Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Profiling the epigenetic landscape of the antigen receptor repertoire: the missing epi-immunogenomics data

High-resolution sequencing methods that capture the epigenetic landscape within the T cell receptor (TCR) gene loci are pivotal for a fundamental understanding of the epigenetic regulatory mechanisms of the TCR repertoire. In our opinion, filling the gaps in our understanding of the epigenetic mechanisms regulating the TCR repertoire will benefit the development of strategies that can modulate the TCR repertoire composition by leveraging the dynamic nature of epigenetic modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methylation analysis of germline and recombined TCRs.

References

  1. Kumar, B. V., Connors, T. J. & Farber, D. L. Immunity 48, 202–213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Velardi, E., Tsai, J. J. & van den Brink, M. R. M. Nat. Rev. Immunol. 21, 277–291 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Miles, J. J., Douek, D. C. & Price, D. A. Immunol. Cell Biol. 89, 375–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bassing, C. H., Swat, W. & Alt, F. W. Cell 109, S45–S55 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kondilis-Mangum, H. D. & Wade, P. A. Mol. Aspects Med. 34, 813–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Jaeger, S., Fernandez, B. & Ferrier, P. Immunology 139, 141–150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agata, Y. et al. J. Exp. Med. 193, 873–880 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benner, C., Isoda, T. & Murre, C. Proc. Natl Acad. Sci. USA 112, 12776–12781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang, M. et al. J. Clin. Immunol. 42, 375–393 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Mostoslavsky, R. et al. Genes Dev. 12, 1801–1811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malissen, M. et al. Cell 55, 49–59 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, A., Kondilis, H. D., Khor, B., Sleckman, B. P. & Krangel, M. S. Nat. Immunol. 6, 189–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Krangel, M. S. Curr. Opin. Immunol. 21, 133–139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minnoye, L. et al. Nat. Rev. Methods Primers 1, 10 (2021).

    Article  CAS  Google Scholar 

  15. Qiu, X. et al. Sci. Adv. 6, eaaz8850 (2020).

  16. Ndifon, W. et al. Proc. Natl Acad. Sci. USA 109, 15865–15870 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Satpathy, A. T. et al. Nat. Med. 24, 580–590 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shih, H.-Y. & Krangel, M. S. J. Immunol 190, 4915–4921 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Woodsworth, D. J., Castellarin, M. & Holt, R. A. Genome Med. 5, 98 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Issa, J.-P. J. & Kantarjian, H. M. Clin. Cancer Res. 15, 3938–3946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindblad, K. E., Goswami, M., Hourigan, C. S. & Oetjen, K. A. Expert Rev. Hematol. 10, 745–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fozza, C. et al. Leuk. Res. 39, 957–963 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Nie, J. et al. Oncotarget 7, 37882–37892 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abbas, H. A. et al. Front. Immunol. 12, 659625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosati, E. et al. BMC Biotechnol. 17, 61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barros-Silva, D., Marques, C. J., Henrique, R. & Jerónimo, C. Genes 9, 429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chatterjee, A., Rodger, E. J., Morison, I. M., Eccles, M. R. & Stockwell, P. A. Methods Mol. Biol. 1537, 249–277 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Clark, S. J., Statham, A., Stirzaker, C., Molloy, P. L. & Frommer, M. Nat. Protoc. 1, 2353–2364 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lister, R. et al. Cell 133, 523–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, C., Nezami Ranjbar, M. R., Wu, Z., DiCarlo, J. & Wang, Y. BMC Genomics 18, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saito, Y., Sugimoto, C., Mituyama, T. & Wakao, H. PLoS ONE 12, e0174699 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Booth, M. J. et al. Nat. Protoc. 8, 1841–1851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, M. et al. Nat. Protoc. 7, 2159–2170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Y. et al. Nat. Biotechnol. 37, 424–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Y. et al. Genome Biol. 21, 54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Simpson, J. T. et al. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Flusberg, B. A. et al. Nat. Methods 7, 461–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giudicelli, V., Chaume, D. & Lefranc, M.-P. Nucleic Acids Res. 33, D256–D261 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support for H.A. from the University of Southern California, School of Pharmacy Seed Fund, The Norris Cancer Center pilot fund, STOP Cancer pilot funding, and The Ming Hsieh Institute foundation grants, the NIH P30. H.A. is also supported by NIH-NCI 1R01CA248381–01A1 and in part by NIH grant 5P30CA014089–45.

Author information

Authors and Affiliations

Authors

Contributions

R.A. researched the literature, and wrote and edited the manuscript. M.P. contributed to writing and editing. H.A. conceived the idea, wrote and edited the manuscript, and supervised the project.

Corresponding author

Correspondence to Houda Alachkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Grégoire Lauvau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aburajab, R., Pospiech, M. & Alachkar, H. Profiling the epigenetic landscape of the antigen receptor repertoire: the missing epi-immunogenomics data. Nat Methods 20, 477–481 (2023). https://doi.org/10.1038/s41592-022-01723-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-022-01723-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing