
Nature Methods | Volume 20 | November 2023 | 1661–1665 1661

nature methods

https://doi.org/10.1038/s41592-023-02018-3Brief Communication

Fast and robust metagenomic sequence
comparison through sparse chaining
with skani

Jim Shaw    1  & Yun William Yu    1,2,3 

Sequence comparison tools for metagenome-assembled genomes (MAGs)
struggle with high-volume or low-quality data. We present skani
(https://github.com/bluenote-1577/skani), a method for determining
average nucleotide identity (ANI) via sparse approximate alignments. skani
outperforms FastANI in accuracy and speed (>20× faster) for fragmented,
incomplete MAGs. skani can query genomes against >65,000 prokaryotic
genomes in seconds and 6 GB memory. skani unlocks higher-resolution
insights for extensive, noisy metagenomic datasets.

Consider the fundamental problem of computing sequence-to-sequence
similarity between metagenome-assembled genomes (MAGs). Modern
studies generate hundreds of thousands of MAGs1,2, and searching these
MAGs against a database or computing all pairwise similarities takes bil-
lions of comparisons; this is infeasible with traditional alignment-based
methods. Thus, large-scale sequence comparison for metagenomic
data is dominated by sketching methods. Sketching methods sum-
marize datasets into small collections of k-mers; these sketches can
be efficiently compared against one another and return an average
nucleotide identity (ANI) estimate.

Unfortunately, sketching methods such as Mash3 or sourmash4
may underestimate ANI when genome incompleteness is present5.
The decrease has nothing to do with the genetic distance between the
genomes; it is simply an artefact of the assembly being incomplete.
Even ‘medium-quality’ MAGs typically only require >50% complete-
ness1, so this is an issue in practice. On the other hand, alignment-based
methods are able to estimate ANI from only the orthologous regions,
so incompleteness is not an issue. Additionally, the fraction of the
genomes aligned to one another (the aligned fraction) is a useful sta-
tistic that pure sketching methods do not estimate. There is thus a need
for algorithms that are fast, like sketching methods, yet robust to noise
due to assembly artefacts, like alignment methods.

We developed skani, a fast, robust tool for calculating aligned
fraction and ANIs in the >82% range. skani’s ANI method is robust
against incomplete and fragmented MAGs, yet it is multiple orders of
magnitude faster than alignment-based methods and over an order of

magnitude faster than even the state-of-the-art FastANI6. skani uses a
very sparse k-mer chaining7–9 procedure to quickly find orthologous
regions between two genomes. This allows for sequence identity esti-
mation using k-mers on only the shared regions between two genomes
(Fig. 1a), avoiding the pitfalls of alignment-ignorant sketching methods.
Like BLAST-based ANI methods, skani breaks genomes into nonoverlap-
ping fragments, estimates the ANI for each fragment and then averages
the ANI to output an ANI estimate. We then use a trained regression
model to debias our ANI estimates (Methods).

We first verified that existing ANI methods are indeed sensitive
to incompleteness and fragmentation in Extended Data Fig. 1. In a
synthetic test, fragmented, incomplete yet identical genomes had ANI
estimates that were systematically lower than 100% for all methods but
ANIm10,11, a slow but accurate method. We subsequently chose ANIm as
a baseline when comparing MAGs. Mash was the most affected, with up
to a difference of 4% ANI at 50% completeness, which can cause two very
similar genomes of up to 99% ANI to be classified as different species
when subject to the standard 95% ANI species threshold6. FastANI was
sensitive to fragmentation (low N50), which is why a minimum N50 of
10,000 is used in the original study6, but that N50 requirement is not
met in many real experiments1,12. We additionally show simulations
with mutations and chimeric genomes in Supplementary Figs. 1–3.

Next, we showed on real MAGs that only skani and ANIm are robust
to MAG quality for high-resolution ANI calculations. In Fig. 1b, we com-
pared subspecies level MAGs generated by Pasolli et al1, a large collec-
tion of medium-quality and high-quality short-read assembled MAGs.

Received: 7 February 2023

Accepted: 22 August 2023

Published online: 21 September 2023

 Check for updates

1Department of Mathematics, University of Toronto, Toronto, Ontario, Canada. 2Computer and Mathematical Sciences, University of Toronto
at Scarborough, Toronto, Ontario, Canada. 3Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.

 e-mail: jshaw@math.toronto.edu; ywyu@cmu.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02018-3
http://orcid.org/0000-0002-6990-7829
http://orcid.org/0000-0002-8275-9576
https://github.com/bluenote-1577/skani
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-02018-3&domain=pdf
mailto:jshaw@math.toronto.edu
mailto:ywyu@cmu.edu

Nature Methods | Volume 20 | November 2023 | 1661–1665 1662

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

To quantify the concordance of the clustering against ANIm,
we used cophenetic correlation13 (Supplementary Note). In Fig. 1c
and Extended Data Fig. 4, we see that skani has a better cophe-
netic correlation with respect to ANIm than all other compared
methods. Notably, the ordering of the methods with respect to
cophenetic correlation in Extended Data Fig. 4 is skani > sourmash
max-contain14 > FastANI > mash; this exactly agrees with the order-
ing using R2 values from the contamination-incompleteness plots in
Fig. 1b and Extended Data Fig. 2, implying that MAG assembly artefacts
are indeed to blame for the clustering discordance.

We explore skani on three additional datasets: ocean eukaryotic
MAGs15,16, ocean archaea MAGs12 and soil prokaryotic MAGs17, which

As incompleteness and contamination increase, Mash and FastANI
trend toward lower ANI, but this is not seen for ANIm (Extended Data
Fig. 2) or skani. Extended Data Fig. 3 confirms our simulation results and
shows that incompleteness and fragmentation are to blame for the bias.

Because ANI underestimations due to MAG quality are system-
atically biased, such ANI estimates can strongly impact downstream
applications. We show in Fig. 1c that the cluster heatmaps obtained by
average-linkage clustering for a species-level bin differ greatly between
ANI methods. skani’s heatmap qualitatively resembles ANIm’s heatmap
(Extended Data Fig. 2) more closely than the other methods, yet it
is >500 times faster than ANIm and >50 times faster than FastANI for
computing the distance matrix (Supplementary Fig. 5).

Comparing incomplete
MAGs Seed and obtain k-mer

anchors

Density

Estimate ANI from distribution,
aligned fraction (AF) from chains

Reference
MAG

Query
MAG

ANI = 95.7, AF = 80.5

Continue if putative
k-mer estimated ANI is

>80%

Fragment query into chunks,
obtain orthologous non

overlapping chains

Ignore fragment with
no orthologous chains

ANI estimates from
fragments

FastANI (195 genomes, CP = 0.718)Skani (195 genomes, CP = 0.968) Mash (195 genomes, CP = 0.507)

97.5

98.0

98.5

99.0

99.5

100.0

AN
I

a

b

c

0 10 20 30 40 50
0

1

2

3

4

C
on

ta
m

in
at

io
n

ANI = 99.36 – 0.001x + 0.01y
R2 = 0.001

Skani (41,494 comparisons)

0 10 20 30 40 50

Incompleteness

ANI = 99.48 – 0.031x – 0.11y
R2 = 0.262

FastANI (41,494 comparisons)

0 10 20 30 40 50

ANI = 99.25 – 0.051x – 0.02y
R2 = 0.404

Mash (41,494 comparisons)

97.5

98.0

98.5

99.0

99.5

100.0

AN
I

^ ^ ANI1 = ()^ 2 1/k

4

ANI2 = ()^ 2 1/k

5

Fig. 1 | a, Algorithm overview of skani. b, ANI sensitivity to contamination
and incompleteness. We took all pairs of MAGs with >99% ANI according to
ANIm from species-level bins generated by Pasolli et al.1 with >25 and <50
genomes, leading to a diverse set of 41,494 pairs of genomes. We re-evaluated
the ANI of each method and performed ordinary least-squares regression with
incompleteness and contamination (averaged between the pair and obtained
by CheckM22) as covariates. Estimated parameters and R2 values are shown;
only hexagons with >20 data points are visible (see Supplementary Fig. 4 for

density information). c, Average-linkage cluster heatmap for each method on bin
number 2328 from Pasolli et al.1 (classified as Alistipes ihumii) with 195 genomes.
Cophenetic correlation (CP) of each method’s dendrogram (with ANIm’s distance
matrix as a ground truth) is shown. skani’s high cophenetic correlation indicates
that its dendrogram is concordant with ANIm’s dendrogram, which we show in
Extended Data Fig. 2. The Robinson-Foulds distances23 for skani, FastANI and
Mash’s dendrograms against ANIm’s average-linkage tree are 0.489, 0.713 and
0.823, respectively.

http://www.nature.com/naturemethods

Nature Methods | Volume 20 | November 2023 | 1661–1665 1663

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

in addition to the Pasolli et al. dataset gives four datasets in total.
Extended Data Fig. 5 shows that skani’s results generalize to a diverse set
of genomes, including eukaryotic MAGs with a median size of 17.6 Mbp
(and 32 MAGs of size >100 Mbp). When comparing each method’s
deviation from ANIm and considering the 1 to 99 percentile deviations,
skani has the smallest 1 to 99 percentile interval lengths, indicating
robustness. Extended Data Figs. 6 and 7 show that skani has a better
linear aligned fraction correlation with ANIm than FastANI. The aligned
fraction accuracy can be improved further by controlling subsampling
rate of the k-mers (parameter c in Methods).

An important task is classifying MAGs (or isolate genomes) by
searching against a database of reference genomes. Such databases

represent a diverse collection of genomes where only a fraction of
the genomes are similar to the query. Therefore, sensitively search-
ing against each reference is unnecessary. To enable efficient data-
base search, we augmented skani with a quick sketching-based ANI
filter against distant genomes before performing a more accurate
ANI computation.

Figure 2 shows that skani can query an Escherichia coli genome
against the GTDB R207 database18 (>65,000 genomes) in comparable
speed and memory to Mash. skani is much faster than FastANI for
querying (>20 times on the E. coli dataset) and is >2.5 times faster than
Mash for indexing. Furthermore, skani can do all-to-all comparisons
on a set of 4,233 bacterial genomes as quickly as Mash due to the fast

80 85 90 95 100

OrthoANIu ANI

80

85

90

95

100

M
et

ho
d

AN
I

Pearson R, MAE
(0.968, 0.209)
(0.856, 0.173)
(0.981, 0.131)

FastANI
Mash
Skani

E. coli genomes (n = 4,350, m = 1)

FastANI
Mash
Skani

85 90 95 100

OrthoANIu ANI

85

90

95

100

M
et

ho
d

AN
I

Pearson R, MAE
(0.998, 0.556)
(0.991, 0.765)
(0.995, 0.741)

FastANI
Mash
Skani

GTDB database (n = 65,703, m = 1)

FastANI
Mash
Skani

80 85 90 95 100

OrthoANIu ANI

80

85

90

95

100

M
et

ho
d

AN
I

Pearson R, MAE
(0.984, 1.215)
(0.955, 2.448)
(0.976, 1.279)

FastANI
Mash
Skani

Refseq-rc all-to-all
(n = 4,233, m = 4,233)

FastANI
Mash
Skani

a

b

c

0 20 40 60

Wall time (seconds)

Skani

Mash

FastANI*

3.55

18.19

63

Indexing time (E. coli)

0 50 100

Wall time (seconds)

Skani search

Mash dist

FastANI*

4.17

0.26

101

Querying + loading
time (E. coli)

0 5 10 15

Wall time (seconds)

Skani

Mash

3.1

14.79

Indexing time (refseq-rc)

0 50 100 150

Wall time (seconds)

Skani triangle

Skani search

Mash triangle

11.38

174.8

65.84

Querying + loading time
(refseq-rc)

0 100 200

Wall time (seconds)

Skani

Mash

72.5

196.56

Indexing time (GTDB)

0 2.5 5.0 7.5

Wall time (seconds)

Skani search

Mash dist

8.72

1.35

Querying + loading
time (GTDB)

0 20 40

Peak RAM (GB)

Skani search

Mash dist

FastANI*

1.29

0.09

51.25

Peak memory (E. coli)

0 5 10

Peak RAM (GB)

Skani triangle

Skani search

Mash triangle

10.7

2.53

0.1

Peak memory (refseq-rc)

0 2 4

Peak RAM (GB)

Skani search

Mash dist

5.71

1.1

Peak memory (GTDB)

Fig. 2 | a, ANI benchmarking with n reference genomes and m query genomes.
From left to right: (1) querying a single E. coli K12 genome against a collection of
E. coli genomes, (2) querying a single E. coli K12 genome against the GTDB R207
database and (3) all-to-all comparisons on the refseq-rc (representative and
complete bacterial genomes) database. OrthoANIu20 is used as a baseline. We
only analyzed data points for which all methods had a predicted value. Pearson
R value and mean absolute error (MAE) are shown for each dataset. Dataset
descriptions can be found in Supplementary Table 2. b, Indexing and querying
wall time for each dataset (50 threads). See Supplementary Fig. 8 for CPU times

instead. Subcommands used are shown for each method when applicable.
FastANI indexing and query times were estimated from the output. skani search
and skani triangle are different subcommands that give the same results, but
skani search only loads genomes into RAM as needed and discards after usage.
FastANI times are not shown for the GTDB and refseq-rc datasets for fairness to
FastANI due to FastANI’s ability to output a slightly larger range of ANI values
(approximately >75% for FastANI versus >82% for skani). c. Peak memory usage
for each method and subcommand. Sketching took negligible memory for skani
and Mash.

http://www.nature.com/naturemethods

Nature Methods | Volume 20 | November 2023 | 1661–1665 1664

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

filtering of unrelated genomes. FastANI takes much longer (Supple-
mentary Fig. 9), but FastANI does more comparisons due to a slightly
larger valid ANI range.

In Fig. 2a and Supplementary Fig. 7, we benchmarked skani against
OrthoANIu19,20 (which we shorten to ANIu), a faster but almost-identical
analogue of the BLAST-based ANIb, as a baseline. We did not use ANIm,
because ANIm overestimates ANI for pairs of genomes with <90%
ANI20,21. skani outputs an ANI estimate only if one of the genomes has
predicted AF ≥15% by default, which ends up giving reasonable ANIs
down to the 82% range on the three datasets shown. skani’s accu-
racy is usually better than Mash but slightly worse than FastANI for
reference-quality genomes, skani is better on the E. coli dataset, which
includes many fragmented, possibly incomplete genomes that give rise
to many Mash and FastANI outliers. The results for FastANI improved
(Pearson R from 0.974 to 0.994) on the E. coli dataset if we removed
genomes with N50 <10,000, giving the exact same Pearson R value as
the originally reported FastANI results6. Thus, skani gives only slightly
less accurate values than FastANI on reference-quality genomes with
the assurance of robustness for low-quality assemblies.

We have shown that skani improves on the state-of-the-art for
metagenomic sequence comparison. skani’s key operating regimes
are for medium-to-high ANI (>82%), comparisons against diverse sets
of genomes (such as databases), and fast all-to-all comparisons for
up to tens of thousands of highly similar genomes. skani is limited in
extreme regimes, such as low ANI or comparing hundreds of thousands
of similar genomes (for example all-to-all calculation for the >200,000
E. coli genomes currently available in RefSeq). Future work includes
exploring parameter choices and methods for accessing more extreme
operating regimes, for example, linear-time clustering heuristics or
more sensitive amino-acid computations.

In conclusion, skani is almost as fast as sketching-based methods
for ANI database search, yet it gives a more robust signal when compar-
ing noisy MAGs. Given the overwhelming amount of data generated by
modern metagenomic studies, we believe skani’s ability to analyze an
order of magnitude more data while simultaneously giving a stronger
signal will allow examination of vast metagenomic sequences at a
higher resolution, unlocking new types of analysis not possible before.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-02018-3.

References
1.	 Pasolli, E. et al. Extensive unexplored human microbiome

diversity revealed by over 150,000 genomes from
metagenomes spanning age, geography, and lifestyle. Cell 176,
649–662 (2019).

2.	 Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat.
Biotechnol. 39, 499–509 (2021).

3.	 Ondov, B. D. et al. Mash: Fast genome and metagenome distance
estimation using MinHash. Genome Biol. 17, 132 (2016).

4.	 Pierce, N. T., Irber, L., Reiter, T., Brooks, P. & Brown, C.
T. Large-scale sequence comparisons with sourmash.
F1000Research 8, 1006 (2019).

5.	 Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: A tool for
fast and accurate genomic comparisons that enables improved
genome recovery from metagenomes through de-replication.
The ISME Journal 11, 2864–2868 (2017).

6.	 Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K.
T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic
genomes reveals clear species boundaries. Nat. Commun. 9,
5114 (2018).

7.	 Abouelhoda, M. I. & Ohlebusch, E. Chaining algorithms
for multiple genome comparison. J. Discrete Algorithms 3,
321–341 (2005).

8.	 Jain, C., Gibney, D. & Thankachan, S. V. Co-linear chaining with
overlaps and gap costs. In Pe’er, I. (ed.) Research in Computational
Molecular Biology, Lecture Notes in Computer Science, 246–262
(Springer International Publishing, 2022).

9.	 Mäkinen, V. & Sahlin, K. Chaining with Overlaps Revisited. In
Gørtz, I. L. & Weimann, O. (eds.) 31st Annual Symposium on
Combinatorial Pattern Matching (CPM 2020), vol. 161, Leibniz
International Proceedings in Informatics (LIPIcs), 25:1–25:12
(Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020).

10.	 Richter, M. & Rosselló-Móra, R. Shifting the genomic gold
standard for the prokaryotic species definition. Proc. Natl Acad.
Sci. USA 106, 19126–19131 (2009).

11.	 Marçais, G. et al. MUMmer4: A fast and versatile genome
alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

12.	 Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog
contains over 50,000 prokaryotic genomes originated from
various marine environments. Sci. Data 9, 305 (2022).

13.	 Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by
objective methods. Taxon 11, 33–40 (1962).

14.	 Koslicki, D. & Zabeti, H. Improving MinHash via the containment
index with applications to metagenomic analysis. Appl. Math.
Comput. 354, 206–215 (2019).

15.	 Alexander, H. et al. Eukaryotic genomes from a global
metagenomic dataset illuminate trophic modes and
biogeography of ocean plankton. Preprint at bioRxiv https://doi.
org/10.1101/2021.07.25.453713 (2022).

16.	 Delmont, T. O. et al. Functional repertoire convergence of
distantly related eukaryotic plankton lineages abundant in the
sunlit ocean. Cell Genom. 2, 100123 (2022).

17.	 Olm, M. R. et al. Consistent metagenome-derived metrics
verify and delineate bacterial species boundaries. mSystems 5,
e00731–19 (2020).

18.	 Parks, D. H. et al. A standardized bacterial taxonomy based on
genome phylogeny substantially revises the tree of life. Nat.
Biotechnol. 36, 996–1004 (2018).

19.	 Lee, I., Ouk Kim, Y., Park, S.-C. & Chun, J. OrthoANI:
An improved algorithm and software for calculating
average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66,
1100–1103 (2016).

20.	 Yoon, S.-H., Ha, S.-m, Lim, J., Kwon, S. & Chun, J. A large-scale
evaluation of algorithms to calculate average nucleotide identity.
Antonie van Leeuwenhoek 110, 1281–1286 (2017).

21.	 Palmer, M., Steenkamp, E. T., Blom, J., Hedlund, B. P. &
Venter, S. N. All ANIs are not created equal: Implications
for prokaryotic species boundaries and integration of ANIs
into polyphasic taxonomy. Int. J.Syst. Evol. Microbiol. 70,
2937–2948 (2020).

22.	 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. &
Tyson, G. W. CheckM: Assessing the quality of microbial genomes
recovered from isolates, single cells, and metagenomes. Genome
Res. 25, 1043–1055 (2015).

23.	 Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees.
Math. Biosci. 53, 131–147 (1981).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1101/2021.07.25.453713
https://doi.org/10.1101/2021.07.25.453713

Nature Methods | Volume 20 | November 2023 | 1661–1665 1665

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturemethods
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Methods
Sequence identity estimation
Formally, let G be a string of nucleotides and G′ be a mutated version
of G where every letter is independently changed to a different letter
with probability θ. We will define the true ANI to be equal to 1 − θ under
our model. Under the usual assumption of no repetitive k-mers24, it is
easy to estimate θ from k-mer matching statistics3,24,25 between G and
G′. We proved in a previous work that for random, mutating strings, the
expected number of k-mer matches arising spuriously from repetitive-
ness for a string of length n is ∼ n2

4k
 (Theorem 4 in Shaw and Yu26), so the

usual assumption of no repetitive k-mers is not a bad one in practice
for simpler, non-eukaryotic genomes and large enough k.

Sketching methods such as Mash3 or sourmash4 use the above
framework to calculate ANI through the aforementioned k-mer statis-
tics, which are built around estimating the normalized overlap between
the k-mers in two genomes. More precisely, these indices take the form
|A∩B|
f(A,B) where A and B are the sets of k-mers in two genomes, and f(A, B)

controls the normalization. The Jaccard index used in Mash3 corre-
sponds to f(A, B) = ∣A ∪ B∣, and the containment index is f(A, B) = ∣A∣
(ref. 14). The main index we consider is the max-containment index,
which corresponds to f(A,B) = min(|A|, |B|); minimizing the denomina-
tor maximizes the containment. These indices can approximate ANI
through simple formulas25,27.

However, when dealing with MAGs, we do not have G and G′ but
instead fragmented, contaminated and incomplete versions of G and
G′. The models used in these sketching methods give biased estimates
for ANI, resulting in underestimated ANIs, because missing k-mer
matches may be due to mutations, incompleteness, or contamination
instead of only due to mutations. Thus, all of the above k-mer statistics
suffer from the following problem: as two MAGs become more incom-
plete, the overlap ∣A ∩ B∣ may decrease more than f(A, B) because a
homologous k-mer is simply not present in the assembly, therefore
making the index smaller.

This issue is also present in the context of k-mer based alignment-
free genome comparison using reads28–30, where a genome could poten-
tially not be fully covered due to the random sampling of reads. In
our case, however, we have access to incomplete, fragmented assem-
blies instead of reads. Thus, to accurately use k-mer statistics, we first
find orthologous regions by approximate alignment and then use
k-mer statistics.

Algorithm outline
The main idea behind skani is to find an approximate set of orthologous
alignments between two genomes by obtaining a set of minimally over-
lapping k-mer chains7 (the chains do not overlap much; the k-mers may
overlap within the chain). We can then estimate ANI from the statistics
of the k-mers in the chains, avoiding costly base-level alignment. The
main algorithmic steps are listed below.

	 1.	� We use a very sparse set of marker ℓ-mers to estimate
max-containment index and obtain a putative ANI using
the FracMinHash method (section Sketching by Frac-
MinHash). We filter out pairs of genomes with putative
ANI <80% (section Max-containment putative ANI screen-
ing with marker ℓ-mers).

	 2.	� We select the genome with the larger score, defined as
total sequence length times mean contig length, to be the
reference and the other to be the query. We then
fragment the query into 20-kb nonoverlapping chunks.
In particular, this implies that the ANI computed by skani
does not depend on the order of the inputs (that is, it is
symmetric).

	 3.	� We extract 1
c
 fraction of k-mers for both genomes for some c

(c = 125 by default) as seeds to be used for chaining using
FracMinHash (section Obtaining sparse seeds for chaining).

	 4.	� For each chunk on the query, we chain the seeds using a
standard banded, heuristic chaining method against the
reference (section Chaining sparse k-mer seeds).

	 5.	� We greedily extract minimally overlapping chains between
the query and the reference and output aligned fraction
(section Obtaining orthologous chains from homologous
chains).

	 6.	� We estimate the ANI for each chunk, output the mean ANI
over all chunks, and perform a learned ANI debiasing step
(sections Estimating ANI from chains and Nonparametric
regression for ANI debiasing).

Sketching by FracMinHash
Instead of using the set of all k-mers in a genome, we use a compressed
representation by sketching, by which we mean selecting only a subset
of all k-mers. To obtain such a set of k-mers, we use the FracMinHash
method31: given a hash function h that maps k-mers to [0, M], we select
the k-mer x as a seed if h(x) < M/γ, where γ controls the fraction of
selected k-mers. Assuming a uniform hash function, the expected
fraction of selected k-mers is

1
γ.

Although FastANI uses minimizer32 k-mers to estimate Jaccard
index and then ANI, recently, it was shown that Jaccard estimates (and
thus ANI estimates) from minimizer k-mers are biased27 and depend
crucially on the window size w. Although this bias is not too bad when
the w is small (FastANI uses relatively small w = 24), it scales as w
increases. This means that a minimizer ANI estimator cannot use very
sparse seeds, since the fraction of selected seeds is 2

w+1
 (ref. 33).

Max-containment putative ANI screening with marker ℓ-mers
skani is not optimized for comparing distant genomes, so we can filter
out comparisons against distant genomes using a very sparse set of
FracMinHash ℓ-mers, which we call markers. We use these markers
to estimate the max-containment index14; the same method is imple-
mented in sourmash25, although sourmash does not use max contain-
ment by default. Let a set of markers obtained from FracMinHash from
the genome G1 (with γ = cm and ℓ-mers) be denoted as A, and denote B as
the analogous set from the genome G2. Assuming one of the genomes
is contained in the other completely, we then calculate an ANI estimate
between two genomes G1, G2 as

ANIFMH = (|A ∩ B|
min{|A|, |B|})

1/ℓ
.

The term on the right inside the exponent is the max-containment
index. FracMinHash has only negligible bias in calculating the contain-
ment index25 and can be used to obtain an estimate of ANI no matter the
density (the fraction of selected k-mers). We let ℓ = 21 for our marker
ℓ-mers and cm = 1,000 by default. We found skani’s ANI algorithm was
most accurate when ANI ≥ ~82%, so we only compare genomes with
ANIFMH > 80% as a conservative underestimate.

We can store all markers contained in the reference genomes
as keys in a hash table with the associated values being the set of
genomes containing the key (that is, an inverted index). Given a query
genome, we can then obtain the intersection of all markers for the
query against the references by checking all of its markers against
the inverted index. This allows computation of the max-containment
index in running time dependent on the number of similar genomes
in the references34. From this, we can obtain ANIFMH, making our filter-
ing step fast as long as our reference and query genomes are diverse.
When performing all-to-all pairwise comparisons, skani uses this strat-
egy by default. However, when querying a small number of genomes
against a database, skani iteratively checks all pairs of genomes by
default because building the hash table takes a nontrivial amount
of time.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Obtaining sparse seeds for chaining
The marker ℓ-mers described above are only used for filtering, but not
for actually estimating the ANI. To actually estimate the ANI, we use
a hybrid approach via local mapping (without base-level alignment)
and containment index estimation. The first step in our approach is
to obtain a different set of FracMinHash k-mers, this time taking γ, the
sampling rate of k-mers, to be γ = c where c < cm, and k < ℓ. This gives
a denser, more sensitive set of k-mers to be used as seeds. These new
k-mers are called seeds instead of markers because we actually use them
as seeds for k-mer matching and alignment. We note that although we
could have used other ‘context-independent’ k-mer seeding methods
that are more ‘conserved’ than FracMinHash35, we found that FracMin-
Hash works well enough for relatively sparse seeds when c ≫ k.

By default, k = 15 and c = 125. We note that the small value of k = 15
used by default leads to too many repetitive anchors on larger genomes,
so we mask the top seeds that occur more than 2,500/c times by default.
See the section Chaining score function and algorithm below for a
justification of the choice of 2,500/c.

Choosing the c parameter
The main parameter influencing runtime and accuracy is the c param-
eter. The default value of c = 125 works well on a variety of tasks such
as searching databases and MAG comparison. We found that for very
fragmented and distant genomes, lowering c may lead to more accurate
ANI and AF estimates (Extended Data Figs. 5–7 and Supplementary
Fig. 10). However, the runtime is inversely proportional to c. To guide
users for choosing c, we suggest three different pre-set values of c
(in addition to the default) in skani v0.1.2’s help messages based on
empirical heuristics: a ‘slow’ pre-set with c = 30 for the most accurate
AF estimates and pairs of genomes with N50 ≈ 3 kb, a ‘medium’ pre-set
with c = 70 for genomes with ANI ≤95 and N50 ≤10 kb, and a ‘fast’ pre-set
c = 200 for similar genomes with >95% ANI with N50 >10 kb.

skani’s index file sizes are inversely proportional to c, and a draw-
back of skani is that the index file sizes are larger than pure sketching
methods (Supplementary Table 3), but the full indices can be stored
on disk and only read into RAM by skani as needed (see skani imple-
mentation details).

Chaining sparse k-mer seeds
After selecting one genome as a reference and the other as the query,
we fragment the query into 20-kb nonoverlapping chunks. For each
chunk, we find a set anchors, which are exact k-mer matches between
g and g ′. Each anchor can be described by a tuple (x, y), indicating the
starting position of the matching k-mers on g and g′ respectively. We
collect the anchors into a strictly increasing subsequence called a
chain7 based on the ordering (x1, y1) ≺ (x2, y2) if x1 < x2 and y1 < y2.

We sort the anchors (x1, y1), …(xN, yN) in lexicographic order and
let S(i, j) be the score of chaining the ith anchor to the jth anchor. We
wish to find a strictly increasing subsequence (based on our previously
defined ordering ≺ ) of anchors (i1, i2, …) maximizing ∑ℓS(iℓ, iℓ−1). The
optimal such subsequence can be calculated in O(N2) time where N is
the number of anchors by the following dynamic programming: letting
f(i) be the optimal score of the chain up to the ith anchor, let

f(i) = max{max
i>j≥1

f(j) + S(i, j),0}.

After calculating f(i) for each anchor i, we can obtain a set of optimal
chains. We describe this in detail below.

Chaining score function and algorithm
The chaining problem can be solved optimally in sub-quadratic time for
a variety of chaining costs8,9, but we opt for a simple heuristic method
that is fast and good enough for our purposes instead. Letting (xi, yi)
and (xj, yj) be the ith and jth anchors, we define our chaining cost to
simply be S(i, j) = 20 − ∣(yj − yi) − (xj − xi)∣. Notably, we allow and do not

penalize overlapping k-mers because this would bias the ANI calcula-
tion, as we want the chain to include all k-mers that arise from sequence
homology. We also do not need to use more sophisticated scoring
functions because we do not actually need to worry about base-level
alignments or finding the longest chain. We use a banded dynamic
programming method where instead of iterating over all j < i, we iterate
only up to i − A < j < i or stop if ∣xi − xj∣ > B for some constants A and B.
Thus, the worst-case time is O(AN) instead of O(N2). By default, we
let A = B/c, where B = 2,500 and c is the seed subsampling rate. This
banded procedure is a simpler version of minimap2.23’s chaining
procedure, which also employs a heuristic to stop chaining early via
the --max-chain-skip parameter.

Obtaining homologous chains by backtracking
For each chunk, after computing all optimal scores f(i) over all anchors
using banded dynamic programming, we obtain optimal chains using
the standard method of backtracking. That is, we store an array of
pointers corresponding to anchors, where the pointer points to the
optimal predecessor determined by the dynamic programming. For
any anchor, we could then trace through this array to obtain the best
chain corresponding to each anchor.

We wish to obtain a set of chains that do not share any anchors for
each chunk. To do this, we partition the anchors into disjoint sets using
a union-find data structure, taking unions of two anchor representa-
tives whenever one anchor is an optimal predecessor of another. We
then find the best f(i) within each disjoint set and backtrack to obtain
the optimal chain within each disjoint set. We take the set of all such
chains over all chunks and call these chains homologous chains.

Obtaining orthologous chains from homologous chains
It is possible that a single region chains to multiple paralogs, so the
homologous chains obtained above may not be orthologous. We
will use the term ‘orthologous’ loosely in the same sense as other
ANI methods6 – we denote a set of mappings (corresponding to
chains) to be orthologous if they do not overlap too much along
one of the genomes (that is, no duplicated one-to-all mappings). To
obtain orthologous chains, we use a greedy minimally overlapping
chain-finding procedure. We first sort every homologous chain (over
all chunks) by its score and examine the best chain, only examining
chains with three or more anchors. If the overlap between this current
best chain and any other already selected chains is less than 50% of
the current chain’s length, we select this best homologous chain as
an orthologous chain and then examine the next best homologous
chain. We repeat this procedure until all remaining homologous
chains overlap an orthologous chain by more than 50% and return
all orthologous chains.

This procedure is similar in spirit to the reciprocal mapping
method used in other ANI methods6,19 to capture orthology, but it
avoids performing alignment twice, making running time twice as
fast. Other more sophisticated methods36 exist for finding sets of
orthologous alignments but we found this heuristic to be good enough
for our method.

Estimating ANI from chains
For a given chunk, let α be the number of anchors in the orthologous
chains on that chunk, and M be the number of seeds in the chunk. Then
we estimate an ANI for each chunk by

̂ANI = 1 − θ̂ = (αM)
1/k
.

This comes from modeling each k-mer as being an exact match and
thus an anchor with probability (1 − θ)k under a simple, independent
mutation model, so the expected number of anchors is (1 − θ)k times
the number of k-mers25.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

However, the above formula fails when only part of the chunk is
homologous to the reference, which may happen due to incomplete-
ness of MAGs or structural variation. This will underestimate the ANI,
since not all seeds in the chunk arise from sequence homology. Let
MLR be the number of seeds in the chunk contained only between the
leftmost and rightmost anchor over all minimally overlapping chains,
and consider

̂ANILR = (α
MLR

)
1/k
.

If ̂ANILR > 0.950 and the number of bases covered by in between these
flanking anchors is >4*c, then we use ̂ANILR as the estimate instead.
This heuristic comes from the observation that when the ANI is large
enough, our sparse chains are relatively accurate, so we can truncate
the chunk with good accuracy. However, if ANI is small, it is more pos-
sible that this heuristic incorrectly excludes seeds that arise from
sequence homology, so we avoid applying the heuristic to distant pairs
of genomes.

Estimating final ANI and AF
To obtain our final ANI estimates, we take a weighted mean over all
chunks with weights given by M (or MLR if the heuristic is applied
instead), the number of seeds in the chunk. We also report the refer-
ence and query alignment fraction as the sum of the bases covered by
all chains divided by the respective genome size. The number of bases
in a chain is the last anchor position minus the first anchor position
plus 2*c, where the 2*c term is to account for k-mers near the edge of
the chain missed by subsampling. By default, we only output a final ANI
value if the alignment fraction is greater than 15%.

Because our final ANI estimate is just a weighted mean over the
ANIs of the chunks, once we have these ANIs, we can quickly do boot-
strapping by resampling the chunks and calculating the weighted
mean over the resamples. We use 100 iterations and only proceed if
there are >10 chunks, outputting the 5th and 95th percentile ANIs to
be our final 90% confidence interval. We found that the bootstrap gave
reasonable ANI confidence intervals over skani’s inherent uncertainty
(for example k-mer seeding variance), but we stress that it does not
account for any systematic biases of skani’s ANI estimator relative to
other methods.

Nonparametric regression for ANI debiasing
The chaining procedure can overestimate ANI, because the chains may
exclude homologous but mutated k-mers near the edges of the chain
due to the local mapping procedure. To handle this, we introduce an
optional post-processing regression step to debias skani.

We trained a gradient boosted regression tree with absolute
deviation loss where the target variable is ANIm’s ANI calculation,
and the features consist of the following: skani’s ANI, standard
deviation of skani’s putative ANI distribution, and the 90th per-
centile contig lengths in the reference and query, and the average
length of the k-mer chains, giving five features in total. We trained
skani on a large, diverse set of 52,515 MAGs from Nayfach et al2. We
computed all-to-all pairwise ANI values with >90% ANI according to
an untrained version skani, and ran ANIm on the resulting 1,004,213
pairs of genomes. To tune hyperparameters such as tree depth,
number of trees, and learning rate, we chose a set of human gut
MAGs37 that comes from a separate study than the training set and
the datasets used in our results and then optimized our parameters
over this new dataset.

To show that skani is not simply memorizing the organisms in
the dataset, we partitioned this training set into two sets, A and B,
where each part is ‘disjoint’ from one another in the sense that skani
does not output an ANI estimate between any MAG in A and B due to
low aligned fraction (<15%). We show in Supplementary Figs. 6 and 11

that this debiasing procedure still corrects the ANI to be closer to a
MUMmer-based ground truth.

We only debias comparisons with putative ANI > 90%
and > 150, 000 aligned bases. We enable the debiasing procedure by
default when the parameter c is ≥70. We noticed that for smaller c, bias
is less of an issue. We trained two models, one for c = 125 (default) and
another for c = 200. If the user selects a specific value of c, the model
with corresponding c closer to the selected value is used. In particular,
our results with c = 125 have debiasing enabled, but our results with
c = 30 do not.

skani implementation details
skani is implemented in the rust, a systems-level programming lan-
guage, for speed. skani implements four primary subcommands:
sketch, dist, search and triangle. The sketch command stores genomes
in sketched representation (k-mer seeds and markers) for drop-in
replacement for the other three commands. We use the same fast
invertible k-mer hash function as minimap2 (ref. 38) for sketching. Addi-
tionally, skani uses AVX2 SIMD instructions to do vectorized seeding
of 64-bit k-mers in 256-bit lanes when AVX2 instructions are detected,
which we found to speed up sketching by approximately 30%. Chaining
was implemented naively with no hardware accelerations.

The three commands for sequence comparison, dist, triangle,
and search, all calculate AF and ANI but have different runtime behav-
ior. dist and triangle keeps all sketches in RAM, whereas the search
command only keeps the marker k-mers in memory and allows for
on-the-fly loading of the full sketch for each genome into RAM if
the marker-based ANI threshold for the comparison is sufficiently
high (≥ 80% by default), afterward discarding the index from RAM.
This makes search much more memory efficient and possibly more
time-efficient than dist when querying a large database, but it is
IO-bound and not as efficient as dist when performing all-to-all com-
parisons. The triangle command is similar to dist but is limited to
computing distance matrices, but because skani is symmetric, it
performs only n(n − 1)/2 comparisons instead of all n2. The inverted
index for marker k-mer filtering is enabled by default in triangle, and
otherwise in search and dist when the number of query genomes is
≥100. See Supplementary Fig. 12 for a benchmark on skani’s runtime
scaling with thread usage.

Benchmarking details
All runtimes were benchmarked on a Intel Xeon CPU at 3.10 GHz
machine with 64 cores and 240 GB RAM as a Google Cloud instance with
a persistent SSD disk. Unless otherwise specified, all programs were run
using 50 threads. Exact commands are shown in Supplementary Table 1.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets are also specified in Supplementary Table 2 with descrip-
tions. The Pasolli et al. 25-50 dataset1 is available at http://segatalab.
cibio.unitn.it/data/Pasolli_et_al.html. Ocean archaea MAGs12 are avail-
able at https://doi.org/10.6084/m9.figshare.c.5564844.v1. Soil MAGs17
are available at https://figshare.com/collections/Genomes_for_consist-
ent_metagenome-derived_metrics_verify_and_define_bacterial_spe-
cies_boundaries/4508162/1. Ocean eukaryotic MAGs15,16 are available
at https://osf.io/gm564/ and https://www.genoscope.cns.fr/tara/.
Nayfach et al. MAGs2 are available at https://genome.jgi.doe.gov/GEMs.
E. coli, B. anthracis, and the D5 dataset genomes are available at http://
enve-omics.ce.gatech.edu/data/fastani. GTDB-R207 (ref. 18) database
is available at https://gtdb.ecogenomic.org. B. fragilis genomes and the
refseq-rc database is available at https://zenodo.org/record/8058221
(ref. 39).

http://www.nature.com/naturemethods
http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html
http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html
https://doi.org/10.6084/m9.figshare.c.5564844.v1
https://figshare.com/collections/Genomes_for_consistent_metagenome-derived_metrics_verify_and_define_bacterial_species_boundaries/4508162/1
https://figshare.com/collections/Genomes_for_consistent_metagenome-derived_metrics_verify_and_define_bacterial_species_boundaries/4508162/1
https://figshare.com/collections/Genomes_for_consistent_metagenome-derived_metrics_verify_and_define_bacterial_species_boundaries/4508162/1
https://osf.io/gm564/
https://www.genoscope.cns.fr/tara/
https://genome.jgi.doe.gov/GEMs
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
https://gtdb.ecogenomic.org/
https://zenodo.org/record/8058221

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Code availability
skani is available at https://github.com/bluenote-1577/skani. Scripts
and notebooks for reproducing all figures is available at https://github.
com/bluenote-1577/skani-test. skani v0.1.4’s source code is deposited
at https://zenodo.org/record/8058221 (ref. 39).

References
24.	 Blanca, A., Harris, R. S., Koslicki, D. & Medvedev, P. The statistics of

k-mers from a sequence undergoing a simple mutation process
without spurious matches. J. Comput. Biol. 29, 155–168 (2022).

25.	 Hera, M. R. et al. Deriving confidence intervals for mutation rates
across a wide range of evolutionary distances using fracminhash.
Genome Res. 33, 1061–1068 (2023).

26.	 Shaw, J. & Yu, Y. W. Proving sequence aligners can guarantee
accuracy in almost O(m log n) time through an average-case
analysis of the seed-chain-extend heuristic. Genome Res. 33,
1175–1187 (2023).

27.	 Belbasi, M., Blanca, A., Harris, R. S., Koslicki, D. & Medvedev,
P. The minimizer Jaccard estimator is biased and inconsistent.
Bioinformatics 38, i169–i176 (2022).

28.	 Tang, K., Ren, J. & Sun, F. Afann: Bias adjustment for
alignment-free sequence comparison based on sequencing data
using neural network regression. Genome Biol. 20, 266 (2019).

29.	 Fan, H., Ives, A. R., Surget-Groba, Y. & Cannon, C. H. An assembly
and alignment-free method of phylogeny reconstruction from
next-generation sequencing data. BMC Genom. 16, 522 (2015).

30.	 Sarmashghi, S., Bohmann, K., P. Gilbert, M. T., Bafna, V. & Mirarab,
S. Skmer: Assembly-free and alignment-free sample identification
using genome skims. Genome Biol. 20, 34 (2019).

31.	 Irber, L. et al. Lightweight compositional analysis of metagenomes
with FracMinHash and minimum metagenome covers. Preprint at
bioRxiv https://doi.org/10.1101/2022.01.11.475838 (2022).

32.	 Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M. & Yorke, J.
A. Reducing storage requirements for biological sequence
comparison. Bioinformatics 20, 3363–3369 (2004).

33.	 Schleimer, S., Wilkerson, D. S. & Aiken, A. Winnowing: Local
algorithms for document fingerprinting. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’03, 76–85 (Association for Computing Machinery, 2003).

34.	 Yu, Y. W., Daniels, N. M., Danko, D. C. & Berger, B. Entropy-scaling
search of massive biological data. Cell Syst. 1, 130–140 (2015).

35.	 Shaw, J. & Yu, Y. W. Theory of local k-mer selection with applications
to long-read alignment. Bioinformatics 38, 4659–4669 (2022).

36.	 Frith, M. C. & Kawaguchi, R. Split-alignment of genomes finds
orthologies more accurately. Genome Biol. 16, 106 (2015).

37.	 Zeng, S. et al. A compendium of 32,277 metagenome-assembled
genomes and over 80 million genes from the early-life human gut
microbiome. Nat. Commun. 13, 5139 (2022).

38.	 Li, H. Minimap2: Pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

39.	 Shaw, J. & Yu, Y.W. skani experiment files and source code. Zenodo
https://zenodo.org/record/8058221 (2023).

Acknowledgements
J.S. was supported by an NSERC CGS-D scholarship. Work supported
by Natural Sciences and Engineering Research Council of Canada
(NSERC) grant RGPIN-2022-03074 and DND/NSERC Supplement
DGDND-2022-03074.

Author contributions
J.S. conceived the project, designed the algorithms and implemented
skani. Y.W.Y. supervised and contributed to the development of the
methods. Both authors wrote and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-023-02018-3.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-023-02018-3.

Correspondence and requests for materials should be addressed to
Jim Shaw or Yun William Yu.

Peer review information Nature Methods thanks Donovan Parks,
Rob Patro, and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer reports are
available. Primary Handling Editor: Lin Tang, in collaboration with the
Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://github.com/bluenote-1577/skani
https://github.com/bluenote-1577/skani-test
https://github.com/bluenote-1577/skani-test
https://zenodo.org/record/8058221
https://doi.org/10.1101/2022.01.11.475838
https://zenodo.org/record/8058221
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1038/s41592-023-02018-3
https://doi.org/10.1038/s41592-023-02018-3
http://www.nature.com/reprints

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 1 | ANI benchmark under simulated fragmentation and
incompleteness. We fragmented an E. coli genome to obtain nonoverlapping
contigs with lengths distributed according to an exponential distribution
(mean length on the x-axis) and then retained each contig with some probability

(probability on the y-axis) if the length was ≥ 1000 bp. These simulated MAGs
(20 for each pair length and probability parameters) were compared to each
other and the average is shown.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 2 | ANIm and sourmash experiments corresponding to the experiments shown in Fig. 1. sourmash max-containment estimates ANI using the
max-containment index, corresponding to the –max-containment option in sourmash.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 3 | ANI sensitivity to fragmentation and incompleteness. The same experiment was run as in Fig. 1b on Pasolli et al 25-50, except we used N50 as
a covariate instead of contamination.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 4 | Violin plot of cophenetic correlation deviation for
each method with respect to ANIm on the Pasolli 25-50 data set. We took
all species-level bins in the Pasolli data set with > 25 and < 50 genomes and
computed distance matrices for all ANI methods. sourmash max-contain
implies the --max-containment option in sourmash, otherwise sourmash was
run with default parameters. For each bin, we compared the resulting clustering

dendrograms for each method against ANIm’s distance matrix by taking
the cophenetic correlation. We plot the difference between this cophenetic
correlation and the cophenetic correlation of ANIm’s dendrogram to itself
(which may be < 1 since ANIm’s average-cluster dendrogram may not be perfectly
concordant with itself). The legend shows the mean deviation of each method’s
cophenetic correlation from ANIm’s cophenetic correlation.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 5 | ANI deviation from ANIm for four data sets of MAGs
with > 90% ANI (as predicted by ANIm). See Supplementary Table 2 for data set
descriptions. skani c-30 indicates skani with the parameter c set to 30, and skani-
nl indicates no learned ANI regression debiasing (with default c = 125). sour-mc
and sour correspond to sourmash with max-contain enabled and disabled. Blue

lines show 5 and -5 deviation, and the legend indicates the 1 and 99 percentile
deviations as well as their difference. The best 1% to 99% deviation distance for
each data set is either skani or skani-c30. Lowering the c parameter generally
improves results slightly, but is not guaranteed to do so; the default c = 125 gives
results more in line with ANIm on the Pasolli 25-50 data set.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 6 | Aligned fraction correlation between ANIm and
skani with default parameters (c = 125), skani with c = 30, and FastANI. Only
MAGs with > 90% ANI as predicted by ANIm are compared. Lowering the value
of c for skani gives a more accurate signal. skani with default parameters still

outperforms FastANI in terms of Pearson R for all data sets, and skani with
c = 30 has near perfect correspondence with ANIm. The noisier results for
archaea MAGs are likely due to its small N50 (median 5863 bp) and genome length
(median 1.27 Mbp).

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02018-3

Extended Data Fig. 7 | Aligned fraction deviation from ANIm as a function of ANI. Dashed lines indicate the 1 and 99 percentiles of aligned fraction deviation from
ANIm. Aligned fraction gets more accurate for skani as ANI increases. Decreasing c for skani improves the relationship between ANI and aligned fraction and decreases
the variance as well.

http://www.nature.com/naturemethods

	Fast and robust metagenomic sequence comparison through sparse chaining with skani

	Online content

	Fig. 1 a, Algorithm overview of skani.
	Fig. 2 a, ANI benchmarking with n reference genomes and m query genomes.
	Extended Data Fig. 1 ANI benchmark under simulated fragmentation and incompleteness.
	Extended Data Fig. 2 ANIm and sourmash experiments corresponding to the experiments shown in Fig.
	Extended Data Fig. 3 ANI sensitivity to fragmentation and incompleteness.
	Extended Data Fig. 4 Violin plot of cophenetic correlation deviation for each method with respect to ANIm on the Pasolli 25-50 data set.
	Extended Data Fig. 5 ANI deviation from ANIm for four data sets of MAGs with > 90% ANI (as predicted by ANIm).
	Extended Data Fig. 6 Aligned fraction correlation between ANIm and skani with default parameters (c = 125), skani with c = 30, and FastANI.
	Extended Data Fig. 7 Aligned fraction deviation from ANIm as a function of ANI.

