Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Principles and challenges of modeling temporal and spatial omics data

Abstract

Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental designs with or without temporal or spatial side information.
Fig. 2: Alternative strategies to model spatial and temporal dependencies at the sample level.
Fig. 3: Comparative analysis of temporal or spatial data across multiple subjects.
Fig. 4: Obtaining mechanistic insights and causal relationships from temporal and spatial data.

Similar content being viewed by others

References

  1. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 601, 630–636 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Van Emon, J. M. The omics revolution in agricultural research. J. Agric. Food Chem. 64, 36–44 (2016).

    Article  PubMed  Google Scholar 

  7. Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat. Methods 18, 15–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Seferbekova, Z., Lomakin, A., Yates, L. R. & Gerstung, M. Spatial biology of cancer evolution. Nat. Rev. Genet. 24, 295–313 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bar-Joseph, Z., Gitter, A. & Simon, I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13, 552–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Cardoso-Moreira, M. et al. Developmental gene expression differences between humans and mammalian models. Cell Rep. 33, 108308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dries, R. et al. Advances in spatial transcriptomic data analysis. Genome Res. 31, 1706–1718 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Atta, L. & Fan, J. Computational challenges and opportunities in spatially resolved transcriptomic data analysis. Nat. Commun. 12, 5283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lederer, A. R. & La Manno, G. The emergence and promise of single-cell temporal-omics approaches. Curr. Opin. Biotechnol. 63, 70–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Crowell, H. L. et al. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451–464 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schüssler-Fiorenza Rose, S. M. et al. A longitudinal big data approach for precision health. Nat. Med. 25, 792–804 (2019).

    Article  PubMed  Google Scholar 

  23. Bernardes, J. P. et al. Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity 53, 1296–1314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mishra, N. et al. Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease. Genome Med. 14, 110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature 571, 505–509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Google Scholar 

  31. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl Acad. Sci. USA 115, E2467–E2476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qiu, X. et al. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using Scribe. Cell Syst. 10, 265–274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Leuenberger, P. et al. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 355, eaai7825 (2017).

    Article  PubMed  Google Scholar 

  38. Perrin, R. J., Fagan, A. M. & Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoon, B.-J. Hidden Markov models and their applications in biological sequence analysis. Curr. Genomics 10, 402–415 (2009).

    CAS  Google Scholar 

  40. Stegle, O. et al. Discovering temporal patterns of differential gene expression in microarray time series. In German Conference on Bioinformatics 2009 (eds Grosse, I. et al.) 133–142 (Gesellschaft für Informatik, 2009).

  41. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018). This method uses GPs to identify spatially variable genes, translating ideas from temporal data analysis to spatial transcriptomics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. BinTayyash, N. et al. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments. Bioinformatics 37, 3788–3795 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kats, I., Vento-Tormo, R. & Stegle, O. SpatialDE2: fast and localized variance component analysis of spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2021.10.27.466045 (2021).

  45. Conesa, A., Nueda, M. J., Ferrer, A. & Talón, M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 1096–1102 (2006). This is a widely used parametric method based on polynomial regression to identify temporally variable genes.

    Article  CAS  PubMed  Google Scholar 

  46. Song, M. et al. A review of integrative imputation for multi-omics datasets. Front. Genet. 11, 570255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Velten, B. et al. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nat. Methods 19, 179–186 (2022). This dimension-reduction and latent variable model for multiomics data explicitly models temporal and spatial dependencies in the latent embedding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Townes, F. W. & Engelhardt, B. E. Nonnegative spatial factorization applied to spatial genomics. Nat. Methods 20, 229–238 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dong, R. & Yuan, G.-C. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 22, 145 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40, 1360–1369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359 (2022). This cell type-deconvolution method for spatial transcriptomics data explicitly models spatial dependencies to obtain better estimates of cell type proportions.

    Article  CAS  PubMed  Google Scholar 

  56. Bodein, A., Scott-Boyer, M.-P., Perin, O., Lê Cao, K.-A. & Droit, A. timeOmics: an R package for longitudinal multi-omics data integration. Bioinformatics 38, 577–579 (2021).

  57. Duncker, L. & Sahani, M. Temporal alignment and latent Gaussian process factor inference in population spike trains. In Advances in Neural Information Processing Systems 31 (eds Bengio, S. et al.) 10445–10455 (Curran Associates, 2018).

  58. Childs, D. et al. Nonparametric analysis of thermal proteome profiles reveals novel drug-binding proteins. Mol. Cell. Proteomics 18, 2506–2515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Creswell, R. et al. High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Med. 12, 59 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Maini, P. K., Woolley, T. E., Baker, R. E., Gaffney, E. A. & Lee, S. S. Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2, 487–496 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Van den Berge, K. et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat. Commun. 11, 1201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bodein, A., Chapleur, O., Droit, A. & Lê Cao, K.-A. A generic multivariate framework for the integration of microbiome longitudinal studies with other data types. Front. Genet. 10, 963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma, C., Chitra, U., Zhang, S. & Raphael, B. J. Belayer: modeling discrete and continuous spatial variation in gene expression from spatially resolved transcriptomics. Cell Syst. 13, 786–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT, 2006).

  66. Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle, O. Modeling cell–cell interactions from spatial molecular data with spatial variance component analysis. Cell Rep. 29, 202–211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Äijö, T., Müller, C. L. & Bonneau, R. Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing. Bioinformatics 34, 372–380 (2018).

    Article  PubMed  Google Scholar 

  68. Hensman, J., Lawrence, N. D. & Rattray, M. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics 14, 252 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Walter, F. C., Stegle, O. & Velten, B. FISHFactor: a probabilistic factor model for spatial transcriptomics data with subcellular resolution. Bioinformatics 39, btad183 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fang, S., Kirk, P. D. W., Bantscheff, M., Lilley, K. S. & Crook, O. M. A Bayesian semi-parametric model for thermal proteome profiling. Commun. Biol. 4, 810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eddy, S. R. Multiple alignment using hidden Markov models. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 114–120 (1995).

    CAS  PubMed  Google Scholar 

  72. Shin, J. et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372 (2015).

    CAS  Google Scholar 

  73. Schliep, A., Schönhuth, A. & Steinhoff, C. Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19, i255–i263 (2003).

    Article  PubMed  Google Scholar 

  74. Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics 20, 2493–2503 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.-C. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36, 1183–1190 (2018). This paper makes use of hidden MRFs to detect spatial domains in sequential fluorescence in situ hybridization data of the mouse visual cortex region.

    Article  CAS  Google Scholar 

  76. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, J. et al. Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020).

    Article  Google Scholar 

  78. Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).

    Article  Google Scholar 

  79. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article  Google Scholar 

  80. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Preprint at arXiv https://doi.org/10.48550/arXiv.1609.02907 (2016).

  81. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021). This method uses a graph convolutional network approach to identify spatial domains and spatially variable genes.

    Article  PubMed  Google Scholar 

  83. Partel, G. & Wählby, C. Spage2vec: unsupervised representation of localized spatial gene expression signatures. FEBS J. 288, 1859–1870 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, Y. et al. CGC-Net: cell graph convolutional network for grading of colorectal cancer histology images. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019).

  85. Pati, P. et al. HACT-Net: a hierarchical cell-to-tissue graph neural network for histopathological image classification. In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis 208–219 (Springer International, 2020).

  86. Hetzel, L., Fischer, D. S., Günnemann, S. & Theis, F. J. Graph representation learning for single-cell biology. Curr. Opin. Syst. Biol. 28, 100347 (2021).

    Article  CAS  Google Scholar 

  87. Muzio, G., O’Bray, L. & Borgwardt, K. Biological network analysis with deep learning. Brief. Bioinform. 22, 1515–1530 (2021).

    Article  Google Scholar 

  88. Komura, D. & Ishikawa, S. Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tan, X., Su, A., Tran, M. & Nguyen, Q. SpaCell: integrating tissue morphology and spatial gene expression to predict disease cells. Bioinformatics 36, 2293–2294 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference (eds Navab, N. et al.) 234–241 (Springer International, 2015).

  91. Beeksma, M. et al. Predicting life expectancy with a long short-term memory recurrent neural network using electronic medical records. BMC Med. Inform. Decis. Mak. 19, 36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational protein engineering with sequence-based deep representation learning. Nat. Methods 16, 1315–1322 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, S., Chen, J. & Liu, B. Protein remote homology detection based on bidirectional long short-term memory. BMC Bioinformatics 18, 443 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H. & Winther, O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33, 3387–3395 (2017).

    Article  PubMed  Google Scholar 

  95. Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18, 67 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li, Q., Han, Z. & Wu, X.-M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence 32(1) (AAAI Press, Palo Alto, California USA, 2018).

  97. Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111–117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. Genome Res. 31, 1843–1855 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ghazanfar, S. et al. Investigating higher-order interactions in single-cell data with scHOT. Nat. Methods 17, 799–806 (2020). This method uses local spatial or temporal summary statistics to identify changes in (co)variation of features in time or space.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kalaitzis, A. A. & Lawrence, N. D. A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. BMC Bioinformatics 12, 180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Stegle, O. et al. A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series. J. Comput. Biol. 17, 355–367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Qian, X. et al. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 17, 101–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Argelaguet, R. et al. Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Welch, J. D., Hartemink, A. J. & Prins, J. F. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 18, 138 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Olsson, L. M. et al. Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe 30, 726–739 (2022).

    CAS  Google Scholar 

  110. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Friston, K. J. et al. Spatial registration and normalization of images. Hum. Brain Mapp. 3, 165–189 (1995).

    Google Scholar 

  113. Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Giorgino, T. et al. Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1–24 (2009).

    Article  Google Scholar 

  116. Jones, A., Townes, F. W., Li, D. & Engelhardt, B. E. Alignment of spatial genomics and histology data using deep Gaussian processes. Preprint at bioRxiv https://doi.org/10.1101/2022.01.10.475692 (2022).

  117. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567–575 (2022). This method aligns spatial transcriptomics data from adjacent tissue slices based on an optimal transport problem.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Andersson, A. et al. A landmark-based common coordinate framework for spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2021.11.11.468178 (2021).

  119. Metwally, A. A. et al. Robust identification of temporal biomarkers in longitudinal omics studies. Bioinformatics 38, 3802–3811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2022).

    Article  PubMed  Google Scholar 

  121. Mukhopadhyay, N. D. & Chatterjee, S. Causality and pathway search in microarray time series experiment. Bioinformatics 23, 442–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Shojaie, A. & Michailidis, G. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26, i517–i523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Finkle, J. D., Wu, J. J. & Bagheri, N. Windowed Granger causal inference strategy improves discovery of gene regulatory networks. Proc. Natl Acad. Sci. USA 115, 2252–2257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Papili Gao, N., Ud-Dean, S. M. M., Gandrillon, O. & Gunawan, R. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 34, 258–266 (2018).

    Article  PubMed  Google Scholar 

  125. Wu, A. P., Singh, R. & Berger, B. Granger causal inference on DAGs identifies genomic loci regulating transcription. In International Conference on Learning Representations (ICLR, 2022).

  126. Matsumoto, H. et al. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-seq during differentiation. Bioinformatics 33, 2314–2321 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ocone, A., Haghverdi, L., Mueller, N. S. & Theis, F. J. Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31, i89–i96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sanchez-Castillo, M., Blanco, D., Tienda-Luna, I. M., Carrion, M. C. & Huang, Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34, 964–970 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Aubin-Frankowski, P.-C. & Vert, J.-P. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinformatics 36, 4774–4780 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Pham, D. et al. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell–cell interactions and spatial trajectories within undissociated tissues. Preprint at bioRxiv https://doi.org/10.1101/2020.05.31.125658 (2020).

  131. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan, Y. & Bar-Joseph, Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 21, 300 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364, 89–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Baker, E. A. G., Schapiro, D., Dumitrascu, B., Vickovic, S. & Regev, A. In silico tissue generation and power analysis for spatial omics. Nat. Methods 20, 424–431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bost, P., Schulz, D., Engler, S., Wasserfall, C. & Bodenmiller, B. Optimizing multiplexed imaging experimental design through tissue spatial segregation estimation. Nat. Methods 20, 418–423 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Ghazanfar, R. Argelaguet, L. Marconato and I. Kats for providing feedback on the manuscript. The work was supported by the BMBF (COMPLS project MOFA no. 031L0171B), the European Commission (ERC project DECODE, 810296) and core support from the European Molecular Biology Laboratory and the German Cancer Research Center.

Author information

Authors and Affiliations

Authors

Contributions

B.V. and O.S. conceived and jointly wrote the review.

Corresponding authors

Correspondence to Britta Velten or Oliver Stegle.

Ethics declarations

Competing interests

O.S. is a paid advisor of Insitro. The remaining author declares no competing interests.

Peer review information

Nature Methods thanks Stephanie Hicks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Lin Tang, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velten, B., Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat Methods 20, 1462–1474 (2023). https://doi.org/10.1038/s41592-023-01992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-01992-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research