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JIPipe: visual batch processing for ImageJ

T
he growth in microscopy adoption 
has led to a concomitant upsurge 
in the development of software 
tools for the automated analysis 
of image data. Pillars among these 

tools are ImageJ1 and its Fiji2 distribution, 
which have been serving the imaging commu-
nity for decades and continue to gain public 
support to keep up with the quantification 

needs of the newest and most-demanding 
microscopy techniques. The hallmark of 
ImageJ is its intuitive graphical user interface, 
which provides access to its many tools. On 
the other hand, the creation of reproducible 
batch-processing workflows is only possible 
using a macro language. As programming 
skills are uncommon among experimental-
ists3, the need for scripting contributes to an 

already-existing communication gap between 
life and computer scientists. Visual program-
ming languages that replace the writing of 
text commands with the design of a flowchart 
offer a solution. Existing tools contribute to 
this effort by providing a visual way to build 
pipelines or by simplifying the scripting proce-
dure (Supplementary Information, section 1).  
Our newly developed visual programming 
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Fig. 1 | Overview of JIPipe. a, JIPipe is a visual programming language to realize 
code-free workflow building for ImageJ-based image analyses. GUI, graphical 
user interface. b, Currently, JIPipe unifies the functionality of over 1,000 ImageJ 
commands into a standardized interface, represented as nodes in the pipeline 

flow chart. The window-based data management implemented in ImageJ is 
replaced with a table-based model designed for batch processing. c, A range of 
applications showcases the versatility of JIPipe. Scale bars, 100 µm. 

C
r

ed
it

: C
u

r
tis


 Rue


d

en
 (I

m
age


J

 l
ogos




 
in

 a
,b

),
 Jo

h
a

n
n

es
 S

c
h

in
d

el
in

 (F
iji

 l
ogo




 in
 b

),
 Ro


b

er
t

 Haase





 (C
LI

J l
ogo




 in
 b

),
 Jea


n

-Ma


r
ie

 Bu


r
el

 (Bio


-F
o

r
m

ats


 
a

n
d

 O
M

ER
O

 l
ogos




 
in

 b
),

 C
a

r
se

n
 S

t
r

in
ge

r
 (ce

l
lpose




 l
ogo




 in
 b

),
 in

fo
@

posit



.

co


 (R
 

logo



 in

 b
) a

n
d

 psf


-t
r

a
d

em
a

r
k

s@
p

y
t

h
o

n
.o

r
g

 (P
y

t
h

o
n

 l
ogo




 in
 b

).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01744-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01744-4&domain=pdf


nature methods Volume 20 | February 2023 | 168–169 | 169

Correspondence

language, which we term Java image process-
ing pipeline ( JIPipe) (https://www.jipipe.org), 
provides a macro programming alternative 
that is particularly designed for ImageJ and 
supports the transition from interactive 
single-image manipulation to multi-image 
algorithmic batch processing (Fig. 1a).

The close relationship between JIPipe and 
ImageJ is symbiotic in nature. JIPipe already 
encapsulates over 1,000 commands from 
the default ImageJ installation as well as from 
numerous plugins, in form of easily deploy-
able nodes. ImageJ is capable of accessing 
all JIPipe-based algorithms from within its 
graphical user interface and macro language. 
This mutual exchange of functionalities will 
advance the way in which image quantifica-
tion and visualization pipelines are built using 
either of the two platforms. Current ImageJ 
users will find it natural to work with JIPipe 
functions owing to their familiar behavior, 
while taking advantage of the project-based 
design of workflows, features to organize 
larger pipelines and easy scaling to batch 
analysis, as well as the standardized interface 
to parameters and documentation.

The assortment of nodes covers function-
alities of ImageJ and various plugins that 
are captured automatically by our ImageJ2 
integration or by dedicated JIPipe extensions 
(Fig. 1b). Aside from ImageJ functionalities, 
we also provide R and Python-based script-
ing, and an integration of cellpose4. A full 
list of all dependency libraries and external 
tools is given in Supplementary Information, 
section 2. JIPipe imposes a strict standardiza-
tion of nodes and their parameters, as well as 
their inputs and outputs, and facilitates the 
adoption of the FAIR (‘findability, accessibil-
ity, interoperability and reusability’) princi-
ples5 by the implementation of standardized 
storage formats for pipeline projects, data 
and metadata. Our software organizes all 
data through a constrained table model that 
enforces the existence of a primary data col-
umn of a specific suitable type. The data model 
enables an intuitive solution for batch process-
ing with multiple inputs without the reliance 
on structural loop nodes. This is achieved by 
automatically assigning the data to appropri-
ate text-metadata columns that are generated 
from the input files or by user input. The result 
is a highly flexible node model that unambigu-
ously communicates the expected data types 
to the users. The range of JIPipe functionalities 

is extendable through plugins that are built 
upon the existing Java-based library ecosys-
tem of ImageJ, thus opening our platform to 
all related ongoing community-driven and 
open-source efforts. This allows JIPipe to keep 
pace with the increasing complexity of new 
image-analysis tasks arising from the continu-
ously improved set of imaging techniques.

To highlight the abilities of JIPipe, we show 
examples from a wide variety of applications in 
which JIPipe was successfully used to quantify 
image data (Fig. 1c). High-throughput quan-
tification of bacterial growth inside droplets 
(first row, Fig. 1c) was carried out both with a 
classical analysis pipeline6 and using our cell-
pose4 nodes. Additionally, JIPipe workflows 
were written to investigate the drug delivery 
efficiency of nanocarriers in the liver7 (second 
row, Fig. 1c); to test the survival ratio of nema-
todes that digested toxin-producing bacte-
ria8 (third row, Fig. 1c); to count glomeruli in 
healthy and pathogenic kidneys9 (fourth row, 
Fig. 1c); and to analyze confrontation assays 
between macrophages and fungal spores10 
(fifth row, Fig. 1c).

In summary, JIPipe fills a niche by contribut-
ing a visual alternative to macro programming 
that is particularly designed for ImageJ, thus 
simplifying the development of advanced 
automated image-processing methods, 
bridging the gap between experimentalists 
and computer scientists and facilitating the 
adoption of the FAIR principles. JIPipe is fully 
open source and continues to be developed 
in close collaboration with the wider ImageJ 
community (https://image.sc/).

Data availability
The project files and example data used to 
demonstrate JIPipe, as well as example pipe-
lines, are available at https://doi.org/10.6084/
m9.figshare.19733320.v3.

Code availability
The JIPipe software, training material, full 
documentation and source code are available 
at https://www.JIPipe.org/ and https://www.
github.com/applied-systems-biology/JIPipe/ 
(https://doi.org/10.5281/zenodo.6532719). 
JIPipe is also available from within the ImageJ 
update service.
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