
nature methods Volume 20 | February 2023 | 168–169 | 168

https://doi.org/10.1038/s41592-022-01744-4

Correspondence

JIPipe: visual batch processing for ImageJ

T
he growth in microscopy adoption
has led to a concomitant upsurge
in the development of software
tools for the automated analysis
of image data. Pillars among these

tools are ImageJ1 and its Fiji2 distribution,
which have been serving the imaging commu-
nity for decades and continue to gain public
support to keep up with the quantification

needs of the newest and most-demanding
microscopy techniques. The hallmark of
ImageJ is its intuitive graphical user interface,
which provides access to its many tools. On
the other hand, the creation of reproducible
batch-processing workflows is only possible
using a macro language. As programming
skills are uncommon among experimental-
ists3, the need for scripting contributes to an

already-existing communication gap between
life and computer scientists. Visual program-
ming languages that replace the writing of
text commands with the design of a flowchart
offer a solution. Existing tools contribute to
this effort by providing a visual way to build
pipelines or by simplifying the scripting proce-
dure (Supplementary Information, section 1).
Our newly developed visual programming

 Check for updates

a

b

Output handled by the JIPipe GUI

Loops are created automatically

Results saved automatically

JIPipe manages the data for you

ImageJ
Macro language

c

t

z

t

Quantification of bacterial
growth in microfluidic
droplets

Tracking drug delivery into
hepatocytes

Quantifying the e�ect of
toxins on nematodes

Glomerular number in
whole mouse kidneys

Calculating the e�iciency of
phagocytosis by
macrophages

Dataset

data-001

2-1-img

exp-003

...

...

...

...

1,000+ commands from ImageJ
and other software

Custom-developed nodes

Automated integration

ImageJ data types encapsulated
into batch environment as
constrained
data-table

 Simplified
management
of data

✓

+

+

✓

✓

✓

✓
Φp=

+

Fig. 1 | Overview of JIPipe. a, JIPipe is a visual programming language to realize
code-free workflow building for ImageJ-based image analyses. GUI, graphical
user interface. b, Currently, JIPipe unifies the functionality of over 1,000 ImageJ
commands into a standardized interface, represented as nodes in the pipeline

flow chart. The window-based data management implemented in ImageJ is
replaced with a table-based model designed for batch processing. c, A range of
applications showcases the versatility of JIPipe. Scale bars, 100 µm.

C
r

ed
it

: C
u

r
tis

 Rue

d

en
 (I

m
age

J

 l
ogos

in

 a
,b

),
 Jo

h
a

n
n

es
 S

c
h

in
d

el
in

 (F
iji

 l
ogo

 in
 b

),
 Ro

b

er
t

 Haase

 (C
LI

J l
ogo

 in
 b

),
 Jea

n

-Ma

r
ie

 Bu

r
el

 (Bio

-F
o

r
m

ats

a

n
d

 O
M

ER
O

 l
ogos

in

 b
),

 C
a

r
se

n
 S

t
r

in
ge

r
 (ce

l
lpose

 l
ogo

 in
 b

),
 in

fo
@

posit

.

co

 (R

logo

 in

 b
) a

n
d

 psf

-t
r

a
d

em
a

r
k

s@
p

y
t

h
o

n
.o

r
g

 (P
y

t
h

o
n

 l
ogo

 in
 b

).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01744-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01744-4&domain=pdf

nature methods Volume 20 | February 2023 | 168–169 | 169

Correspondence

language, which we term Java image process-
ing pipeline (JIPipe) (https://www.jipipe.org),
provides a macro programming alternative
that is particularly designed for ImageJ and
supports the transition from interactive
single-image manipulation to multi-image
algorithmic batch processing (Fig. 1a).

The close relationship between JIPipe and
ImageJ is symbiotic in nature. JIPipe already
encapsulates over 1,000 commands from
the default ImageJ installation as well as from
numerous plugins, in form of easily deploy-
able nodes. ImageJ is capable of accessing
all JIPipe-based algorithms from within its
graphical user interface and macro language.
This mutual exchange of functionalities will
advance the way in which image quantifica-
tion and visualization pipelines are built using
either of the two platforms. Current ImageJ
users will find it natural to work with JIPipe
functions owing to their familiar behavior,
while taking advantage of the project-based
design of workflows, features to organize
larger pipelines and easy scaling to batch
analysis, as well as the standardized interface
to parameters and documentation.

The assortment of nodes covers function-
alities of ImageJ and various plugins that
are captured automatically by our ImageJ2
integration or by dedicated JIPipe extensions
(Fig. 1b). Aside from ImageJ functionalities,
we also provide R and Python-based script-
ing, and an integration of cellpose4. A full
list of all dependency libraries and external
tools is given in Supplementary Information,
section 2. JIPipe imposes a strict standardiza-
tion of nodes and their parameters, as well as
their inputs and outputs, and facilitates the
adoption of the FAIR (‘findability, accessibil-
ity, interoperability and reusability’) princi-
ples5 by the implementation of standardized
storage formats for pipeline projects, data
and metadata. Our software organizes all
data through a constrained table model that
enforces the existence of a primary data col-
umn of a specific suitable type. The data model
enables an intuitive solution for batch process-
ing with multiple inputs without the reliance
on structural loop nodes. This is achieved by
automatically assigning the data to appropri-
ate text-metadata columns that are generated
from the input files or by user input. The result
is a highly flexible node model that unambigu-
ously communicates the expected data types
to the users. The range of JIPipe functionalities

is extendable through plugins that are built
upon the existing Java-based library ecosys-
tem of ImageJ, thus opening our platform to
all related ongoing community-driven and
open-source efforts. This allows JIPipe to keep
pace with the increasing complexity of new
image-analysis tasks arising from the continu-
ously improved set of imaging techniques.

To highlight the abilities of JIPipe, we show
examples from a wide variety of applications in
which JIPipe was successfully used to quantify
image data (Fig. 1c). High-throughput quan-
tification of bacterial growth inside droplets
(first row, Fig. 1c) was carried out both with a
classical analysis pipeline6 and using our cell-
pose4 nodes. Additionally, JIPipe workflows
were written to investigate the drug delivery
efficiency of nanocarriers in the liver7 (second
row, Fig. 1c); to test the survival ratio of nema-
todes that digested toxin-producing bacte-
ria8 (third row, Fig. 1c); to count glomeruli in
healthy and pathogenic kidneys9 (fourth row,
Fig. 1c); and to analyze confrontation assays
between macrophages and fungal spores10
(fifth row, Fig. 1c).

In summary, JIPipe fills a niche by contribut-
ing a visual alternative to macro programming
that is particularly designed for ImageJ, thus
simplifying the development of advanced
automated image-processing methods,
bridging the gap between experimentalists
and computer scientists and facilitating the
adoption of the FAIR principles. JIPipe is fully
open source and continues to be developed
in close collaboration with the wider ImageJ
community (https://image.sc/).

Data availability
The project files and example data used to
demonstrate JIPipe, as well as example pipe-
lines, are available at https://doi.org/10.6084/
m9.figshare.19733320.v3.

Code availability
The JIPipe software, training material, full
documentation and source code are available
at https://www.JIPipe.org/ and https://www.
github.com/applied-systems-biology/JIPipe/
(https://doi.org/10.5281/zenodo.6532719).
JIPipe is also available from within the ImageJ
update service.

Ruman Gerst    1,2,4, Zoltán Cseresnyés1,4 &
Marc Thilo Figge    1,3 
1Applied Systems Biology, Leibniz Institute

for Natural Product Research and Infection
Biology – Hans Knöll Institute (HKI), Jena,
Germany. 2Faculty of Biological Sciences,
Friedrich Schiller University Jena, Jena,
Germany. 3Institute of Microbiology, Faculty
of Biological Sciences, Friedrich Schiller
University Jena, Jena, Germany. 4These
authors contributed equally: Ruman Gerst,
Zoltán Cseresnyés.

 e-mail: thilo.figge@leibniz-hki.de

Published online: 10 January 2023

References
1.	 Rueden, C. T. et al. BMC Bioinformatics 18, 529 (2017).
2.	 Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).
3.	 Martins, G. G. et al. F1000 Res. 10, 334 (2021).
4.	 Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Nat.

Methods 18, 100–106 (2021).
5.	 Wilkinson, M. D. et al. Sci. Data 3, 160018 (2016).
6.	 Svensson, C.-M. et al. Small 15, 1802384 (2019).
7.	 Muljajew, I. et al. ACS Nano 15, 12298–12313 (2021).
8.	 Büttner, H. et al. Proc. Natl Acad. Sci. USA 118,

e2110669118 (2021).
9.	 Klingberg, A. et al. J. Am. Soc. Nephrol. 28, 452–459 (2017).
10.	 Cseresnyes, Z., Kraibooj, K. & Figge, M. T. Cytometry A 93,

346–356 (2018).

Acknowledgements
This work was financially supported by the International
Leibniz Research School for Microbial and Biomolecular
Interactions Jena – ILRS Jena (R.G.). The German Research
Foundation (DFG) funded this project through the
Collaborative Research Center PolyTarget 1278 – project
number 316213987, subproject Z01 (Z.C.). This work was also
supported by the Collaborative Research Center Funginet
124 – project number 210879364, subproject B4 (M.T.F),
by the Cluster of Excellence ‘Balance of the Microverse’
under Germany´s Excellence Strategy (EXC 2051 – project
ID 390713860) (M.T.F) and by the Leibniz ScienceCampus
InfectoOptics Jena (M.T.F), which is financed by the funding
line Strategic Networking of the Leibniz Association. We
received support from the Federal Ministry of Education
and Research, Germany (grant number 13GW0456B) in
the context of the InfectoGnostics Research Campus Jena
(M.T.F). We are particularly thankful to M. Roth (microfluidic
droplets data), C. Hertweck (nematode imaging), K. Voigt
(confrontation assay images), A. Press (intravital liver
microscopy data) and M. Gunzer (kidney light-sheet images)
for kindly providing image data.

Author contributions
R.G. developed the software. Z.C. designed the bioimage
analysis pipelines and tested the software. M.T.F. and
Z.C. conceived the idea. M.T.F. directed and supervised
the project. All authors wrote the initial draft, read and
contributed to the paper, and approved the content.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-022-01744-4.

Peer review information Nature Methods thanks Christopher
Schmied, Mark Willett and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work.

http://www.nature.com/naturemethods
https://www.jipipe.org
https://image.sc/
https://doi.org/10.6084/m9.figshare.19733320.v3
https://doi.org/10.6084/m9.figshare.19733320.v3
https://www.JIPipe.org/
https://www.github.com/applied-systems-biology/JIPipe/
https://www.github.com/applied-systems-biology/JIPipe/
https://doi.org/10.5281/zenodo.6532719
http://orcid.org/0000-0002-0723-6038
http://orcid.org/0000-0002-4044-9166
mailto:thilo.figge@leibniz-hki.de
https://doi.org/10.1038/s41592-022-01744-4

	JIPipe: visual batch processing for ImageJ

	Acknowledgements

	Fig. 1 Overview of JIPipe.

