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Evolutionarily conserved signaling pathways are essential for early
embryogenesis, and reducing or abolishing their activity leads to
characteristic developmental defects. Classification of phenotypic defects
canidentify the underlying signaling mechanisms, but this requires expert
knowledge and the classification schemes have not been standardized. Here
we use amachine learning approach for automated phenotyping to train
adeep convolutional neural network, EmbryoNet, to accurately identify
zebrafish signaling mutants in an unbiased manner. Combined with a model
of time-dependent developmental trajectories, this approach identifies and
classifies with high precision phenotypic defects caused by loss of function
of the seven major signaling pathways relevant for vertebrate development.
Our classification algorithms have wide applications in developmental
biology and robustly identify signaling defects in evolutionarily distant
species. Furthermore, using automated phenotyping in high-throughput
drug screens, we show that EmbryoNet can resolve the mechanism of action
of pharmaceutical substances. As part of this work, we freely provide more
than 2 million images that were used to train and test EmbryoNet.

Early development is governed by a handful of signaling pathways that
balance tissue growth, differentiation and morphogenesis' . Given
theirimportantrolesin controlling cell identity and behavior, misregu-
lation of signaling pathways in adult tissues caninduce the formation
of tumors with embryo-like properties, defective cell proliferation
and migration*”.

During zebrafish development, seven major signaling pathways
orchestrate the formation of the body plan. Bone morphogenetic pro-
tein (BMP), retinoic acid (RA), Wnt, fibroblast growth factor (FGF) and
Nodal patternthe germlayers and regulate the formation of the orthog-
onal anterior-posterior and dorsal-ventral axes; Sonic hedgehog (Shh)

and planar cell polarity (PCP) signaling, in turn, control the elongation
and morphogenesis of the body axis and later shape the formation
of tissues®>**~%, The ligands activating these signaling pathways are
dynamically expressed from specific source tissues in the embryo
(Fig. 1a and Supplementary Note 1). Loss of activity in any of these
pathways causes characteristic patterning defects, which, however,
canbedifficult to distinguish (Fig. 1b and Supplementary Videos 1-8).
For example, both Nodal and Shh mutants have cyclopic eyes (Fig. 1b
and Supplementary Videos 6 and 7), but the defectin Nodal mutantsis
caused by anearly lack of mesoderm’, whereas cyclopiain Shh mutants
is caused by a late defect in midline patterning'. Furthermore, while
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Fig.1| The CNN EmbryoNet robustly identifies molecular defects based

on phenotype data. a, Simplified schematic of signaling domains during
zebrafish development projected onto an early embryo. b, Schematic drawings
ofzebrafish embryo phenotypes. ~BMP loss of function causes reduced and
often curled tails, +RA gain-of-function embryos lack head structures and have
shortened tails, -Wnt leads to enlarged heads and shortened tails, -FGF causes
loss of mesoderm and tail tissue, ~Nodal embryos lack mesoderm and have
cyclopia, -Shh embryos frequently have mispatterned somites and cyclopia,
and -PCP leads to ashortened and widened body axis, manifested, for example,
by shorter somites. ¢,d, Treatment with the chemical Nodal inhibitor SB-505124
caused specific phenotypes that were not yet apparent at sphere stage (c (i)), but
which were clearly visible at segmentation stages (c (ii)); n = 36. The inhibitor
treatment (c (iii)) phenocopied the MZoep (d) mutant, and both phenotypes
were robustly identified by EmbryoNet; n = 58. e,f, Schematic overview of the

neural network architecture with convolutional (Conv) layers shown in blue.
Stack sizes after eachimage filter areillustrated in e, whereas f details the filters
of the network. Relu, rectified linear unit. g—i, EmbryoNet correctly classified
embryos in amixed population. g, Experimental set-up. Embryos at the one-

cell stage were injected with mRNA encoding the Nodal inhibitor Leftyl and
Alexa647-labeled dextran (magenta), mRNA encoding the BMP inhibitor Chordin
and Alexa488-labeled dextran (green), or were left uninjected (wild type) and
thenimaged. Black bounding boxes indicate the class Unknown; green indicates —
Nodal; red indicates -BMP; white indicates Normal and magenta indicates

Dead. h, Atthe sphere stage, EmbryoNet labeled the phenotypes as Unknown.
Dextran-labeling shows the applied treatment. i, During segmentation stages the
Normal, -BMP and -Nodal samples were correctly identified by EmbryoNet. The
classificationisinaccordance with the dextran colors; n = 85. Scale bar, 500 pm.
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misregulation of the BMP, Wnt, RA, FGF and PCP signaling pathways
leads to specific defects, for example, an enlarged head in the case of
wnt mutants™ ", all of these mutants also have malformed shortened
tails™" (Fig. 1b and Supplementary Videos 2-5, 8). Thus, the pheno-
types caused by changesin the activity of different signaling pathways
can be easily confused by even the most experienced developmental
biologists. Automated and unbiased phenotyping based on a multitude
of morphological features would overcome this challenge. Such an
approachwouldrapidly link phenotypes arising from genetic defects,
mutantsidentifiedin forward and reverse genetic screens, or treatment
withsmall-moleculeinhibitors to the relevant signaling pathway. Auto-
mated phenotyping of morphological defects would thus enhance both
the speed and accuracy of biological and pharmaceutical discovery.

Advances in deep learning approaches'® have brought unprec-
edented breakthroughs in numerous fields ranging from bioimage
analysis and visual object recognition' to protein structure predic-
tion?** and earth system science?. Deep learning approaches perform
exceptionally well in decoding the content of images®?, and convo-
lutional neural networks (CNNs) in particular have been extensively
used for bioimage restoration?, cell detection and classification”*and
bioimage data segmentation®. Recent studies have also used machine
learning approaches to examine embryonic phenotypes®*~, but these
approaches were limited to staging, segmentation and classification
of specific embryos and organs without being able to uncover the
molecular basis of morphological alterations.

Here, we introduce a deep learning approach, EmbryoNet, that
candetect specific defects linked to the seven major vertebrate signal-
ing pathways by automated phenotyping. EmbryoNet was trained on
more than 2 million images, comprising thousands of trajectories of
normally developing and signaling-defective zebrafish embryos. We
found that EmbryoNetidentified phenotypes more precisely and often
long before human evaluators could detect them. By using the accel-
erated phenotype classification of EmbryoNet in an automated drug
screen, we identified novel teratogenic effects caused by Food and Drug
Administration (FDA)-approved substances not previously associated
with the regulation of developmental signaling pathways. Finally, we
show that EmbryoNet can identify signaling defects in evolutionarily
distant species, demonstrating the generalizability of our approach.

Results

Identification of signaling defects in zebrafish embryos

Totest whether deep learning approaches canbe used for the automatic
classification of complex phenotypes caused by the loss of signaling
pathways in zebrafish, we combined high-throughput imaging with
specificdrug-mediated loss-of-function approaches. We started with
proof-of-concept experiments focused on Nodal signaling because
both the signaling pathway constituents and their functions during the
first day of zebrafishembryogenesis are well described® (Supplemen-
tary NotelandFig.1a).Inaddition, a specific small molecule targeting
the ATP-binding pocket of the receptor kinase is available*® (Supplemen-
tary Note 2), facilitating the rapid acquisition of defined developmental
phenotypes from a large number of embryos. Indeed, the inhibitor
SB-505124 clearly recapitulated the known loss-of-function phenotypes
of Nodal signaling pathway components®, thatis, cyclopia and loss of
allendodermand head-trunk mesoderm (Fig.1a-c and Supplementary
Video 6). We then acquired bright-field movies of SB-505124-treated
and untreated embryos in random orientations, comprising a total
of 342,559 images between 2 and 26 hours post-fertilization (h.p.f.).
A modified version of the ResNet18 CNN that includes a timestamp
of the images (Fig. 1e,f and Methods)*° trained with these datasets
robustly and correctly identified normal and Nodal-defective embryos,
independent of their orientation and whether small molecules
(SB-505124) or mutants (maternal zygotic oep mutants, MZoep"')
were used to create Nodal loss-of-function phenotypes (Fig. 1c,d and
Extended Data Fig.1).

We next extended this approach to the seven major signaling
pathways that control early development: BMP, RA, Wnt, FGF, Nodal,
Shhand PCP (Fig.1a,b). Using a chemical genetics approach with spe-
cific signaling pathway modulators®**** (Supplementary Table 1and
Supplementary Note 2), we created a dataset of more than 2 million
images with loss-of-function (or gain-of-function in the case of RA)
phenotypes (Supplementary Videos 1-8). The dataset was manually
annotated by curators who were informed about the treatment of each
embryo. The curators assigned classes appropriate for each treatment
(thatis, -BMP, +RA, -Wnt, —-FGF, —-Nodal, -Shh and -PCP) at the devel-
opmental timepoint when the phenotype first became apparent for a
givenembryo. The class Unknown was assigned when animage did not
contain sufficientinformation for classification, and the class Dead was
assigned if an embryo disintegrated over the course of development.
In addition, each image was assigned a timestamp for classification
(Fig. 1f). This high-confidence dataset was then used to train a
large-scale CNN with accelerated graphics processing unit comput-
ing (Methods and Supplementary Tables 2 and 3).

To correct for potential classification errors, we introduced a
model transition logic based on our knowledge of developmental
changes: in very early embryos, phenotypic differences are not yet
apparent because signaling changes resultin morphological changes
only at later stages' . These early embryos, characterized by the phe-
notype class Unknown, can then transition to another phenotype
class (-BMP, +RA, -Wnt, -FGF, —-Nodal, -Shh and -PCP) and can also
change to Dead at any point in time (Extended Data Fig. 1c). However,
certaintransitions, for example, from Dead to Normal, are not possible.
We therefore assigned a cost to every state transition in an individual
embryo track and scored the cost for different models. The transition
sequence that achieved the lowest cost was selected for classification.
This approach yielded a classification performance of 89%. The deep
learning-based classification network, termed EmbryoNet, was able to
robustly identify the loss-of-function phenotypes caused by orthogo-
nal approaches such as the injection of messenger RNAs (mRNAs)
encoding the Nodal and BMP pathway inhibitors Leftyl and Chor-
din, respectively (Fig.1g-i, Supplementary Note 2 and Extended Data
Fig.1f,g). EmbryoNet’s algorithms for the detection, tracking, manual
and automatic classification of embryos are available as easy-to-use,
modular and open-source graphical user interface (GUI) software
(Extended Data Fig. 1e; http://github.com/mueller-lab/EmbryoNet
and http://embryonet.uni-konstanz.de).

EmbryoNet s proficient, fast and accurate
To evaluate EmbryoNet’s performance, we tested its classification
speed and accuracy in competition with human assessors. We gener-
ated stacks of 98 embryo images, representing the full spectrum of our
phenotype classes. Theseimages had not been used previously for the
training of EmbryoNet, and information about the specific treatment
of each embryo was not disclosed to the assessors.

Random guessing resulted in an accuracy of 9% (F-score = 0.09;
Fig. 2a and Supplementary Table 4). The images were then classified
by non-experts. These 55 teams, each consisting of two assessors with a
biology background, received 1 day of developmental biology training
with afocus on developmental defects caused by modulated signaling
in zebrafish (Supplementary Videos 1-8, Fig. 2b and Extended Data
Figs. 2 and 3). We encouraged the assessors to discuss the pheno-
types to make the best classification choice. On average, non-experts
confidently identified the class Dead but identified signaling defects
with an overall accuracy of only 53% (F-score = 0.52; Fig. 2b, Extended
Data Fig. 2 and Supplementary Tables 5 and 6), even when temporal
information about the developmental stage was provided (accuracy
of54%, F-score = 0.52; Fig. 2c, Extended Data Fig. 3 and Supplementary
Tables5and 7). Theimages were next classified by an expert assessor,
anexperienced developmental biologist with several years of relevant
backgroundin early zebrafish embryogenesis. The expert confidently
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Fig. 2| Classification of 98 single embryo images by non-expert teams,
experienced researchers and EmbryoNet. a-e, Schematic set-ups and confusion
matrices showing the classification of the respective labeler compared with the
ground truth (human annotation, treatment known). Classification performance
isshown as a heatmap and fractions of 1for the classification of 98 single images
by a pseudo-random number generator (a), by anon-expert team without (b)

or with (c) additionally provided time information (average performance), by
anexperienced researcher (d) and by EmbryoNet (e). f, Schematic of embryo
detection over time. To allow for earlier detection, we annotated the training
data4 hbefore (blue time frame) the timepoint at which they could be robustly

annotated by alabeler aware of the treatment (pink time frame). The embryo
sketches show the phenotype of Nodal-inhibited samples at the respective time.
The resulting network with earlier detection was termed ‘EmbryoNet-Prime’.

g, Characteristic times of detection for each class based on the assessment

of human experts, EmbryoNet and EmbryoNet-Prime. nyoma = 74, n_gyp =119,

Nopp =66, Ny =70, N_ger = 74, N_youa = 110, N_g, = 63, n_pcp = 57. h—j, Classification
performancein the early detection of phenotypes. Confusion matrices show the
classification of image series by the respective labeler compared with the ground
truth (human annotation, treatment known; detection time shifted to 4 h earlier).
The number of analyzed images is shown in Supplementary Tables 20-22.

identified embryonic phenotypes across classes with an overall accu-
racy of 79% (F-score = 0.78; Fig. 2d and Supplementary Tables 5 and
8). Strikingly, EmbryoNet outperformed both expert and non-expert
human assessors on these images: it completed the task in a few sec-
onds and with an overall accuracy of 91% (F-score = 0.90; Fig. 2e and
Supplementary Tables 5and 9), comparable to the performance across
the entire validation dataset (see above).

To test whether context-dependent information could improve
human classification performance, we asked two human experts to
classify additional time-series experiments. Information about the
specific treatment for each embryo was not disclosed to the assessors,
but they were aware that all embryos in one video received the same
treatment. Human classification performance slightly increased toan
overall accuracy of 83% (F-score = 0.84). EmbryoNet still outperformed
the human experts with an accuracy of 90% (F-score = 0.90), espe-
cially for the classification of the most difficult and subtle phenotypes
(-Shhand -PCP) withF-scores of 0.54 (-PCP) and 0.72 (-Shh) compared
withthe human F-scores of 0.04 and 0.36, respectively (Extended Data
Fig. 4a-d and Supplementary Tables 10-15). In addition, EmbryoNet

accurately identified phenotypes that were not fully penetrant, such
as weaker BMP™ and Nodal defects*® (Extended Data Fig. 5 and Sup-
plementary Tables16-19).

Given EmbryoNet’s performance in identifying subtle phe-
notypes, we hypothesized that we could leverage artificial intelli-
gence to detect very early embryonic defects before they would be
recognized by human experts. We therefore retrained EmbryoNet
by moving the relevant developmental timepoint corresponding to
each treatment class to 4 hours earlier, before the phenotype was
obvious to a human annotator (Fig. 2f). Strikingly, the resulting net-
work, EmbryoNet-Prime, was able to identify Nodal loss-of-function
phenotypes at the beginning of gastrulation, several hours before
human annotators could confidently recognize them (Extended Data
Fig. 6), with an accuracy of 90% (F-score = 0.93; Fig. 2h-j, Extended
Data Fig. 4e and Supplementary Tables 10 and 20-24). Similarly, the
network detected the -BMP, +RA, -Wnt, -Shh and —PCP phenotypes
onaverage2-3 hours earlier (Fig. 2g and Extended Data Fig. 6), consist-
entwith the known expression and activation profiles of the signaling
molecules (Supplementary Note1).
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Fig. 3| Embryo features activating the neural network. Class activation
heatmaps based on the last convolutional layer of EmbryoNet-Prime showing the
part of the image that activates the network at the given timepoint for normal (a)
and signaling-defective embryos (b-h). Every signaling-defective embryo (-BMP
(b), +RA (c), -Wnt (d), -FGF (e), -Nodal (f), -Shh (g), -PCP (h)) is displayed in all
classification channels, but only the classification channels corresponding to the
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correct signaling manipulation show warm colors. The percentages represent
the probability of detection. See Supplementary Note 3 for sample sizes. Also see
Supplementary Videos 9-24. i-k, Selected embryos showing defects highlighted
by the corresponding class activation heatmaps for -Wnt at13.4 h.p.f. (i) and -
Nodal at10.6 h.p.f. (j) and 26 h.p.f. (k). Scale bars, 500 pm.

EmbryoNet recognizes known and latent defect features

What could be the features that are detected by EmbryoNet-Prime,
which facilitate earlier classification compared with human assessors?
To address this question, we leveraged class activation map (CAM)
visualization®’, which can be used to perform object localization
without additional annotation by projecting the probability of the
trained classes onto an input image. The resulting CAM should show
the discriminative image regions used by the CNN to identify a class:
positively activated domains should highlight image regions that sup-
portaparticular class, whereas negative domains should show regions
that oppose that class (Fig. 3 and Supplementary Note 3).

To evaluate the utility of CAM visualization, we first examined
steep andsudden switchesin classification. Forexample, BMP-inhibited
embryos frequently disintegrate (Supplementary Video 2), switching
from -BMP to Dead in terms of classification. Indeed, this classifica-
tion switch can be observed in EmbryoNet-Prime’s CAMs. Once -BMP
embryos disintegrate, their CAMs in the -BMP channel immediately
show negative activation accompanied by a positive activation in the
CAMs for the Dead class (Supplementary Videos 11 and 12). These
results indicate that CAM visualization can provide insight into the
logic of phenotype classification.

Using this approach, we found that EmbryoNet-Prime identified
known defects caused by the disruption of signaling pathways, but also
detected latent features at an earlier developmental stage compared
with humanassessors. For example, Wnt mutants are known to exhibit
prominent tailbud and head defects at 24 h.p.f.""2, EmbryoNet-Prime
wasindeed activated in these regions at late stages (Fig. 3i). Strikingly,
during early segmentation the whole body-axis already showed activa-
tion (Supplementary Videos 15and 16), and the detection of head and
tail defects also occurred as early as the bud stage (Fig. 3d, Extended
DataFig. 6 and Supplementary Videos 15and 16). Thus, ~Wnt embryos
were detected earlier by EmbryoNet-Prime than by human assessors
(Fig. 2g and Extended Data Fig. 6). Similarly, late-stage classification
of -Nodal embryos by EmbryoNet-Prime relied on well-known defects
in the ectodermal thickening (Fig. 3j), head, tail and trunk regions
(Fig. 3k). Surprisingly, however, EmbryoNet-Prime was also able
to classify early-stage ~Nodal embryos (-6 h.p.f.; Supplementary
Video 19) based on latent defects. The detection started with activa-
tion at the margin (Fig. 3f and Supplementary Videos 19 and 20) and
continued with activation spots at the border between yolk and blas-
toderm, directly adjacent to the embryo proper. Although this fits
well with known regions of Nodal expression and activity****, it will
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Fig.4 | Applications of EmbryoNet in drugscreening and other species.

a,b, Automated phenotype-based drug screening. a, Schematic of the phenomic
drugscreen. Embryos were exposed to compounds in 96-well plates and

imaged for 24 h. Phenotypes were classified automatically by EmbryoNet.

b, Layout of BML-2843 library plate 2 with majority phenotype classification for
each well. Simvastatin in well H-02 was classified as —-FGF. ¢, Statins identified

by EmbryoNet in the drug screen caused body axis defects similar to -FGF
loss-of-function phenotypes. d, Representative immunofluorescence images

of the FGF signaling transducer pErk in untreated and statin-treated embryos,
respectively. The representative images have pErk profiles that are closest to the
mean signaling profile of each group. Images are shown at the same contrast and
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brightness. Theinserted lower panels show cell nucleilabeled with DRAQ?7.

e, Quantification of background-subtracted pErk fluorescence intensity gradients
inwild-type (black), simvastatin-treated (blue), atorvastatin-treated (yellow)
and lovastatin-treated (green) embryos along the marginal-to-animal pole axis.
Theerror envelopes show s.e.m. f,g, Extension of EmbryoNet to other species.

f, Images of wild-type (left) and Nodal-deficient (right) medaka embryos with

the confusion matrix of classification performance. g, Images of wild-type (left)
and Nodal-deficient (right) three-spined stickleback embryos with the confusion
matrix of classification performance. Black arrows point to somites in healthy
embryos, while red arrows point out missing somites. The red arrowhead shows a
mispatterned central nervous system. Scale bars: 500 pm (c,f,g) and 200 um (d).
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beinteresting to determine how these molecular signatures manifest
inlatent cellular and morphological features.

EmbryoNet can identify novel signaling modulators

High-contentimage-based drug screens can be used to identify novel
compounds affecting cellular phenotypes. However, large-scale
drug screens assessing whole phenomes with rich biological

information® are currently hampered by the need to visually assess
avery large number of images, and are further complicated by the
potential ambiguity of defects and variability between assessors.
To determine whether EmbryoNet could be used to link chemical
manipulations to signaling-based phenotypic defects, we performed
a large-scale zebrafish screen using FDA-approved and bioactive
compounds (Fig. 4a).
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We screened approximately 1,000 compounds using 96-well plates
containing four to five zebrafish embryos per well. The screen spanned
2-26 h.p.f. We first tested well-known viability modulators with char-
acterized mechanisms of action such as aphidicolin, bafilomycin Al,
blebbistatin, brefeldin A, cycloheximide, cytochalasin B, latrunculin B,
staurosporin, trichostatin A, tunicamycin and vinblastine. EmbryoNet
reliably classified embryos treated with these substances as Dead,
while classifying mock-treated embryos as Normal (Supplementary
Tables 25-35, Extended Data Figs. 7 and 8 and Supplementary
Videos 25-35). EmbryoNet also correctly detected known modulators
of signaling pathways, such as the RA agonists all-trans-retinoic acid
and TTNPB (Extended Data Fig. 7 and Supplementary Table 26).

Importantly, for some small molecules we identified previously
unrecognized effects on signaling pathways in embryos. This group
includes several hydroxymethylglutaryl-coenzyme A reductase
inhibitors, a class of compounds also known as statins®~>*. Interest-
ingly, embryos treated with several statins, including simvastatin,
atorvastatin and lovastatin, were classified as ~FGF by EmbryoNet
(Fig.4b, Supplementary Videos 36-38 and Supplementary Tables 29, 32
and 35). Consistent with the —FGF classification, embryos treated with
these drugs showed defects in dorsal-ventral patterning>-** and had
loss of posterior tissues typical of -FGF embryos™*** (Fig. 4c). Strik-
ingly, the activity of the FGF signal transducer pErk was alsoreducedin
statin-treated compared with untreated embryos (Fig. 4d,e), possibly
due to dampened isoprenylation of the upstream small GTPase Ras’®.
Accordingto patient information regarding side-effects and databases
of potentially embryotoxic teratogenic therapeutics, the intake of
selected hydroxymethylglutaryl-coenzyme A reductase inhibitors
suchaslovastatinis not recommended during pregnancy and lactation
(Supplementary Note 4). Notably, simvastatin is recommended as a
substitute, although EmbryoNet detected the same defectsinresponse
to this drug. However, the bioavailability in zebrafish compared with
human cells is currently unclear.

In summary, our drug screen shows that EmbryoNet can be used
toidentify teratogenic effects caused by bioactive compounds and to
associate them with signaling pathways.

Generalization of EmbryoNet to other species

To test the generalizability of our approach, we next applied Embry-
oNet toidentify signaling defects in the evolutionarily distant species
medaka (Oryzias latipes) and three-spined stickleback (Gasterosteus
aculeatus). These fish diverged from zebrafish hundreds of millions
of years ago®°°. We adjusted the imaging length of our recordings to
match the slower developmental speed of both species®*” and modified
species-specific parameters such as temperature, number of embryos
per well and drug concentration as needed.

We found thatin both medaka and stickleback, wild-type animals
had well-formed somites (Fig. 4f,g, black arrows) and eyes (Supple-
mentary Videos 39 and 41), while Nodal-inhibited embryos showed a
loss of somites (Fig. 4f,g, red arrows) concomitant with severe central
nervous system defects and frequent cyclopia (Fig. 4f, red arrowhead;
Supplementary Videos 40 and 42). After training with these datasets,
EmbryoNet robustly identified wild-type and Nodal-inhibited indi-
viduals in both species (Fig. 4f,g). These results support the broad
applicability of EmbryoNet in identifying signaling-based complex
phenotypic defects in different species.

Discussion

Phenome refers to the entire set of phenotypes of an organism over
time, and phenomics has emerged as a promising approach for con-
necting these phenotypes with the underlying genotypes and environ-
mental influences®. A quantitative understanding of how the phenome
changes in response to genetic mutations and environmental stimuli
would be highly informative, but phenomics requires the processing
of large amounts of high-dimensional data®***"°°, Computer vision and

machinelearning techniques are therefore promising approaches for
advancingthis field and indeed areincreasingly being applied in plant
and crop phenomics®. Here, we present a machine learning-assisted
method for the robust phenomic analysis of developmental defects
during vertebrate embryogenesis.

The automated phenotyping tool that we developed, EmbryoNet,
is based on CNNs. Strikingly, EmbryoNet outcompeted human asses-
sors in terms of speed, accuracy and sensitivity. Assessing zebrafish
embryos, EmbryoNet was able to quickly and accurately link pheno-
types tomajor signaling pathways, including classifying incompletely
penetrant phenotypes. We were also able to retrain EmbryoNet for
assessing other fish species separated from zebrafish by hundreds of
millions of years in evolution, enabling the analysis of high-dimensional
phenomicdataindifferent taxa. EmbryoNet may thus be able to accel-
erate the characterization of developmental mutantsin multiple spe-
cies. Finally,ina proof-of-concept drug screen with two druglibraries,
we showed that EmbryoNet correctly associated compounds with
signaling functions. We therefore believe that this approach can be
used to understand the signaling effects of various compounds and
medications, thus opening up the possibility of applying drugs to new
therapeutic contexts and applications.

While EmbryoNet offers significant advantages in identifying
phenotypes at earlier developmental stages, there are some caveats
and weaknesses to consider. It remains uncertain whether EmbryoNet
can outperform humans in detecting very mild phenotypes, such as
those caused by low drug concentrations. Additionally, its reliance
on a library of manual annotations limits its ability to classify novel
phenotypes, particularly those arising from the combinatorial disrup-
tion of signaling pathways. The rapid development of deep learning
technologies could be leveraged to enhance EmbryoNet’s capabilities
and helpaddress EmbryoNet’s current limitations. By building on these
technological breakthroughs, it may become possible in the future
to bridge the genotype-phenotype gap and tackle the long-standing
question of how diverse body plans are genetically encoded®®.

We provide EmbryoNet as open-source software, with Python
packages, a GitHub repository and GUISs for labeling data and phe-
notype classification (http://github.com/mueller-lab/EmbryoNet).
We also provide the training, testing and the drug screenimaging data
as aresource to the community (http://embryonet.uni-konstanz.de,
http://github.com/mueller-lab/EmbryoNet). Due to its modular
open-source nature, EmbryoNet can be easily adapted to a variety of
purposes, including embryos of other species and organoids, in which
automated phenotyping will expedite biological and pharmaceutical
discovery.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-023-01873-4.
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Methods

Embryo preparation

The experiments were performed exclusively withembryos and larvae
that were not yet freely feeding. All procedures and zebrafish, medaka
and stickleback husbandry were carried out in accordance with the
guidelines of the European Union directive 2010/63/EU and the German
Animal Welfare Act as approved by the local authorities represented
by the Regierungsprasidium Tiibingen and the Regierungsprasidium
Freiburg (Baden-Wiirttemberg, Germany).

Zebrafish embryos of the TE strain were collected from batch
crosses within 1 h after fertilization. Fertilized embryos were manu-
ally selected using a glass Pasteur pipette. At this timepoint, zebrafish
embryos were between the 2-and 8-cell stages. A total of 10-20 embryos
were pipetted into each well of a 24- or 48-well plate in 1 ml zebrafish
embryo medium*®, Small-molecule signaling pathway agonists and
antagonists were added by pipetting them into the filled well with
the final concentrations listed in Supplementary Table 1. To obtain
PCP phenotypes, 1 ng vangi2-targeting morpholino® was injected
at the one-cell stage. Shh treatment was carried out either by cyclo-
pamine incubation or gli3R-GFP mRNA injection. For overexpression
of signaling antagonists, 10 pg leftyl mRNA*® together with 0.1 ng
of 10 kDa Alexa647-coupled dextran (Invitrogen D22914) or 75 pg
chordin mRNA” together with 0.1 ng of 10 kDa Alexa488-coupled
dextran (Invitrogen D22910) were injected into one-cell stage wild-type
zebrafish embryos. To validate phenotypes, swirl homozygous
mutants’® and maternal zygotic homozygous oep mutants* were used.
All zebrafish embryos were between O h.p.f.and 48 h.p.f.

Medaka eggs of the Cab strain were collected from standard
crosses and separated with forceps. They were incubated at 28 °C in
medaka embryo medium (17 mM NacCl, 0.4 mM KCl, 0.27 mM CacCl,,
0.65 mM MgS0,) and distributed into 24-well plates. Small-molecule
signaling pathway antagonists were added at the early blastula stage
to a concentration of 7.5 pM. Embryos were imaged from 8 h.p.f.
until 45 h.p.f. with intervals of 5 min at 28 °C. Approximately 500
Medaka embryos between O h.p.f.and 48 h.p.f. were used for training
and testing.

Stickleback embryos of wild-derived marine strains from Little
Campbell River (Canada) and Tyne River (Scotland) were obtained by
invitrofertilization and incubated until 20 h.p.f. at 16 °Cinstickleback
embryomedium (3.5 g I instant oceansaltin reverse osmosis water).
The eggs were separated using brushes and distributed into 48-well
dishes. The small-molecule signaling pathway antagonists were applied
ataconcentration of 15 uM, and embryos were imaged for 120 h with
intervals of 5 minat15-18 °C. Approximately 200 stickleback embryos
between O h.p.f.and 140 h.p.f. were used.

Image acquisition

Images were acquired using an ACQUIFER Imaging Machine (DITABIS
AG)withawhite light-emitting diode (LED) for bright-field imaging and
ascientificcomplementary metal oxide semiconductor 2,048 x 2,048
camera (HamamatsusCMOS 2k x 2k) inasingle plane withax2 PlanUW
numerical aperture 0.06 objective (Nikon) using the Imaging Machine
software (v4.00.21). The integration time was fixed at a 110 ms expo-
sure time and 100% relative LED intensity in the bright-field channel.
Imaging was performed at 28 °Cwith 720 iterations at intervals of 120 s.
Images were stored as 12-bit TIFF files at a size of 2,048 x 2,048 pixels
and 0.31 pixels pm™ and converted to JPEG or PNG files for further
phenotype analyses.

To generalize the method independently of the microscope, aKey-
ence BZ-X810 microscope equipped with a x2 apochromat objective,
a3.7 W LED lightsource and the BZ-X800 viewer software (Keyence,
v01.03.00.01) was also used to acquire embryoimages (Supplementary
Tables 2,14,15, 23 and 24 and Extended Data Fig. 4d,e). The exposure
time was 0.1 ms with 50% relative intensity. The images were stored as
8-bitJPEG files at a size 0f 1,920 x 1,440 pixels.

Medakaand stickleback eggs contain large lipid droplets and, com-
paredto zebrafish, have alargeryolkinrelation to the embryo proper.
Additionally, medaka eggs are surrounded by adhesive filaments. Given
that these features are visually very prominent, the embryos were
required to be imaged until the late segmentation stages to robustly
detect morphological differences.

Embryo detection

Adataset of manually annotated embryos was generated using the GUI
FishLabeler (http://github.com/mueller-lab/EmbryoNet). The dataset
was splitinto twosubsets: 90% of the images were used for training and
10% for validation. Additionally, anindependent manually annotated
dataset was generated for testing.

Individual embryos were automatically detected at each image
frame of the acquired movies using astandard object-detection algo-
rithm based on the Hough transform’. The location of individual
embryos was computationally determined using bounding boxes.
The range of embryo radii in pixels was provided according to the
microscope acquisition parameters for each experiment indepen-
dently. As output, aset of JSON files containing the information about
the bounding boxes of individual embryos was generated. The Hough
transform-based embryo detector can be replaced by other object
recognition methods (such as watershed segmentation) to detect
non-spherical species (for example, Drosophila melanogaster).

Embryo tracking

To obtain information about the whole developmental path of each
individual, the embryosidentified atindividual frames were grouped
using an object-tracking approach. Detections of the same embryo
in consecutive frames were confirmed using the DeepSort algorithm
without re-identification’.

Manual labeling of training datasets

All embryos were initially set as class Unknown. Then, each embryo
track was manually annotated with its specific phenotypic class (that
is, Normal = Wild type, -BMP, +RA, -Wnt, -FGF, -Nodal, -Shh, —-PCP)
from the timepoint when the phenotype could be observed by an
experienced annotator. Additionally, embryos that disintegrated
were labeled as Dead. Embryos that were only partially intheimage or
that showed an unspecific phenotype were annotated as Cut and were
excluded fromthe training, validation and test datasets. Additionally,
the -BMP and —Nodal classes were subclassified into severity levels:
weak, ~-30% phenotype severity; intermediate, ~60% phenotype sever-
ity; and severe, ~100% phenotype severity. For Nodal phenotypes, the
percentage bins were determined by the concentration of the inhibitor,
with100% corresponding to the minimum concentration that led to full
penetrance. The drug concentration was then directly used asabinned
fraction of the fully penetrant dose as ground truth for the severity bins,
accepting a certain spread of phenotypes. Binning of BMP severity
levels was done based on previous classification schemes™, with the
class C3 corresponding to 30%, C4 to 60%, and C5 to 100% severity.
Altogether 14 classes were obtained for the classification process. The
annotator had previous knowledge about the treatment of the respec-
tive embryo, and the expertise to recognize all of the phenotypes.

To train EmbryoNet-Prime for an earlier detection, the original
manual annotations were used to determine the timepoint when the
majority of the embryos were classified correctly. The appropriate class
wasthenassigned 120 frames (4 h) earlier, when the phenotype could
notbe identified by eye. Cut and Dead embryos were not changed.

Model training and embryo classification

Theuse ofembryoimages as the only input could lead to misclassifica-
tions between embryo phenotypes, which have a similar appearance
at different developmental stages. To increase classification perfor-
mance, the developmental timepoint was added as a second input to
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the classification algorithm. In total, four channels were used as input
for model training. The first three channels correspond to a standard
RGBimage, and the remaining oneis a ‘timestamp’ channel represent-
ing the time that has passed from the beginning of the experiment. The
size of the images was 224 x 224 pixels. The timestamp was linearly
mapped fromthereal developmental time to the domain [0, 1], where
Ocorrespondsto-~2 h.p.f.and1to~-26 h.p.f. Given that the input classes
wereimbalanced (Supplementary Table 2), the overrepresented class
Unknownwas undersampled and the 13 remaining classes replicated”.

For the classification task, a modified version of the widely used
ResNet18*° architecture was selected. The network architecture was
chosen due to its easy and fast convergence in image classification
tasks. The ResNet18 model was modified by using a time channel as
additional input and thus feeding four instead of three channels, and
by replacing thelast classification layer with the current classification
layer. Time was also used as input to the last fully connected layer. The
parameters of the neural network weights, unlike the neural network
architecture (thatis, the mathematical function structure describing an
artificial neural network), were changed during the training procedure
viaaback-propagation algorithm.

The CNNmodelwas trained using the supervised back-propagation
training method”, acommonalgorithm for training neural networks.
The Adamoptimizer was used, whichis aback propagation-based opti-
mization algorithmthat determines the value change of neural network
weights based on the loss function gradient. Softmax cross-entropy
was used as the loss function (that s, the penalty for a poor prediction,
indicating how bad the model’s prediction was on a single example):

L=-1/n)Inp;

where p; is the index of the correct probability of the i-th image, and
nisthe number ofimagesinthebatch. Inthe case inwhich the model’s
prediction is perfect, the loss would be zero; otherwise, the loss is
greater. Cross-entropy lossis acommon loss function used in machine
learning and it measures the expected negative logarithm’s value for
the correct classification probability.

The Albumentations library” was used to increase the amount
of training images by adding slightly modified copies of the existing
images. Augmentations were applied during the training process,
including random horizontal and vertical flips, rotations in the range of
1-90°with steps of 1°, crops and salt-and-pepper noise (Supplementary
Table 3). During the training process arandom augmentation fromeach
group was picked and applied to the input image.

Giventhatthe selected CNN model did not converge when all data-
setsand augmentations were used from the beginning of the training,
aprogressive training design involving different levels of difficulty was
developed. Inbrief, the training was performed sequentially by dividing
itinto several steps with progressive addition of data and augmenta-
tions. Ateach step extradatawere added asinput and new augmenta-
tionsapplied ateach epoch, thatis, at each pass over the entire training
dataset during the training procedure. The initial learning rate was set
to102and it decayed by a factor of 0.1after each epoch. The learning
rate, thatis, the parameter by which the loss gradient value is multiplied
duringeachiteration, was restored to the value of 10> at the beginning
of eachiteration. The model was trained using eight steps with10-20
epochs per step, resulting inatotal of 152 epochs. For the whole train-
ing, abatch size (that is, the number of training examples used in one
iteration) of n =350 was used, and the training was performed on an
NVIDIARTX 3090 card in Ubuntu20.04.4 LTS.

Rotation- and mirror-invariance of the embryo appearance was
exploited to boost the classification performance by running the
trained network for each detected embryo eight times: once with
the original embryo image, once with the image flipped horizontally,
then flipped vertically, then mirrored diagonally, and then with each
ofthese samplesrotated by 90°. Following this step, the classification

probabilities were averaged. Each embryo was assigned to the class that
had the maximum probability.

Model transitionlogic
To further improve the results of the classification, the information
from embryo tracking as well as previous knowledge about transitions
between phenotypes was incorporated into the classification task. In
brief, first the classification results of the CNN for each embryo track
were collected and transitions between classes identified. The only
biologically possible transitionsinanembryo track were set as follows:
from Unknown to a phenotype class, from a phenotype class to Dead,
or from Unknown to Dead. Any other transitionin an embryo track was
penalized inthe model prediction. The quality of the whole track model
prediction was evaluated by computing the number of frames between
transition points with the class expected by the model being analyzed.
Thetransitionsequence thatachieved the least cost was considered tobe
thecorrectone. The outliers were thenignored inthe track history. Nodal
and BMP severity classifications were similarly corrected by selecting the
severity class that was most frequently observed over the timecourse.
For medaka, a semi-supervised training method was used by
assigning a classification transition point from which the phenotypes
were easy to distinguish for ahuman and automatically applying thisto
alltraining data. Given that medakaembryos disintegrated if they were
treated with Nodal inhibitor before the blastula stages, the medaka
experiments did not startat cleavage but at blastula stages. This oppor-
tunity was used to set the transition point to timepoint 1, such that the
Unknown class did not have to be used at all. This did not reduce the
training or classification efficiency (Fig. 4f), showing that an Unknown
state for early stages is not unconditionally required.

Evaluation of classification efficiency

For the performance measure of classification, subset accuracy was
computed. Subset accuracy is the fraction of images n that were clas-
sified correctly:

n
Accuracy = %ZI@,— =)
i=1

F-scores were calculated as

Precision x Recall

F—-score=2x —————
Precision + Recall

with

precision true positives

true positives+false positives

true positives
recall = P

true positives+false negatives

In the confusion matrices, the class Unknown was not taken into
account. The numerical data for the confusion matrices including
the class Unknown are provided in Supplementary Tables 4, 9, 11-15
and 17-24, and this class was also included in the overall metrics of
accuracy and F-score.

The evaluation dataset for Fig. 2a-e was generated by compil-
ing three stacks of 98 images each selected from the full test dataset
(Fig. 2h-j and Extended Data Fig. 4). To evaluate the performance of
random guessing, the function randi from MATLAB R2022a was used
for the generation of a pseudo-random scalar integer betweenlandn,,
where n.is the number of classes. The image stacks were then labeled
with the classes corresponding to the pseudo-random numbers and
evaluated for performance by calculating accuracy and F-score. The
non-expert teamsreceived one randomly selected image stack for their
assessment task. The experienced developmental biologist assessed
allthree image stacks, and average performance is shownin Fig. 2d.
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CAMs

To visualize the regions of images that influenced the model to make
classification decisions, CAMs were used. To visualize the CAMs gen-
erated by EmbryoNet, the weights of the final output layer in a fully
connected layer were projected using global max pooling, as previ-
ously proposed”. This approach enabled the visualization of regions
positively or negatively activated for a particular class. CAMs were
calculated forall classes, and their values were normalized so that the
minimum and maximum values for all classes correspond to-1and +1,
respectively. Toimprove the visualization of areas with large positive
ornegative values (that is, relevant regions for the decision), the CAMs
were remapped using the following function:

Veam = sgn(Veam) XV Veam

where V. are the normalized values of the CAMs, sgn () is the sign
function and V., are the remapped CAM values. Finally, the values of
the CAMs were mapped to 8-bit and visualized with the jet colormap.

Drugscreening
Plates of the Screen-Well ICCB Known Bioactives Library BML-2840-
0100 and the FDA-approved drug library BML-2843 were defrosted
at 22 °C for 1 h and centrifuged at 1,890 xg for 2 min (Eppendorf
5810 R). Six 96-well microtiter plates were pre-filled with 96 pl cell
culture-grade PBS (Gibco). From each library plate, 4 pl per well were
transferred, resultinginal:25 dilution. Blank wells were filled with 4 pl
cell culture-grade PBS. Zebrafish embryos were collected as described
above, but selected embryos were washed three times with 200 ml
embryo medium and transferred to a 96-well plate (Greiner Bio-One),
three to five embryos per well. Each well was filled withembryo medium
toavolume of 135 pl. Subsequently, 15 pl solution were transferred from
thel:25intermediate dilution plates to each well containing embryos.
Plates were covered with transparent foil, and a plastic lid was placed
ontheplate.

Screening plates were placed in the ACQUIFER Imaging Machine
as described above with an imaging interval between 135s and 192 s.
Image files were converted to JPEGfiles for further phenotype analyses.
Theimages from the 96-well screening plates were sorted into separate
directories related to respective wells using a custom Python script
(Drugscreenscript1; http://github.com/mueller-lab/EmbryoNet/tree/
main/Train_Eval/tools/DrugScreen). The data files were read into the
custom FishClassifier software and evaluated for detected phenotypes.
For each image file, phenotype detections were stored as a separate
JSONfile. The JSON files were read using a custom Python script (Drug
screenscript2; http://github.com/mueller-lab/EmbryoNet/tree/main/
Train_Eval/tools/DrugScreen). Evaluated phenotypes were linked with
corresponding treatments and finally stored as Excel files, contain-
ing the number of images for each class in the time series. These files
were used to generate charts for predicted phenotypes resulting from
eachtreatment (Drugscreenscript 3; http://github.com/mueller-lab/
EmbryoNet/tree/main/Train_Eval/tools/DrugScreen). The majority
phenotype for each well was determined as the class to which the high-
est number of embryo images was assigned.

Retest and characterization of statins in FGF signaling
Zebrafish embryos were treated with 20 uM simvastatin in embryo
medium (Enzo Life Science BML-G244-0050, final concentration of
DMSO solvent: 0.2%), 40 pM atorvastatin (Sigma PHR1422, final con-
centration of DMSO solvent: 0.4%) or 0.4 pM lovastatin (PHR1285, final
concentration of DMSO solvent: 0.04%) starting at1.5-2 h.p.f. or were
left untreated and incubated at 28 °C.

Live embryos were imaged at 28 h.p.f. with a bright-field micro-
scope (LeicaM205FCA). For close-up images, embryos were manually
dechorionated using precision forceps and embedded in 2% methylcel-
lulose inembryo medium.

For pErkimmunostainings, untreated and statin-treated embryos
were fixed at the shield stage with 4% formaldehyde in PBS overnight
at 4 °C and then stepwise (25%, 50%, 75% methanol in PBST (PBS con-
taining 0.1% Tween-20)) dehydrated. After an overnight incubation
in100% methanol at -20 °C, embryos were rehydrated in three steps
(75%,50%, 25% methanol in PBST). After permeabilization withice-cold
acetone for 20 min at —20 °C and additional washing steps with PBST,
samples were blocked in 10% FBS in PBST for 2 h and incubated in
1:5,000 mouse anti-pERK antibody (Sigma, M8159) in 10% FBS in
PBST overnight at 4 °C. Embryos were then washed at least 12 times
with PBST, followed by another blocking step for 2 h with 10% FBS
in PBST and overnight incubation with 1:5,000 donkey anti-mouse
HRP-coupled secondary antibody (Jackson ImmunoResearch,
715-035-150) in10% FBS in PBST at 4 °C. After washing at least 12 times
with PBST and once with TSA 1x amplification buffer, embryos were
incubated in 75 pl 1:75 Cy3-TSA in 1x amplification buffer for 45 min,
protected from light. After washing for at least four times with PBST,
embryos were incubated in 0.3 pM DRAQ?7 (Invitrogen, D15106) in
PBST for 30 minand then washed atleast three times with PBST. Before
imaging, stained embryos were wrapped in aluminum foil and stored
overnightat4 °C.

Fixed and stained embryos were mounted in 1.5% low-melting
point agarose (Lonza, 50080) using a glass capillary (50 pl, Brand
701908) and imaged with a ZEISS Lightsheet Z.1 microscope using
ZEN 3.1Black Edition acquisition software. The imaging chamber was
filled with water, and filters and lightsheets were auto-aligned prior
toimaging’®. Embryos were positioned with the brightest pErk signal
pointing towards the imaging objective (presumptive dorsal view).
Foreachembryo, z-slices with 5 pm between each slice were acquired.
All images were acquired with dual lightsheet illumination using a W
Plan-Apochromat x10 objective at x0.9 zoom, with laser powers of 2%
and 6% for pErk and nuclei, respectively.

To measure spatial intensity profiles from the margin to the animal
pole, maximum intensity projections of 75 z-slices were generated
using Fiji”’, and pErk intensity profiles were calculated as follows.
First, arectangular region of interest with a width of 300 pixels was
manually drawn from the margin of the blastoderm to the animal
pole. Only images of embryos that were oriented with the dorsal side
facing the camera were used for the analysis. The dorsal side could
be identified after generating maximum intensity projections from
image stacks. Embryos with tilted dorso-ventral axes were excluded.
Then, the average intensity along the profile was calculated using
the function Measure in Fiji. The background intensity of pErk was
estimated as the median intensity value of the profiles of untreated
embryosatthe animal pole (between 250 um and 280 pm fromthe mar-
gin) and subtracted from the intensity profiles using MATLAB 2022a
(https://doi.org/10.48606/55).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Training and evaluation datasets for EmbryoNet are available from
http://embryonet.uni-konstanz.de and https://doi.org/10.48606/15.
The drug screen data are available from https://doi.org/10.48606/37,
https://doi.org/10.48606/38 and https://doi.org/10.48606/41. Addi-
tional data that support the findings of this study are available from
https://doi.org/10.48606/53 and https://doi.org/10.48606/55.

Code availability

The source code for EmbryoNet is available from http://github.com/
mueller-lab/EmbryoNet (https://doi.org/10.5281/zenodo.7531593).
Additional custom scripts used for data analysisin this study are avail-
able from https://doi.org/10.48606/15.
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Extended DataFig. 1| Schematic of the training pipeline for EmbryoNet. (f,g) Comparison of EmbryoNet’s performance to recognize phenotypes

(a) Overview of a training iteration. Augmented embryos were collected into induced by signaling modulation using small-molecule inhibitors,

atraining batch with known embryo age. After EmbryoNet processed a batch overexpression of signaling antagonists or pathway mutants. Nodal phenotypes
of input images with ages, network outputs were compared with ground (f) induced by small-molecule inhibitor treatment (SB-505124, n=33), injection
truth values. Based on cross-entropy loss, EmbryoNet weights were updated of a pathway antagonist (leftyl mRNA, n=27) or in a receptor mutant (MZoep,

to minimize the loss. (b) Examples of augmentations used. (c) In our model n=27) were all classified by EmbryoNet as ~Nodal with similar accuracy. BMP
transition logic, embryos have alimited set of allowed class transitions. phenotypes (g) induced by small-molecule inhibitor treatment (LDN-193189,
Allstartin the class Unknown and can transition to any other class, from where n=45), pathway antagonist injection (chordin mRNA, n=26) or in a pathway

they can go only to Dead, but not to other classes. Other transitions were ligand mutant (swirl”, n=13) were all classified by EmbryoNet as -BMP with

assigned a cost. The model with the least cost was selected. (d) Schematic of the similar accuracy. Scale bars: 500 pm.
classification pipeline. (e) Graphical user interface (GUI) of EmbryoNet.
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and human experts (green dots). The error envelopes show standard error of
the mean. Solid lines show the fit of a sigmoid curve to the data. Gray boxes show
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major developmental periods. Different classes could be detected at different
time points. -BMP, + RA, -Wnt, -Nodal and -Shh could be classified earlier by
EmbryoNet-Prime than by humans. n[Normal]: 74, n[-BMP]: 119, n[+RA]: = 66,
n[-Wnt]: 70, n[-FGF]: 74, n[-Nodal]: 110, n[-Shh]: 63, n[-PCP]: 57. Data also
showninFig.2g.
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Extended Data Fig. 7 | Results of the Enzo ScreenWell 2840 library drug screen. (a

with classifications per well by majority phenotype. See Supplementary Tables 25-30 for details.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection For data acquisition on an Acquifer Imaging Machine, we used the Imaging Machine control software (Acquifer, Version ID 4.00.21). For data
collection on a Keyence BZ-X810 microscope, we used the BZ-X800 viewer (Keyence, Version 01.03.00.01). For data acquisition on a ZEISS
Lightsheet 7.1 microscope, we used ZEN 3.1 Black Edition (ZEISS).

Data analysis For image annotation, model training, validation and testing we used our custom software EmbryoNet (http://github.com/mueller-lab/
EmbryoNet, http://doi.org/10.5281/zenodo.7531593). For the analysis of pErk stainings, we used Fiji/ImageJ version 1.53 and MATLAB
(R2022a). The training was performed on an NVIDIA RTX 3090 card in Ubuntu 20.04.4 LTS.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Training and evaluation data sets for EmbryoNet are available from http://embryonet.uni-konstanz.de and http://doi.org/10.48606/15. The drug screen data is
available from http://doi.org/10.48606/37, http://doi.org/10.48606/38 and http://doi.org/10.48606/41. Additional data that support the findings of this study are
available from http://doi.org/10.48606/53 and http://doi.org/10.48606/55.
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Reporting on sex and gender N/A

Population characteristics N/A

Recruitment

Ethics oversight

N/A

N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size

Data exclusions

Replication

Randomization

Blinding

To determine a suitable sample size for the development of EmbryoNet, we used an active learning approach. In an iterative process, we
progressively increased the number of images/embryos used as training and validation sets until the classification performance on the
validation data set reached a saturation level. This approach is commonly used in classification problems and allows to obtain good
classification performance. For all other experiments, at least three biological replicates were estimated to provide an adequate sample size
based on previous analyses (Pomreinke et al. eLife 2017, Soh et al. Cell Reports 2020, Kuhn et al. Nature Communications 2022).

Embryos that were only partially visible in images were excluded. For the analysis of pERK, only images of embryos that were oriented with
the dorsal side facing the camera were used. The dorsal side could be identified after generating maximum intensity projections from image
stacks. Embryos with tilted dorso-ventral axes were excluded.

The classification experiment with mixed MZoep and WT embryos comprises four biological replicates performed on the same day with
multiple embryos. The heterozygous swirl mutant incross experiment has six biological replicates performed on the same day with multiple
embryos. The Ift1 and chordin overexpression experiments consist of nine biological replicates performed on the same day with multiple
embryos. The classification of a stack of 98 selected embryos was performed once for random classification, 55 times by non-expert teams (31
without time information, 24 with extra time information), and by one experienced developmental biologist. The classification of time-lapse
data sets was performed by two experienced developmental biologists once each. All automatic classifications are from one repetition by
EmbryoNet or by EmbryoNet-Prime, respectively. The drug screen was performed once with multiple embryos for each treatment. The Statin
findings were confirmed twice independently on separate days. The pERK immunostainings were performed with multiple embryos on the
same day.

Embryos from zebrafish and medaka crosses as well as stickleback in vitro-fertilizations were randomly allocated into experimental groups.

Since embryos from zebrafish and medaka crosses as well as stickleback in-vitro fertilizations were genetically uniform and indistinguishable,
blinding of the investigators was not necessary.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
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X |:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
|:| ] Animals and other organisms

X|[] clinical data

|Z |:| Dual use research of concern

Antibodies

Antibodies used We used anti-DP-ERK (Sigma-Aldrich, M8159) antibody at a dilution of 1:5000, and HRP-conjugated anti-mouse (Jackson
ImmunoResearch, 715-035-150) antibody at a dilution of 1:5000.

Validation We used a validated primary antibody from a standard commercial source (for validation see for example Rogers et al. eLife 2020,
Navon et al. ] Mol Neurosci 2012, Larbuisson et al. Differentiation 2013). The secondary antibody was also from a standard
commercial source (for validation see e.g. Kim et al. Nature Communications 2022, Rogers et al. eLife 2020, Pardi et al. Nature
Communications 2022).

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The experiments were performed exclusively with embryos and larvae that were not yet freely feeding. We used wild-type zebrafish,
medaka and stickleback embryos. In addition, swirl mutants (Kishimoto et al. 1997) and maternal-zygotic oep zebrafish mutants were
used (Gritsman et al. Cell 1999). Age of embryos: zebrafish (TE, oep and swr strains): 0-48 hpf; medaka (Cab strain): 0-48 hpf;
stickleback (Little Campbell River and Tyne River strains): 0-140 hpf.

Wild animals We did not use wild animals.
Reporting on sex Sex-based analysis was not performed because phenotypical sex identification is not possible in zebrafish, medaka or stickleback
embryos.

Field-collected samples  We did not use field-collected samples.

Ethics oversight All procedures were executed in accordance with the guidelines of the EU directive 2010/63/EU and the German Animal Welfare Act
as approved by the local authorities represented by the Regierungsprasidium Tibingen and the Regierungsprasidium Freiburg
(Baden-Wdirttemberg, Germany).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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