Mbp). When comparing each method’s 
deviation from ANIm and considering the 1 to 99 percentile deviations, 
skani has the smallest 1 to 99 percentile interval lengths, indicating 
robustness. Extended Data Figs. 6 and 7 show that skani has a better 
linear aligned fraction correlation with ANIm than FastANI. The aligned 
fraction accuracy can be improved further by controlling subsampling 
rate of the k-mers (parameter c in Methods).

An important task is classifying MAGs (or isolate genomes) by 
searching against a database of reference genomes. Such databases 

represent a diverse collection of genomes where only a fraction of 
the genomes are similar to the query. Therefore, sensitively search-
ing against each reference is unnecessary. To enable efficient data-
base search, we augmented skani with a quick sketching-based ANI 
filter against distant genomes before performing a more accurate 
ANI computation.

Figure 2 shows that skani can query an Escherichia coli genome 
against the GTDB R207 database18 (>65,000 genomes) in comparable 
speed and memory to Mash. skani is much faster than FastANI for 
querying (>20 times on the E. coli dataset) and is >2.5 times faster than 
Mash for indexing. Furthermore, skani can do all-to-all comparisons 
on a set of 4,233 bacterial genomes as quickly as Mash due to the fast 
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Fig. 2 | a, ANI benchmarking with n reference genomes and m query genomes. 
From left to right: (1) querying a single E. coli K12 genome against a collection of 
E. coli genomes, (2) querying a single E. coli K12 genome against the GTDB R207 
database and (3) all-to-all comparisons on the refseq-rc (representative and 
complete bacterial genomes) database. OrthoANIu20 is used as a baseline. We 
only analyzed data points for which all methods had a predicted value. Pearson 
R value and mean absolute error (MAE) are shown for each dataset. Dataset 
descriptions can be found in Supplementary Table 2. b, Indexing and querying 
wall time for each dataset (50 threads). See Supplementary Fig. 8 for CPU times 

instead. Subcommands used are shown for each method when applicable. 
FastANI indexing and query times were estimated from the output. skani search 
and skani triangle are different subcommands that give the same results, but 
skani search only loads genomes into RAM as needed and discards after usage. 
FastANI times are not shown for the GTDB and refseq-rc datasets for fairness to 
FastANI due to FastANI’s ability to output a slightly larger range of ANI values 
(approximately >75% for FastANI versus >82% for skani). c. Peak memory usage 
for each method and subcommand. Sketching took negligible memory for skani 
and Mash.
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filtering of unrelated genomes. FastANI takes much longer (Supple-
mentary Fig. 9), but FastANI does more comparisons due to a slightly 
larger valid ANI range.

In Fig. 2a and Supplementary Fig. 7, we benchmarked skani against 
OrthoANIu19,20 (which we shorten to ANIu), a faster but almost-identical 
analogue of the BLAST-based ANIb, as a baseline. We did not use ANIm, 
because ANIm overestimates ANI for pairs of genomes with <90% 
ANI20,21. skani outputs an ANI estimate only if one of the genomes has 
predicted AF ≥15% by default, which ends up giving reasonable ANIs 
down to the 82% range on the three datasets shown. skani’s accu-
racy is usually better than Mash but slightly worse than FastANI for 
reference-quality genomes, skani is better on the E. coli dataset, which 
includes many fragmented, possibly incomplete genomes that give rise 
to many Mash and FastANI outliers. The results for FastANI improved 
(Pearson R from 0.974 to 0.994) on the E. coli dataset if we removed 
genomes with N50 <10,000, giving the exact same Pearson R value as 
the originally reported FastANI results6. Thus, skani gives only slightly 
less accurate values than FastANI on reference-quality genomes with 
the assurance of robustness for low-quality assemblies.

We have shown that skani improves on the state-of-the-art for 
metagenomic sequence comparison. skani’s key operating regimes 
are for medium-to-high ANI (>82%), comparisons against diverse sets 
of genomes (such as databases), and fast all-to-all comparisons for 
up to tens of thousands of highly similar genomes. skani is limited in 
extreme regimes, such as low ANI or comparing hundreds of thousands 
of similar genomes (for example all-to-all calculation for the >200,000 
E. coli genomes currently available in RefSeq). Future work includes 
exploring parameter choices and methods for accessing more extreme 
operating regimes, for example, linear-time clustering heuristics or 
more sensitive amino-acid computations.

In conclusion, skani is almost as fast as sketching-based methods 
for ANI database search, yet it gives a more robust signal when compar-
ing noisy MAGs. Given the overwhelming amount of data generated by 
modern metagenomic studies, we believe skani’s ability to analyze an 
order of magnitude more data while simultaneously giving a stronger 
signal will allow examination of vast metagenomic sequences at a 
higher resolution, unlocking new types of analysis not possible before.
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Methods
Sequence identity estimation
Formally, let G be a string of nucleotides and G′ be a mutated version 
of G where every letter is independently changed to a different letter 
with probability θ. We will define the true ANI to be equal to 1 − θ under 
our model. Under the usual assumption of no repetitive k-mers24, it is 
easy to estimate θ from k-mer matching statistics3,24,25 between G and 
G′. We proved in a previous work that for random, mutating strings, the 
expected number of k-mer matches arising spuriously from repetitive-
ness for a string of length n is ∼ n2

4k
 (Theorem 4 in Shaw and Yu26), so the 

usual assumption of no repetitive k-mers is not a bad one in practice 
for simpler, non-eukaryotic genomes and large enough k.

Sketching methods such as Mash3 or sourmash4 use the above 
framework to calculate ANI through the aforementioned k-mer statis-
tics, which are built around estimating the normalized overlap between 
the k-mers in two genomes. More precisely, these indices take the form 
|A∩B|
f(A,B)  where A and B are the sets of k-mers in two genomes, and f(A, B) 

controls the normalization. The Jaccard index used in Mash3 corre-
sponds to f(A, B) = ∣A ∪ B∣, and the containment index is f(A, B) = ∣A∣  
(ref. 14). The main index we consider is the max-containment index, 
which corresponds to f(A,B) = min(|A|, |B|); minimizing the denomina-
tor maximizes the containment. These indices can approximate ANI 
through simple formulas25,27.

However, when dealing with MAGs, we do not have G and G′ but 
instead fragmented, contaminated and incomplete versions of G and 
G′. The models used in these sketching methods give biased estimates 
for ANI, resulting in underestimated ANIs, because missing k-mer 
matches may be due to mutations, incompleteness, or contamination 
instead of only due to mutations. Thus, all of the above k-mer statistics 
suffer from the following problem: as two MAGs become more incom-
plete, the overlap ∣A ∩ B∣ may decrease more than f(A, B) because a 
homologous k-mer is simply not present in the assembly, therefore 
making the index smaller.

This issue is also present in the context of k-mer based alignment- 
free genome comparison using reads28–30, where a genome could poten-
tially not be fully covered due to the random sampling of reads. In 
our case, however, we have access to incomplete, fragmented assem-
blies instead of reads. Thus, to accurately use k-mer statistics, we first 
find orthologous regions by approximate alignment and then use  
k-mer statistics.

Algorithm outline
The main idea behind skani is to find an approximate set of orthologous 
alignments between two genomes by obtaining a set of minimally over-
lapping k-mer chains7 (the chains do not overlap much; the k-mers may 
overlap within the chain). We can then estimate ANI from the statistics 
of the k-mers in the chains, avoiding costly base-level alignment. The 
main algorithmic steps are listed below.

	 1.	� We use a very sparse set of marker ℓ-mers to estimate 
max-containment index and obtain a putative ANI using  
the FracMinHash method (section Sketching by Frac-
MinHash). We filter out pairs of genomes with putative 
ANI <80% (section Max-containment putative ANI screen-
ing with marker ℓ-mers).

	 2.	� We select the genome with the larger score, defined as 
total sequence length times mean contig length, to be the 
reference and the other to be the query. We then  
fragment the query into 20-kb nonoverlapping chunks. 
In particular, this implies that the ANI computed by skani 
does not depend on the order of the inputs (that is, it is 
symmetric).

	 3.	� We extract 1
c
 fraction of k-mers for both genomes for some c 

(c = 125 by default) as seeds to be used for chaining using 
FracMinHash (section Obtaining sparse seeds for chaining).

	 4.	� For each chunk on the query, we chain the seeds using a 
standard banded, heuristic chaining method against the 
reference (section Chaining sparse k-mer seeds).

	 5.	� We greedily extract minimally overlapping chains between 
the query and the reference and output aligned fraction 
(section Obtaining orthologous chains from homologous 
chains).

	 6.	� We estimate the ANI for each chunk, output the mean ANI 
over all chunks, and perform a learned ANI debiasing step 
(sections Estimating ANI from chains and Nonparametric 
regression for ANI debiasing).

Sketching by FracMinHash
Instead of using the set of all k-mers in a genome, we use a compressed 
representation by sketching, by which we mean selecting only a subset 
of all k-mers. To obtain such a set of k-mers, we use the FracMinHash 
method31: given a hash function h that maps k-mers to [0, M], we select 
the k-mer x as a seed if h(x) < M/γ, where γ controls the fraction of 
selected k-mers. Assuming a uniform hash function, the expected 
fraction of selected k-mers is 

1
γ.

Although FastANI uses minimizer32 k-mers to estimate Jaccard 
index and then ANI, recently, it was shown that Jaccard estimates (and 
thus ANI estimates) from minimizer k-mers are biased27 and depend 
crucially on the window size w. Although this bias is not too bad when 
the w is small (FastANI uses relatively small w = 24), it scales as w 
increases. This means that a minimizer ANI estimator cannot use very 
sparse seeds, since the fraction of selected seeds is 2

w+1
 (ref. 33).

Max-containment putative ANI screening with marker ℓ-mers
skani is not optimized for comparing distant genomes, so we can filter 
out comparisons against distant genomes using a very sparse set of 
FracMinHash ℓ-mers, which we call markers. We use these markers 
to estimate the max-containment index14; the same method is imple-
mented in sourmash25, although sourmash does not use max contain-
ment by default. Let a set of markers obtained from FracMinHash from 
the genome G1 (with γ = cm and ℓ-mers) be denoted as A, and denote B as 
the analogous set from the genome G2. Assuming one of the genomes 
is contained in the other completely, we then calculate an ANI estimate 
between two genomes G1, G2 as

ANIFMH = ( |A ∩ B|
min{|A|, |B|} )

1/ℓ
.

The term on the right inside the exponent is the max-containment 
index. FracMinHash has only negligible bias in calculating the contain-
ment index25 and can be used to obtain an estimate of ANI no matter the 
density (the fraction of selected k-mers). We let ℓ = 21 for our marker 
ℓ-mers and cm = 1,000 by default. We found skani’s ANI algorithm was 
most accurate when ANI ≥ ~82%, so we only compare genomes with 
ANIFMH > 80% as a conservative underestimate.

We can store all markers contained in the reference genomes 
as keys in a hash table with the associated values being the set of 
genomes containing the key (that is, an inverted index). Given a query 
genome, we can then obtain the intersection of all markers for the 
query against the references by checking all of its markers against 
the inverted index. This allows computation of the max-containment 
index in running time dependent on the number of similar genomes 
in the references34. From this, we can obtain ANIFMH, making our filter-
ing step fast as long as our reference and query genomes are diverse. 
When performing all-to-all pairwise comparisons, skani uses this strat-
egy by default. However, when querying a small number of genomes 
against a database, skani iteratively checks all pairs of genomes by 
default because building the hash table takes a nontrivial amount  
of time.

http://www.nature.com/naturemethods
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Obtaining sparse seeds for chaining
The marker ℓ-mers described above are only used for filtering, but not 
for actually estimating the ANI. To actually estimate the ANI, we use 
a hybrid approach via local mapping (without base-level alignment) 
and containment index estimation. The first step in our approach is 
to obtain a different set of FracMinHash k-mers, this time taking γ, the 
sampling rate of k-mers, to be γ = c where c < cm, and k < ℓ. This gives 
a denser, more sensitive set of k-mers to be used as seeds. These new 
k-mers are called seeds instead of markers because we actually use them 
as seeds for k-mer matching and alignment. We note that although we 
could have used other ‘context-independent’ k-mer seeding methods 
that are more ‘conserved’ than FracMinHash35, we found that FracMin-
Hash works well enough for relatively sparse seeds when c ≫ k.

By default, k = 15 and c = 125. We note that the small value of k = 15 
used by default leads to too many repetitive anchors on larger genomes, 
so we mask the top seeds that occur more than 2,500/c times by default. 
See the section Chaining score function and algorithm below for a 
justification of the choice of 2,500/c.

Choosing the c parameter
The main parameter influencing runtime and accuracy is the c param-
eter. The default value of c = 125 works well on a variety of tasks such 
as searching databases and MAG comparison. We found that for very 
fragmented and distant genomes, lowering c may lead to more accurate 
ANI and AF estimates (Extended Data Figs. 5–7 and Supplementary  
Fig. 10). However, the runtime is inversely proportional to c. To guide 
users for choosing c, we suggest three different pre-set values of c 
(in addition to the default) in skani v0.1.2’s help messages based on 
empirical heuristics: a ‘slow’ pre-set with c = 30 for the most accurate 
AF estimates and pairs of genomes with N50 ≈ 3 kb, a ‘medium’ pre-set 
with c = 70 for genomes with ANI ≤95 and N50 ≤10 kb, and a ‘fast’ pre-set 
c = 200 for similar genomes with >95% ANI with N50 >10 kb.

skani’s index file sizes are inversely proportional to c, and a draw-
back of skani is that the index file sizes are larger than pure sketching 
methods (Supplementary Table 3), but the full indices can be stored 
on disk and only read into RAM by skani as needed (see skani imple-
mentation details).

Chaining sparse k-mer seeds
After selecting one genome as a reference and the other as the query, 
we fragment the query into 20-kb nonoverlapping chunks. For each 
chunk, we find a set anchors, which are exact k-mer matches between 
g and g ′. Each anchor can be described by a tuple (x, y), indicating the 
starting position of the matching k-mers on g and g′ respectively. We 
collect the anchors into a strictly increasing subsequence called a 
chain7 based on the ordering (x1, y1) ≺ (x2, y2) if x1 < x2 and y1 < y2.

We sort the anchors (x1, y1), …(xN, yN) in lexicographic order and 
let S(i, j) be the score of chaining the ith anchor to the jth anchor. We 
wish to find a strictly increasing subsequence (based on our previously 
defined ordering ≺ ) of anchors (i1, i2, …) maximizing ∑ℓS(iℓ, iℓ−1). The 
optimal such subsequence can be calculated in O(N2) time where N is 
the number of anchors by the following dynamic programming: letting 
f(i) be the optimal score of the chain up to the ith anchor, let

f(i) = max{max
i>j≥1

f( j) + S(i, j),0}.

After calculating f(i) for each anchor i, we can obtain a set of optimal 
chains. We describe this in detail below.

Chaining score function and algorithm
The chaining problem can be solved optimally in sub-quadratic time for 
a variety of chaining costs8,9, but we opt for a simple heuristic method 
that is fast and good enough for our purposes instead. Letting (xi, yi) 
and (xj, yj) be the ith and jth anchors, we define our chaining cost to 
simply be S(i, j) = 20 − ∣(yj − yi) − (xj − xi)∣. Notably, we allow and do not 

penalize overlapping k-mers because this would bias the ANI calcula-
tion, as we want the chain to include all k-mers that arise from sequence 
homology. We also do not need to use more sophisticated scoring 
functions because we do not actually need to worry about base-level 
alignments or finding the longest chain. We use a banded dynamic 
programming method where instead of iterating over all j < i, we iterate 
only up to i − A < j < i or stop if ∣xi − xj∣ > B for some constants A and B.  
Thus, the worst-case time is O(AN) instead of O(N2). By default, we 
let A = B/c, where B = 2,500 and c is the seed subsampling rate. This 
banded procedure is a simpler version of minimap2.23’s chaining 
procedure, which also employs a heuristic to stop chaining early via 
the --max-chain-skip parameter.

Obtaining homologous chains by backtracking
For each chunk, after computing all optimal scores f(i) over all anchors 
using banded dynamic programming, we obtain optimal chains using 
the standard method of backtracking. That is, we store an array of 
pointers corresponding to anchors, where the pointer points to the 
optimal predecessor determined by the dynamic programming. For 
any anchor, we could then trace through this array to obtain the best 
chain corresponding to each anchor.

We wish to obtain a set of chains that do not share any anchors for 
each chunk. To do this, we partition the anchors into disjoint sets using 
a union-find data structure, taking unions of two anchor representa-
tives whenever one anchor is an optimal predecessor of another. We 
then find the best f(i) within each disjoint set and backtrack to obtain 
the optimal chain within each disjoint set. We take the set of all such 
chains over all chunks and call these chains homologous chains.

Obtaining orthologous chains from homologous chains
It is possible that a single region chains to multiple paralogs, so the 
homologous chains obtained above may not be orthologous. We 
will use the term ‘orthologous’ loosely in the same sense as other 
ANI methods6 – we denote a set of mappings (corresponding to 
chains) to be orthologous if they do not overlap too much along 
one of the genomes (that is, no duplicated one-to-all mappings). To 
obtain orthologous chains, we use a greedy minimally overlapping 
chain-finding procedure. We first sort every homologous chain (over 
all chunks) by its score and examine the best chain, only examining 
chains with three or more anchors. If the overlap between this current 
best chain and any other already selected chains is less than 50% of 
the current chain’s length, we select this best homologous chain as 
an orthologous chain and then examine the next best homologous 
chain. We repeat this procedure until all remaining homologous 
chains overlap an orthologous chain by more than 50% and return 
all orthologous chains.

This procedure is similar in spirit to the reciprocal mapping 
method used in other ANI methods6,19 to capture orthology, but it 
avoids performing alignment twice, making running time twice as 
fast. Other more sophisticated methods36 exist for finding sets of 
orthologous alignments but we found this heuristic to be good enough 
for our method.

Estimating ANI from chains
For a given chunk, let α be the number of anchors in the orthologous 
chains on that chunk, and M be the number of seeds in the chunk. Then 
we estimate an ANI for each chunk by

̂ANI = 1 − θ̂ = ( αM )
1/k
.

This comes from modeling each k-mer as being an exact match and 
thus an anchor with probability (1 − θ)k under a simple, independent 
mutation model, so the expected number of anchors is (1 − θ)k times 
the number of k-mers25.
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However, the above formula fails when only part of the chunk is 
homologous to the reference, which may happen due to incomplete-
ness of MAGs or structural variation. This will underestimate the ANI, 
since not all seeds in the chunk arise from sequence homology. Let 
MLR be the number of seeds in the chunk contained only between the 
leftmost and rightmost anchor over all minimally overlapping chains, 
and consider

̂ANILR = ( α
MLR

)
1/k
.

If ̂ANILR > 0.950 and the number of bases covered by in between these 
flanking anchors is >4*c, then we use ̂ANILR  as the estimate instead. 
This heuristic comes from the observation that when the ANI is large 
enough, our sparse chains are relatively accurate, so we can truncate 
the chunk with good accuracy. However, if ANI is small, it is more pos-
sible that this heuristic incorrectly excludes seeds that arise from 
sequence homology, so we avoid applying the heuristic to distant pairs 
of genomes.

Estimating final ANI and AF
To obtain our final ANI estimates, we take a weighted mean over all 
chunks with weights given by M (or MLR if the heuristic is applied 
instead), the number of seeds in the chunk. We also report the refer-
ence and query alignment fraction as the sum of the bases covered by 
all chains divided by the respective genome size. The number of bases 
in a chain is the last anchor position minus the first anchor position 
plus 2*c, where the 2*c term is to account for k-mers near the edge of 
the chain missed by subsampling. By default, we only output a final ANI 
value if the alignment fraction is greater than 15%.

Because our final ANI estimate is just a weighted mean over the 
ANIs of the chunks, once we have these ANIs, we can quickly do boot-
strapping by resampling the chunks and calculating the weighted 
mean over the resamples. We use 100 iterations and only proceed if 
there are >10 chunks, outputting the 5th and 95th percentile ANIs to 
be our final 90% confidence interval. We found that the bootstrap gave 
reasonable ANI confidence intervals over skani’s inherent uncertainty 
(for example k-mer seeding variance), but we stress that it does not 
account for any systematic biases of skani’s ANI estimator relative to 
other methods.

Nonparametric regression for ANI debiasing
The chaining procedure can overestimate ANI, because the chains may 
exclude homologous but mutated k-mers near the edges of the chain 
due to the local mapping procedure. To handle this, we introduce an 
optional post-processing regression step to debias skani.

We trained a gradient boosted regression tree with absolute 
deviation loss where the target variable is ANIm’s ANI calculation, 
and the features consist of the following: skani’s ANI, standard 
deviation of skani’s putative ANI distribution, and the 90th per-
centile contig lengths in the reference and query, and the average 
length of the k-mer chains, giving five features in total. We trained 
skani on a large, diverse set of 52,515 MAGs from Nayfach et al2. We 
computed all-to-all pairwise ANI values with >90% ANI according to 
an untrained version skani, and ran ANIm on the resulting 1,004,213 
pairs of genomes. To tune hyperparameters such as tree depth, 
number of trees, and learning rate, we chose a set of human gut 
MAGs37 that comes from a separate study than the training set and 
the datasets used in our results and then optimized our parameters 
over this new dataset.

To show that skani is not simply memorizing the organisms in 
the dataset, we partitioned this training set into two sets, A and B, 
where each part is ‘disjoint’ from one another in the sense that skani 
does not output an ANI estimate between any MAG in A and B due to 
low aligned fraction (<15%). We show in Supplementary Figs. 6 and 11 

that this debiasing procedure still corrects the ANI to be closer to a 
MUMmer-based ground truth.

We only debias comparisons with putative ANI > 90% 
and > 150, 000 aligned bases. We enable the debiasing procedure by 
default when the parameter c is ≥70. We noticed that for smaller c, bias 
is less of an issue. We trained two models, one for c = 125 (default) and 
another for c = 200. If the user selects a specific value of c, the model 
with corresponding c closer to the selected value is used. In particular, 
our results with c = 125 have debiasing enabled, but our results with 
c = 30 do not.

skani implementation details
skani is implemented in the rust, a systems-level programming lan-
guage, for speed. skani implements four primary subcommands: 
sketch, dist, search and triangle. The sketch command stores genomes 
in sketched representation (k-mer seeds and markers) for drop-in 
replacement for the other three commands. We use the same fast 
invertible k-mer hash function as minimap2 (ref. 38) for sketching. Addi-
tionally, skani uses AVX2 SIMD instructions to do vectorized seeding 
of 64-bit k-mers in 256-bit lanes when AVX2 instructions are detected, 
which we found to speed up sketching by approximately 30%. Chaining 
was implemented naively with no hardware accelerations.

The three commands for sequence comparison, dist, triangle, 
and search, all calculate AF and ANI but have different runtime behav-
ior. dist and triangle keeps all sketches in RAM, whereas the search 
command only keeps the marker k-mers in memory and allows for 
on-the-fly loading of the full sketch for each genome into RAM if 
the marker-based ANI threshold for the comparison is sufficiently 
high (≥ 80% by default), afterward discarding the index from RAM. 
This makes search much more memory efficient and possibly more 
time-efficient than dist when querying a large database, but it is 
IO-bound and not as efficient as dist when performing all-to-all com-
parisons. The triangle command is similar to dist but is limited to 
computing distance matrices, but because skani is symmetric, it 
performs only n(n − 1)/2 comparisons instead of all n2. The inverted 
index for marker k-mer filtering is enabled by default in triangle, and 
otherwise in search and dist when the number of query genomes is 
≥100. See Supplementary Fig. 12 for a benchmark on skani’s runtime 
scaling with thread usage.

Benchmarking details
All runtimes were benchmarked on a Intel Xeon CPU at 3.10 GHz 
machine with 64 cores and 240 GB RAM as a Google Cloud instance with 
a persistent SSD disk. Unless otherwise specified, all programs were run 
using 50 threads. Exact commands are shown in Supplementary Table 1.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets are also specified in Supplementary Table 2 with descrip-
tions. The Pasolli et al. 25-50 dataset1 is available at http://segatalab.
cibio.unitn.it/data/Pasolli_et_al.html. Ocean archaea MAGs12 are avail-
able at https://doi.org/10.6084/m9.figshare.c.5564844.v1. Soil MAGs17 
are available at https://figshare.com/collections/Genomes_for_consist-
ent_metagenome-derived_metrics_verify_and_define_bacterial_spe-
cies_boundaries/4508162/1. Ocean eukaryotic MAGs15,16 are available 
at https://osf.io/gm564/ and https://www.genoscope.cns.fr/tara/. 
Nayfach et al. MAGs2 are available at https://genome.jgi.doe.gov/GEMs. 
E. coli, B. anthracis, and the D5 dataset genomes are available at http://
enve-omics.ce.gatech.edu/data/fastani. GTDB-R207 (ref. 18) database 
is available at https://gtdb.ecogenomic.org. B. fragilis genomes and the 
refseq-rc database is available at https://zenodo.org/record/8058221 
(ref. 39).
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Code availability
skani is available at https://github.com/bluenote-1577/skani. Scripts 
and notebooks for reproducing all figures is available at https://github.
com/bluenote-1577/skani-test. skani v0.1.4’s source code is deposited 
at https://zenodo.org/record/8058221 (ref. 39).

References
24.	 Blanca, A., Harris, R. S., Koslicki, D. & Medvedev, P. The statistics of 

k-mers from a sequence undergoing a simple mutation process 
without spurious matches. J. Comput. Biol. 29, 155–168 (2022).

25.	 Hera, M. R. et al. Deriving confidence intervals for mutation rates 
across a wide range of evolutionary distances using fracminhash. 
Genome Res. 33, 1061–1068 (2023).

26.	 Shaw, J. & Yu, Y. W. Proving sequence aligners can guarantee 
accuracy in almost O(m log n) time through an average-case 
analysis of the seed-chain-extend heuristic. Genome Res. 33, 
1175–1187 (2023).

27.	 Belbasi, M., Blanca, A., Harris, R. S., Koslicki, D. & Medvedev, 
P. The minimizer Jaccard estimator is biased and inconsistent. 
Bioinformatics 38, i169–i176 (2022).

28.	 Tang, K., Ren, J. & Sun, F. Afann: Bias adjustment for 
alignment-free sequence comparison based on sequencing data 
using neural network regression. Genome Biol. 20, 266 (2019).

29.	 Fan, H., Ives, A. R., Surget-Groba, Y. & Cannon, C. H. An assembly 
and alignment-free method of phylogeny reconstruction from 
next-generation sequencing data. BMC Genom. 16, 522 (2015).

30.	 Sarmashghi, S., Bohmann, K., P. Gilbert, M. T., Bafna, V. & Mirarab, 
S. Skmer: Assembly-free and alignment-free sample identification 
using genome skims. Genome Biol. 20, 34 (2019).

31.	 Irber, L. et al. Lightweight compositional analysis of metagenomes 
with FracMinHash and minimum metagenome covers. Preprint at 
bioRxiv https://doi.org/10.1101/2022.01.11.475838 (2022).

32.	 Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M. & Yorke, J. 
A. Reducing storage requirements for biological sequence 
comparison. Bioinformatics 20, 3363–3369 (2004).

33.	 Schleimer, S., Wilkerson, D. S. & Aiken, A. Winnowing: Local 
algorithms for document fingerprinting. In Proceedings of the 2003 
ACM SIGMOD International Conference on Management of Data, 
SIGMOD ’03, 76–85 (Association for Computing Machinery, 2003).

34.	 Yu, Y. W., Daniels, N. M., Danko, D. C. & Berger, B. Entropy-scaling 
search of massive biological data. Cell Syst. 1, 130–140 (2015).

35.	 Shaw, J. & Yu, Y. W. Theory of local k-mer selection with applications 
to long-read alignment. Bioinformatics 38, 4659–4669 (2022).

36.	 Frith, M. C. & Kawaguchi, R. Split-alignment of genomes finds 
orthologies more accurately. Genome Biol. 16, 106 (2015).

37.	 Zeng, S. et al. A compendium of 32,277 metagenome-assembled 
genomes and over 80 million genes from the early-life human gut 
microbiome. Nat. Commun. 13, 5139 (2022).

38.	 Li, H. Minimap2: Pairwise alignment for nucleotide sequences. 
Bioinformatics 34, 3094–3100 (2018).

39.	 Shaw, J. & Yu, Y.W. skani experiment files and source code. Zenodo 
https://zenodo.org/record/8058221 (2023).

Acknowledgements
J.S. was supported by an NSERC CGS-D scholarship. Work supported 
by Natural Sciences and Engineering Research Council of Canada 
(NSERC) grant RGPIN-2022-03074 and DND/NSERC Supplement 
DGDND-2022-03074.

Author contributions
J.S. conceived the project, designed the algorithms and implemented 
skani. Y.W.Y. supervised and contributed to the development of the 
methods. Both authors wrote and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41592-023-02018-3.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41592-023-02018-3.

Correspondence and requests for materials should be addressed to 
Jim Shaw or Yun William Yu.

Peer review information Nature Methods thanks Donovan Parks,  
Rob Patro, and the other, anonymous, reviewer(s) for their  
contribution to the peer review of this work. Peer reviewer reports are 
available. Primary Handling Editor: Lin Tang, in collaboration with the 
Nature Methods team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://github.com/bluenote-1577/skani
https://github.com/bluenote-1577/skani-test
https://github.com/bluenote-1577/skani-test
https://zenodo.org/record/8058221
https://doi.org/10.1101/2022.01.11.475838
https://zenodo.org/record/8058221
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1038/s41592-023-02018-3
http://www.nature.com/reprints


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 1 | ANI benchmark under simulated fragmentation and 
incompleteness. We fragmented an E. coli genome to obtain nonoverlapping 
contigs with lengths distributed according to an exponential distribution 
(mean length on the x-axis) and then retained each contig with some probability 

(probability on the y-axis) if the length was ≥ 1000 bp. These simulated MAGs  
(20 for each pair length and probability parameters) were compared to each 
other and the average is shown.
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Extended Data Fig. 2 | ANIm and sourmash experiments corresponding to the experiments shown in Fig. 1. sourmash max-containment estimates ANI using the 
max-containment index, corresponding to the –max-containment option in sourmash.
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Extended Data Fig. 3 | ANI sensitivity to fragmentation and incompleteness. The same experiment was run as in Fig. 1b on Pasolli et al 25-50, except we used N50 as 
a covariate instead of contamination.
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Extended Data Fig. 4 | Violin plot of cophenetic correlation deviation for 
each method with respect to ANIm on the Pasolli 25-50 data set. We took 
all species-level bins in the Pasolli data set with > 25 and < 50 genomes and 
computed distance matrices for all ANI methods. sourmash max-contain 
implies the --max-containment option in sourmash, otherwise sourmash was 
run with default parameters. For each bin, we compared the resulting clustering 

dendrograms for each method against ANIm’s distance matrix by taking 
the cophenetic correlation. We plot the difference between this cophenetic 
correlation and the cophenetic correlation of ANIm’s dendrogram to itself 
(which may be < 1 since ANIm’s average-cluster dendrogram may not be perfectly 
concordant with itself). The legend shows the mean deviation of each method’s 
cophenetic correlation from ANIm’s cophenetic correlation.
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Extended Data Fig. 5 | ANI deviation from ANIm for four data sets of MAGs 
with > 90% ANI (as predicted by ANIm). See Supplementary Table 2 for data set 
descriptions. skani c-30 indicates skani with the parameter c set to 30, and skani-
nl indicates no learned ANI regression debiasing (with default c = 125). sour-mc 
and sour correspond to sourmash with max-contain enabled and disabled. Blue 

lines show 5 and -5 deviation, and the legend indicates the 1 and 99 percentile 
deviations as well as their difference. The best 1% to 99% deviation distance for 
each data set is either skani or skani-c30. Lowering the c parameter generally 
improves results slightly, but is not guaranteed to do so; the default c = 125 gives 
results more in line with ANIm on the Pasolli 25-50 data set.
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Extended Data Fig. 6 | Aligned fraction correlation between ANIm and 
skani with default parameters (c = 125), skani with c = 30, and FastANI. Only 
MAGs with > 90% ANI as predicted by ANIm are compared. Lowering the value 
of c for skani gives a more accurate signal. skani with default parameters still 

outperforms FastANI in terms of Pearson R for all data sets, and skani with  
c = 30 has near perfect correspondence with ANIm. The noisier results for 
archaea MAGs are likely due to its small N50 (median 5863 bp) and genome length 
(median 1.27 Mbp).
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Extended Data Fig. 7 | Aligned fraction deviation from ANIm as a function of ANI. Dashed lines indicate the 1 and 99 percentiles of aligned fraction deviation from 
ANIm. Aligned fraction gets more accurate for skani as ANI increases. Decreasing c for skani improves the relationship between ANI and aligned fraction and decreases 
the variance as well.
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