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Advances and opportunities in RNA 
structure experimental determination and 
computational modeling

Jinsong Zhang    1,2,3,4, Yuhan Fei1,2,3,4, Lei Sun    1,2,3   and 
Qiangfeng Cliff Zhang    1,2,3 

Beyond transferring genetic information, RNAs are molecules with diverse 
functions that include catalyzing biochemical reactions and regulating gene 
expression. Most of these activities depend on RNAs’ specific structures. 
Therefore, accurately determining RNA structure is integral to advancing our 
understanding of RNA functions. Here, we summarize the state-of-the-art 
experimental and computational technologies developed to evaluate RNA 
secondary and tertiary structures. We also highlight how the rapid increase 
of experimental data facilitates the integrative modeling approaches for 
better resolving RNA structures. Finally, we provide our thoughts on the 
latest advances and challenges in RNA structure determination methods, as 
well as on future directions for both experimental approaches and artificial 
intelligence-based computational tools to model RNA structure. Ultimately, 
we hope the technological advances will deepen our understanding of 
RNA biology and facilitate RNA structure-based biomedical research 
such as designing specific RNA structures for therapeutics and deploying 
RNA-targeting small-molecule drugs.

RNA was once conceptualized as a passive passenger for the delivery of 
genetic information recorded in DNA to the functional products—pro-
teins. However, this view has been changed since the discoveries that 
RNA can function as catalytic ribozymes, as temperature-sensing and 
metabolite-sensing riboswitches, and as epigenetically regulatory long 
noncoding RNAs (lncRNAs), among others1–3. These diverse functions, are 
based on the ability of single-stranded RNA molecules to fold into diverse 
secondary and tertiary structures4,5. Moreover, it has been reported that 
mutations disrupting RNA structures can be associated with human dis-
eases such as repeat expansion disorders, retinoblastoma and breast 
cancer6. The ability to characterize RNA folding and structure is therefore 
essential to advance our understanding of the diverse functions of RNA.

RNA molecules first fold into secondary structures in a process 
dominated by canonical Watson–Crick and wobble base pairing, before 

further folding into tertiary structures, driven by interactions among 
secondary structural elements (Box 1). It is notable that most structural 
studies focused on a small number of known functional RNAs, and were 
conducted in vitro, mainly using X-ray crystallography, nuclear mag-
netic resonance (NMR) spectroscopy, and more recently cryo-electron 
microscopy (cryo-EM), small-angle X-ray scattering (SAXS) and gel 
electrophoresis-based probing methods7.

These RNA structure determination efforts have deepened our 
understanding of the mechanisms underlying various biological 
processes. For example, resolving the structure of the translation 
machine—the ribosome—has revealed that rRNAs both provide a scaf-
fold and form the catalytic core of the ribosome where the nascent 
peptide synthesis occurs. Moreover, determining the structures of 
the riboswitches has unveiled fascinating modular architectures and 
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elongation to regulate native protein folding17, and alternative RNA 
structures at splice sites have been shown to affect the abundance of 
different transcript isoforms18. Recently, several RNA structure prob-
ing studies focusing on resolving the structure of the RNA genome of 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have 
helped uncover functional and structural elements that contribute to 
the virus’s translation, sub-genome generation and overall infectivity, 
and have helped identify therapeutic targets and drugs19.

Alongside experimental studies, there is a long tradition of devel-
oping computational methods for studying RNA structures20. However, 
many of these methods are based on assumptions about energy cal-
culations in solution, and do not reflect how RNA molecules fold and 
function in cells6,21. More recently, methods have been developed to 
incorporate experimentally determined structural data into computa-
tional modeling to support functional analyses of RNAs in their physi-
ologically relevant states; these tools have helped generate alternative 
structure models for viral RNA genomes18,22 and have supported the 
discovery of riboSNitches9.

Here, we review recent advances in experimental RNA structure 
probing methods and computational approaches for RNA structural 
prediction and modeling; we highlight the advantages of leveraging 

enabled elucidation of the molecular recognition that these biomol-
ecules used to regulate gene expression1. However, the limited scope of 
known RNA structures obtained so far has led to an incomplete picture 
of RNA structure and folding in cells.

Efforts over the last decade have developed a new generation of 
deep sequencing-based RNA structure probing methods with pro-
foundly increased throughput, which have enabled transcriptome-wide 
structural profiling in vitro8,9 and in vivo10–12. These methods have 
uncovered distinct functions of RNA structures in gene regulation. 
For instance, global RNA structure maps in Escherichia coli revealed 
that mRNA translation efficiency is regulated by the unfolding kinetics 
of mRNA structures overlapping the ribosomal binding site13. During 
zebrafish development, the structures in the 3′ untranslated region 
can regulate maternal RNA degradation by modulating microRNA 
activity14 and RNA-binding protein (RBP) binding15. In cellular innate 
immunity, circular RNAs with 16–26-bp imperfect RNA duplexes can 
act as inhibitors of double-stranded RNA (dsRNA)-activated protein 
kinase (PKR)16. Interestingly, overexpression of the dsRNA-containing 
circular RNA in T cells can alleviate aberrant PKR activation in the 
autoimmune disease systemic lupus erythematosus16. The structural 
organization of the entire HIV-1 RNA genome modulates ribosome 

Box 1

Basic knowledge of RNA structure
Like proteins, RNA structure can be described at four levels of 
complexity: primary, secondary, tertiary and quaternary structures. 
The linear primary structure of an RNA is the sequence of its 
nucleotides, which lays the basis for the folding of the higher-level 
structures. The ability of RNAs to form base pairings including 
canonical Watson–Crick and noncanonical (for example, wobble G:U) 
base pairings drives the folding of RNA secondary structures, in which 
variously base-paired and unpaired nucleotides form ‘secondary 
structural elements’ such as stems, loops, bulges, junctions and 
pseudoknots. Secondary elements subsequently assemble through 
interactions such as coaxial stacking and kissing loop interactions 
to form RNA tertiary structures, comprising ‘tertiary structure 
elements’ such as the kink turns, U•A-U triplets and G-quadruplexes. 
Finally, the interactions with other biomacromolecules—including 
RNA–RNA, RNA–DNA and RNA–protein interactions—lead to the 

formation of RNA quaternary structures, for example, ribosomes and 
spliceosomes.

On the one hand, RNA is similar to DNA in that they  
both have primary structures comprising a long sequence of 
nucleotides, which can form base pairings. On the other hand,  
RNA is analogous to proteins in that both can form sophisticated 
secondary and tertiary structures. Further, for both RNAs and 
proteins, secondary structure formation is mainly mediated by 
hydrogen bonding (as well as base stacking for RNA), while tertiary 
structures are formed through interactions between secondary 
structure elements. Given these similarities, it is unsurprising that 
the methods suitable for RNA structural determination occupy a 
conceptual ‘middle ground’ between the sequencing methods used 
for DNA and the biophysical and computational methods used for 
characterizing proteins.
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probing data for structure prediction and analysis. Whenever possible, 
we discuss the similarities in the methods used for studying RNA struc-
ture to the methods used to assess DNA and proteins. Finally, aiming 
to facilitate efficient communication between RNA experimentalists 
and computational experts, we consider several directions that deserve 
additional research efforts to increase the resolution and flexibility of 
probing methods and better harness machine learning tools for RNA 
structure research in basic biology and biomedical investigations.

Advances in experimental RNA structure 
determination
The experimental acquisition of high-resolution RNA structures has 
a long history (Box 2). X-ray crystallography and NMR have been used 
successfully to solve RNA structures (starting with the first RNA ter-
tiary structure at atomic resolution in 1974; ref. 23), whereas NMR has 
remained mainly suitable for assessing small RNAs (typically fewer than 
100 nucleotides). RNA crystals are required for X-ray crystallography, 
yet it is challenging to obtain appropriate RNA crystals owing to the 
intrinsic structural heterogeneity caused by their flexible backbones 

and weak long-range interactions7. Moreover, the SAXS method is capa-
ble of characterizing the low-resolution, overall shapes of RNA particles 
in solution (including large RNA molecules). Recent innovations in 
cryo-EM single-particle technologies have dramatically improved the 
resolution and capacity to solve macromolecule structures includ-
ing RNA24. Despite all of these painstaking efforts, there are currently 
only 6,155 RNA-containing structures in the RCSB Protein Data Bank 
(PDB), accounting for fewer than 3.2% of the total number of structures 
(191,869, as of June 2022). And it is also noteworthy that the resolved 
structures have predominantly been short regulatory and enzymatic 
RNAs (for example, tRNA, rRNA and ribozyme). Although a few indi-
vidual structural elements in mRNA and lncRNAs have been solved25, 
solving the full structure of long RNA molecules remains beyond our 
current reach.

In addition, these biophysical methods are hard to apply to study 
structural dynamics in living cells. This, together with the limited 
applicability of these methods for certain types of RNAs, have led 
to an incomplete picture of RNA structure and folding. There are 
now a large variety of RNA structure probing methods that variously 

Box 2

Comparison of structural determination technologies between 
RNA, DNA and protein
Similarly to the footprinting-based RNA probing methods, 
technologies exist to probe accessible chromatin regions, which 
leverage the preferences of particular nucleases (for example, Tn5 
transposase, DNase I and micrococcal nuclease) or chemical probes 
(DMS and methidiumpropyl-EDTA) to leave footprints where the 
genomic DNA is not occupied by nucleosomes or single-stranded 
genome regions (as in the assay for transposase-accessible 
chromatin using sequencing (ATAC-seq), DNase I treatment 
coupled with high-throughput DNA sequencing (DNase-seq), 
micrococcal nuclease sequencing (MNase-seq), DMS-seq (for 
DNA) and kethoxal-assisted sequencing (KAS)-seq)116–118. Likewise, 
proximity ligation-based RNA probing methods are broadly 
analogous to the methods developed for capturing the higher-order 
structure of genomic DNA, such as Hi-C followed by chromatin 
immunoprecipitation, chromatin interaction analysis using 

paired-end tag sequencing and Hi-C119. Extending this comparison, 
DNA and RNA analogous methods tend to share steps that address 
common challenges; for example, RIC-seq uses in situ proximity 
ligation, as does in situ Hi-C, both seeking to avoid spurious ligation55.

Beyond the similarity to DNA, RNA can fold into sophisticated 
secondary and tertiary structures like proteins, and it follows that 
three-dimensional (3D) structural determination approaches (for 
example, X-ray crystallography and cryo-EM) have been applied for 
both proteins and RNAs. However, owing to the intrinsic structural 
heterogeneity of RNA molecules, the number of RNA tertiary 
structures solved by biophysical methods is much smaller than 
solved protein structures. Finally, note that a variety of computational 
tools have been developed for the modeling and prediction of RNA 
and protein structures, and in many cases these tools share similar 
structural principles and algorithm designs.
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combine enzymatic or chemical probes with deep sequencing for 
high-throughput studies of the RNA ‘structurome’. Broadly, these 
methods can be categorized into two major groups based on the type 
of structural information they obtain: footprinting-based methods 
and proximity ligation-based methods.

Footprinting-based RNA probing methods
The general principle underlying footprinting-based methods is the 
use of probes to modify RNA in an RNA structure-specific manner8,10–12. 
These probes leave ‘footprints’ on RNA as a modified base, which can 
be subsequently captured by reverse transcription (RT) and read out by 
sequencing and analysis (Fig. 1a). Footprinting does not provide direct 
base-pairing information, but instead measures the probe reaction 
intensity with each nucleotide and calculates a reactivity score for each 
nucleotide (termed a structural score) to represent the probability of 
forming secondary structure base pairings.

To conduct footprinting-based RNA probing, users must make 
careful choices about probing reagents, chemical modification 
readout methods and the protocol for library construction as these 
factors strongly influence the structural information obtained (Sup-
plementary Table 1). The base-specific chemical probes target the 
Hoogsteen and/or the Watson–Crick faces of particular unpaired (or 
exposed) bases. For example, dimethyl sulfate (DMS) interacts with N1 
of adenine and N3 of cytosine and has been used for the development 
of methods including DMS-seq and Structure-seq10,11. N-Cyclohexyl-N′-
(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate and 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide have been used to 
probe RNA structures by modifying guanine and uracil in vitro26 and 
in vivo27,28 (Supplementary Table 2). Another category of chemical 
probes targets the RNA backbone and can thus assess structural infor-
mation for all types of nucleotides. Among them, selective 2′-hydroxyl 

acylation detected by primer extension (SHAPE) reagents sense flex-
ibility in the 2′-OH group of the sugar ring12,29 and have been used 
for the development of SHAPE-seq, SHAPE-MaP and in vivo click (ic)
SHAPE12,30,31 (Supplementary Table 2).

SHAPE reagents are able to provide structural information of 
all four bases and therefore provide an advantage over base-specific 
probes. However, the reactivity scores obtained from SHAPE reagents 
rely on the local flexibility of the 2′-OH for each base, which can be 
affected by base stacking in addition to base pairing32. Moreover, the 
reactivity of the probing reagents varies when used in different types 
of cell lines33. Notably, some reported probes (for example, NAI-N3 and 
N3-kethoxal) have dual functionality, for example, having the ability to 
couple biotin to help enrich the modified RNAs during library construc-
tion, making them attractive to users working with low-abundance 
RNAs or rare samples (as for example in difficult-to-obtain clinical 
samples)12.

Moreover, cell membrane permeability and instant RNA kinetic 
snap capacity are also relevant considerations when selecting appro-
priate probing reagents34. For example, to support in vivo structural 
probing, probes should have high cell membrane permeability and long 
reaction times (for example, DMS, NAI, NAI-N3, 5NIA and 2A3)10–12,33–35 
(Supplementary Table 1).

Chemical modification signals can be read out as RT-truncation 
or RT-mutation signals10–13,18,36. In the ‘RT-truncation strategy’, foot-
prints are read out as RT stops (that is, as the reverse transcriptase 
drops off when encountering the chemical adduct10–12). A more recent 
development is the ‘RT-mutation strategy’, which is based on the 
tendency of reverse transcriptase to mis-incorporate nucleotides 
instead of stopping at chemical adduct sites under specific reaction 
conditions13,18,36. The RT-mutation strategy allows detection of mul-
tiple footprints per cDNA molecule, and thus enables studies of RNA 
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Fig. 1 | Advances in experimental RNA structure determination. a, The general 
workflow of footprinting-based probing methods. RNAs are first probed by 
chemical probes, which modify the nucleotides with structural preferences. 
The modification footprints then can be converted into RT truncations or RT 
mutations during RT and can be further read out by sequencing and analyses. 
Each nucleotide is finally assigned a reactivity score, which represents the 
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b, The general workflow of proximity ligation-based methods. RNAs are 
crosslinked at the base-pairing or interacting regions, and are then subjected  
to fragmentation. Proximity ligation is performed to connect base-pairing  
or interacting fragments. Usually, an enrichment step for the crosslinked  
ones is performed before or after proximity ligation. Finally, the information  
of base pairing or interaction can be recovered from chimeric reads in 
sequencing libraries.
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structural heterogeneity (that is, multiple conformations of a single 
RNA molecule) by grouping the reads based on mutation patterns18,22. 
However, both strategies were found to have bias in detecting DMS 
modifications: specifically RT mutations tend to occur on modified 
cytosines, while RT stops favor modified adenosines, and such bias is 
known to depend on both the reverse transcriptase used and the local 
structural context37.

For library construction, many protocols have been developed to 
improve the signal-to-noise ratio and to decrease the material input 
requirements (Supplementary Table 2). For example, Structure-seq2 
uses hairpin adaptors to reduce the ligation bias and introduces 
biotinylated nucleotides during RT to allow for removal of unwanted 
by-products and to reduce the number of required PAGE purifica-
tions38. SmartSHAPE adds a biotinylated adaptor to cDNA to allow the 
downstream reactions to be performed in an ‘on beads’ manner, which 
obviates the need for PAGE purification, and incorporates RNase I diges-
tion to remove the artifact signals of premature RT products. These 
improvements collectively enable smartSHAPE to investigate samples 
with very small RNA input concentrations39. The abovementioned 
methods are all based on short-read sequencing, which precludes us 
from analyzing structure with its full-length origin. More recently, new 
methods were developed by combining chemical probing and direct 
long-read RNA sequencing using Nanopore, such as PORE-cupine40 and 
nanoSHAPE41; these methods enable us to phase alternative structures 
for long transcripts.

Proximity ligation-based RNA probing methods
Footprinting-based methods capture only the base-pairing tendencies 
of a nucleotide; in contrast, proximity ligation-based RNA probing 
methods can obtain partner information (base-pairing and interaction 
data) within an RNA (intramolecular RNA structure) or between two 
RNA molecules (intermolecular RNA–RNA interactions)42–48. Typically, 
these methods first crosslink interacting RNA pairs, after which RNAs 
are fragmented, and interacting RNA pairs are then ligated to form 
chimeric molecules, which can be identified after sequencing and bio-
informatics analyses to represent the interacting RNA fragments (Fig. 
1b and Supplementary Table 2).

These methods can be roughly categorized into two groups: 
base-pairing dependent and protein centric. Base-pairing-dependent 
methods were developed mainly based on psoralen-mediated 
or psoralen-derivative-mediated crosslinking of two direct 
base-paired fragments42–45. These methods differ in strategies for 
enriching crosslinked fragments, a step that strongly influences the 
signal-to-noise ratio. Strategies used to date include two-dimensional 
(2D) polyacrylamide gel electrophoresis (as in PARIS)43, biotin-psoralen 
for streptavidin beads selection (SPLASH)42, RNase R (LIGR-seq)44 and 
antisense oligonucleotides (COMRADES)45. Notably, these methods 
may suffer from a low proximity ligation rate, and from spurious liga-
tion. The crosslinker psoralen, known to preferentially crosslink stag-
gered uridines and RBPs, can block its crosslinking activity49. These 
limitations together can lead to noise and severe loss of information 
in the resulting data, thus limiting their capacity to detect biologi-
cally relevant interactions. Indeed, meta-analyses have reported lim-
ited overlaps between the interactions detected using SPLASH and 
PARIS, even from the same cell lines50. Notably, the recently devel-
oped reagents trans-bis-isatoic anhydride (TBIA) and dipicolinic acid 
imidazolide (DPI) have a 2′-hydroxyl acylation crosslinker that can 
react with two 2′-OH groups of single-stranded nucleotides in proxim-
ity51,52. SHAPE-JuMP uses TBIA to capture nucleotide pairing and uses 
an engineered reverse transcriptase that ‘jumps’ across crosslinked 
nucleotides to obviate the need for proximity ligation51. SHARC (spatial 
2′-hydroxyl acylation reversible crosslinking) drastically improves 
crosslinking efficiency to >90% using DPI, increases the detection 
resolution of pairing regions by exonuclease trimming, and enables 
transcriptome-wide analysis of spatial distances in cells52.

The protein-centric methods aim to detect RNA interactions 
mediated by proteins. These methods can be further classified into 
two categories: methods that assess interactions with one or several 
proteins (using analyte-specific antibodies to purify proteins and 
associated RNAs, such as CLASH, hiCLIP and RIPPLiT46–48) and methods 
that attempt to reveal global interaction maps of all proteins (such as 
RPL, MARIO and RNA in situ conformation sequencing (RIC-seq))53–55. 
Notably, proximity ligation is usually a rate-limiting step due to its 
low efficiency, and a variety of improvement approaches have been 
invented. For example, RIC-seq uses in situ proximity ligation and 
increases the reaction time to increase the yield of the ligated products 
and to reduce spurious ligation55.

Footprinting-based methods only obtain a structural score 
of base-pairing probability for each nucleotide; and proximity 
ligation-based RNA probing methods only generate information for 
interacting RNA fragments. Each of these methods provides only partial 
information so computational methods (which we address below) are 
typically required to generate full models of RNA secondary structures.

Computational approaches for RNA structure 
prediction and modeling
RNA secondary structure modeling methods
In parallel to experimental methods for RNA structure probing, compu-
tational methods have also been developed to predict RNA secondary 
structures over the past decades. Herein, we classify these computa-
tional methods into knowledge-based methods and learning-based 
methods. The details of representative methods are shown in Table 1.

Knowledge-based methods
Experimental work to characterize RNA structures has generated data 
from which researchers have gleaned principles about how RNA mol-
ecules fold into their intricate structures. These principles have in 
turn formed the basis for developing computational RNA secondary 
structure prediction methods; these knowledge-based prediction 
methods can be further categorized into energy-based methods and 
covariation-based methods.

Energy-based methods. Energy-based methods search for the ther-
modynamically most stable secondary structure of an analyte RNA 
molecule by minimizing free energy using dynamic programming 
algorithms (Fig. 2a). The calculation of the free energy is based on 
the experimentally determined parameters, synthesized into the 
‘Tuner rules’, about how RNA folds20. Examples in this category include 
Mfold20, RNAstructure56, MC-fold57, RNAfold58, and so on. Generally 
speaking, energy-based methods have been at the forefront of RNA 
secondary structure prediction, and remained the most widely used 
methods to date. The main limitations of these methods are their 
increasing inaccuracy (owing to error accumulation in energy calcula-
tions) and computational complexity as the length of the analyte RNA 
increases, as well as their tendency to ‘overfold’ RNA structures and 
their inability to take into account key determinants of RNA folding 
in the context of living cells, such as the co-transcriptional nature of 
folding, protein binding or RNA modifications21,59,60. Concerning RNA 
modifications, we note that secondary structure prediction for RNA 
sequences containing N6-methyladenosine has been made possible61. 
So far, energy-based methods remain recommended for prediction 
of secondary structures of small RNA molecules or fragments (for 
example, <200 nucleotides), but caution is strongly warranted for 
longer RNA molecules.

Covariation-based methods. Covariation-based methods have been 
developed based on the understanding that the structurally and func-
tionally relevant base pairings in RNA secondary structures tend to 
coevolve in sequence to maintain the consistency of an RNA’s structure 
(Fig. 2b). Examples include Dynalign II62, R-scape63, CaCofold64, and so 
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Table 1 | Representative computational methods for RNA structure prediction and modeling

Types General methods Tools Features & web server (if available)

Secondary structure prediction

Energy-based 
methods

Compute the RNA structure based 
on minimum free energy using 
a dynamic programming (DP) 
algorithm.

RNAstructure56 Optimizes the predicted RNA structure based on minimum free-energy calculation 
by incorporating probing data.

https://rna.urmc.rochester.edu/RNAstructureWeb/

RNAfold58 Predicts the optimal RNA structure using a DP algorithm and a loop-based energy 
model.

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi/

Covariation- 
based methods

Perform structure modeling based on 
covariation constraints derived from 
an alignment of multiple homologous 
RNA sequences.

Dynalign II62 Predicts the common RNA structures by considering the possibility of inserted 
domains observed in multiple sequence alignment.

http://rna.urmc.rochester.edu/RNAstructureWeb/Servers/dynalign/dynalign.html

R-scape63/ 
CaCofold64

Identifies covarying base pairs based on multiple sequences alignment, evaluates 
the statistical significance of covariations, and discovers RNA structure based on 
covariation evidences.

http://eddylab.org/R-scape/

Integrative 
methods

Use both thermodynamic parameters 
and comparative analysis to obtain 
the final structure.

RNAalifold70 Combines minimum free-energy calculation and multiple sequence alignment 
analysis.

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAalifold.cgi/

TurboFold II71 Integrates a thermodynamic model and multiple sequence alignment to estimate 
base-pairing probabilities.

Traditional 
machine 
learning-based 
methods

Represent an RNA structure as a 
model, learn the model parameters 
from the number of RNA structure 
datasets.

Pfold73 Integrates an evolutionary model with a stochastic context-free grammar model.

CONTRAfold74 Uses conditional log-linear models and incorporates thermodynamic parameters.

http://contra.stanford.edu/contrafold/server.html

ContextFold72 Uses a feature-rich model (~70,000 parameters).

https://www.cs.bgu.ac.il/~negevcb/contextfold/

Deep 
learning-based 
methods

Use deep neural networks to capture 
local and global structural features of 
RNA for structure modeling.

CDPfold78 Combines a CNN model to capture local features of RNA, combined it with a DP 
algorithm to predict base-pairing probabilities.

DMfold79 Combines a bidirectional long short-term memory (BiLSTM) model with the revised 
base-pair maximization principle to refine the optimal stem combinations.

E2Efold80 Combines a transformer model with an unrolled algorithm to incorporate hard 
constraints of RNA secondary structures.

Ufold81 Uses U-net, a revised CNN framework, to capture long-range dependencies from 2D 
contact maps of the input RNA.

https://ufold.ics.uci.edu/

Use an ensemble model to integrate 
the advantages of each individual 
model for structure modeling.

SPOT-RNA82 Combines BiLSTM, ResNet and fully connected neural network (FCN) for structure 
modeling, and refines the ensemble models based on transfer learning.

https://sparks-lab.org/server/spot-rna/

SPOT-RNA2 (ref. 83) Adds the evolution-derived sequence profiles and mutational coupling information 
to SPOT-RNA.

https://sparks-lab.org/server/spot-rna2/

MXfold2 (ref. 84) Combines CNN, BiLSTM and FCN with Turner’s nearest-neighbor free-energy 
parameters for RNA structure modeling.

http://www.dna.bio.keio.ac.jp/mxfold2/

Tertiary structure prediction

Ab initio folding 
methods

Simulate and calculate 
physical-based and empirical-based 
energies for an RNA tertiary structure 
model.

iFold92 Uses discrete molecular dynamics simulations to enable rapid conformational 
sampling.

https://dokhlab.med.psu.edu/ifoldrna/

SimRNA93 Integrates an energy function and the Monte Carlo sampling.

https://genesilico.pl/SimRNAweb/

Fragment 
assembly 
methods

Assemble 3D structures using 
fragments/motifs from a template 
library.

FARNA95 Uses a Monte Carlo fragment assembly strategy that is guided by an energy-based 
function.

MC-Sym57 Uses the nucleotide cyclic motif fusion strategy to generate multiple conformations.

https://www.major.iric.ca/MC-Sym/

FARFAR2 (ref. 97) Performs ten rounds of k-mer (k = 1, 2, 3) fragment assembly with an all-atom scoring 
function based on a fragment library.

https://rosie.rosettacommons.org/farfar2/

Deep 
learning-based 
methods

Represent an RNA tertiary structure 
using a deep neural network, learn 
the parameters of model from the 
number of known RNA structures.

ARES98 Builds a scoring function using the type and the atomic 3D coordinates of each atom 
for an RNA tertiary structure generated using FARFAR2.

http://drorlab.stanford.edu/ares.html

https://rna.urmc.rochester.edu/RNAstructureWeb/
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.urmc.rochester.edu/RNAstructureWeb/Servers/dynalign/dynalign.html
http://eddylab.org/R-scape/
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAalifold.cgi
http://contra.stanford.edu/contrafold/server.html
https://www.cs.bgu.ac.il/~negevcb/contextfold/
https://ufold.ics.uci.edu/
https://sparks-lab.org/server/spot-rna/
https://sparks-lab.org/server/spot-rna2/
http://www.dna.bio.keio.ac.jp/mxfold2/
https://dokhlab.med.psu.edu/ifoldrna/
https://genesilico.pl/SimRNAweb/
https://www.major.iric.ca/MC-Sym/
https://rosie.rosettacommons.org/farfar2
http://drorlab.stanford.edu/ares.html
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on; these methods start by identifying covariations from an alignment 
of multiple homologous RNA sequences, and then fold the target 
sequence into a secondary RNA structure constrained with results 
from covariation analysis. Among them, R-scape and CaCofold are 
notable for their rigidity in evolutionary analyses and the evaluation of 
statistical significance for covariations. In general, covariation-based 
methods avoid the inaccuracies in energy calculation and are suitable 
for predicting functionally relevant RNA structures. The accuracy of 
covariation-based methods is heavily dependent on the quality of the 
multiple sequence alignment65,66; accordingly, several semiautomated 
approaches67,68 take advantage of the Infernal package69 to facilitate 
multiple sequence alignment construction.

As approaches based only on energy calculation or evolutionary 
analysis have their own limitations, integrative methods have been 
proposed to combine the strength of both. For example, RNAalifold70 
and TurboFold II71 estimate RNA folding by considering both thermo-
dynamic parameters and coevolution information from homologous 
sequences. These integrative methods frequently achieve higher pre-
diction performance for a broad range of RNAs.

Learning-based methods
With the increase of RNA secondary structure data and the rapid devel-
opment of artificial intelligence, learning-based strategies are gaining 
popularity in RNA secondary structure prediction (Supplementary 
Table 2). In general, learning-based methods use a model to represent 
the RNA secondary structures, with the ability to learn model param-
eters from the experimentally determined RNA structure data and, for 
a given input sequence, to predict RNA secondary structure based on 
the maximum probabilities (Fig. 2c).

Traditional machine learning-based methods. Traditional machine 
learning-based methods include ContextFold72, Pfold73, CONTRA-
fold74, TORNADO75, and so on (Fig. 2c). While models in early years only 
used a limited number of parameters, new methods have proposed 
feature-rich (~70,000 free parameters for ContextFold) scoring func-
tions. These feature-rich models partially avoid the problem of error 
accumulation, and have achieved considerable success59,76. This trend 
toward ever-richer feature scope has been boosted by recently devel-
oped deep neural networks.

Deep learning-based methods. Deep learning-based methods are simi-
lar to traditional machine learning-based methods but use more complex 
neural networks. These methods can be traced back about a decade, and 
started with a multilayer perceptron approach77; however, this did not 
receive widespread attention, owing to its insufficient generalization 
ability. Notably, while most reported methods tend to be based on one 
type of neural network (for example, convolutional neural network 
(CNN), recurrent neural network, Transformer and U-Net) for structure 
predictions, as with CDPfold78, DMfold79, E2Efold80 and Ufold81 (Fig. 2c 
and Table 1), there are also now methods that combine technologies to 
improve their prediction accuracy. For example, SPOT-RNA82 trains an 
ensemble model comprising both residual neural networks (ResNets) 
and long short-term memory (LSTM) networks to help to capture the 
flexibility of RNA structures. SPOT-RNA and SPOT-RNA2 both use transfer 
learning to pretrain models based on a large dataset82,83, and refines the 
models with small, high-quality datasets; their developers reported that 
this refinement is particularly useful in avoiding the concern of overfit-
ting complex deep neural networks onto the currently sparse data of 
high-quality RNA structures. In addition to transfer learning, MXfold2 
(ref. 84) also used a strategy based on integrating thermodynamic param-
eters with RNA folding scores learnt from deep neural networks, an 
approach used previously in MXfold85 and SimFold86.

To date, knowledge-based methods have remained the mainstay 
for exploration of RNA structure through computational prediction, 
but learning-based methods are gaining popularity for their seemingly 

excellent performance in terms of prediction accuracy and compu-
tational efficiency (with Ufold, SPOT-RNA2 and MXfold2 as the best 
performers)81,83,84. However, in contrast to knowledge-based methods, 
where the energy terms or parameters used are estimated from experi-
ments or evolution, learning-based methods learn model parameters 
from a small set of known structures, for example, PDB, Archive II87, 
RNAstralign71 and bpRNA88. The inevitable bias toward certain RNA 
types in the small training set could potentially cause overfitting of 
model parameters; and such parameters often lack biophysical or 
evolutionary meaning, making it difficult to generalize across differ-
ent RNA families89. Moreover, it should be noted that the assessments 
were typically performed by the research groups that developed those 
prediction methods; our opinion is that third-party assessments, as in 
CompaRNA90 and RNA-Puzzles91, are essential for bias-free evaluations 
to support the best practice guidelines.

RNA tertiary structure modeling methods
As noted above, due to the intrinsic flexibility of RNA structures, knowl-
edge about how RNA folds in 3D space is very limited (relative to solved 
protein tertiary structures). As a consequence, the development of pre-
diction tools for RNA tertiary structures lags far behind that for protein 
structures. Nevertheless, there exists several representative methods, 
which could be classified into three categories (so as to methods for 
protein tertiary structure prediction), and the details of representative 
methods can be found in Table 1.

Ab initio folding methods. Ab initio folding methods calculate the 
most stable tertiary structures from the unfolded conformation of an 
RNA molecule based on knowledge-based energy functions derived 
from known RNA structures (Fig. 3a). Examples include iFold92 and 
SimRNA93. Briefly, these methods use a coarse-grained representation 
of each residue while preserving the physical and chemical properties 
of RNA molecules. Unlike iFold, which simulates RNA folding based on 
discrete molecular dynamics and replica exchange molecular dynam-
ics separately, SimRNA instead uses a replica exchange Monte Carlo 
scheme, which simulates potential folding of RNA. Although these 
approaches (especially SimRNA) have been shown to perform well in 
solving RNA tertiary structures for certain RNAs68,94, the oversimplified 
representation of RNA molecules does not consider high-resolution, 
atomic-level structural information.

Fragment assembly methods. Fragment assembly methods build 
RNA structural models by assembling structural fragments in a tem-
plate library (Fig. 3b). Example methods that use this strategy include 
FARNA95, MC-Sym57, RNAComposer96, FARFAR2 (ref. 97) and so on. In 
general, these methods sample fragments from a structure library and 
then use energy minimization to assemble them into a full structural 
model. Currently, fragment assembly methods are, by far, the largest 
category for prediction of RNA tertiary structures, but these methods 
inherently have the same problem (and potential bias) noted above: 
they rely on the number of experimentally solved RNA structures.

Deep learning-based methods. Exploitation of deep learning-based 
methods remains limited for RNA tertiary structure modeling, again 
owing to the paucity of available RNA structural data. A scoring func-
tion based on a geometric deep neural network named Atomic Rota-
tionally Equivariant Scorer (ARES)98 was recently developed to identify 
the best conformation generated by FARFAR2 (Fig. 3c). Notably, ARES 
learns the 3D coordinates and chemical element type of each atom, 
rather than each residue. Although ARES remains a scoring function 
without the ability to adequately sample RNA structural space, its 
development should be understood as a landmark achievement for 
artificial intelligence-based RNA tertiary structure prediction, and will 
likely inspire future research into RNA tertiary structure prediction 
using cutting-edge deep learning techniques.
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Given the distinctions between the chemical composition and 
folding mechanism between RNAs and proteins, we anticipate that the 
phenomenal success of Alphafold2 (ref. 99) will be difficult to directly 
reproduce in the RNA structure prediction field. Having said that, 
there are certain informative similarities between the higher-order 
structures of RNA and protein100. And the differences between nucleo-
tides and amino acids are further narrowed when operating at the 
atomic level, suggesting that the fundamental knowledge underly-
ing the success of protein structure prediction tools do have the 
capacity to be transferred to RNA tertiary structure prediction in 
the near future.

Integrative RNA structural modeling based on 
experimental probing data
Although it appears that methods discussed above have achieved high 
accuracy, it cannot be overemphasized that these tools were developed 
based on energy terms and parameters derived from RNA structures 
obtained in vitro and are also evaluated using RNA structures obtained 
in vitro. While the functional structures of RNA molecules are known 
to be strongly impacted by specific interactions that occur in specific 
cell types and circumstances101,102, it is a nontrivial problem that these 
prediction methods do not reflect RNA structures under biological con-
text. Excitingly, the aforementioned development of the RNA structure 
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Fig. 2 | The computational methods for RNA secondary structure modeling. 
a, The energy-based secondary structure modeling methods assume the native 
structure is the most thermodynamically stable structure and search the 
structure with minimum free energy using dynamic programming algorithms. 
b, The covariation-based secondary structure modeling methods fold the 
target sequence into a secondary RNA structure based on the assumption that 

base-pairing nucleotides tend to have coevolution, which could be identified as 
covarying positions from the alignment of multiple homologous RNA sequences. 
c, The learning-based secondary structure modeling methods typically use graph 
models (as deep neural networks in recent deep learning-based methods) to 
represent RNA structures.



Nature Methods | Volume 19 | October 2022 | 1193–1207  1201

Review Article https://doi.org/10.1038/s41592-022-01623-y

probing technologies has enabled the acquisition of large amounts of 
experimental probing data. We are therefore at an opportune moment, 
as this probing data can be incorporated into RNA structure modeling 
(that is, can be harnessed in model training, and for data mining, by 
computational specialists) to both improve prediction accuracy and 
to yield structure models that reliably represent the RNA structures 
that perform specific functions in particular cells.

Modeling assisted by footprinting RNA probing data
There are now methods that have started to make use of the increasingly 
rich resource of in vivo probing data for modeling RNA structure in 
biological context103. For example, RNAstructure56, RME104 and RNAp-
rob105 explicitly convert probing data (for example, SHAPE reactivity 
scores) into ‘pseudoenergy terms’ and applies them for energy or sta-
tistical models by penalizing base-pairing nucleotides (Fig. 4a). Among 
them, RNAstructure is the most widely used tool for RNA structure 
studies. To date, it has been used to study diverse RNA classes, includ-
ing small RNAs, lncRNAs, mRNAs and viral RNA genomes13,14,17,19,106. In 
contrast, SeqFold107 uses a ‘sample and select’ approach to sample an 

ensemble of RNA structures, and then select the one(s) that agree with 
experimental reactivity scores (Fig. 4b). It can be used to study the 
differential effects of RNA secondary structure on gene regulation at 
the transcriptome scale.

While the aforementioned methods typically report only one 
(optimal) structural model for one RNA molecule, there are also tools, 
including SLEQ108 and Rsample109, that consider multiple structural 
conformations. Distinct from Rsample, SLEQ selects the structure 
ensembles that best explain the observed read patterns instead of 
reactivity scores. SLEQ has also been shown as useful for studying the 
structural heterogeneity of riboSNitches108.

Methods have also been developed that exploit the linked struc-
tural information for simultaneous mutations present in multiple 
nucleotides in one RNA molecule; these can be used to directly detect 
heterogeneous conformations based on grouping of sequencing reads 
by mutational patterns (Fig. 4c). For example, the RNA interaction 
groups by mutational profiling (RING-MaP) method110 uses spectral 
clustering to group reads from the same putative structural conforma-
tion; this has been used to identify two conformations of the thiamine 
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pyrophosphate riboswitch. Moreover, a tool for the detection of RNA 
folding ensembles named DREEM18, which adopts an expectation–
maximization algorithm to assign reads generated by DMS-based 
mutational profiling and sequencing (DMS-MaPseq) to heterogene-
ous different structural conformations, has been used to investigate 
alternative conformations at the splice sites of the HIV-1 RNA. Recently, 
the deconvolution of coexisting RNA conformations from mutational 
profiling (DRACO) method22 was developed based on a combination 
of spectral clustering and fuzzy clustering of reads, and was applied to 
analyze the SARS-CoV-2 RNA genome structure.

Modeling assisted by proximity ligation-based RNA probing 
data
Analyses of proximity ligation-based probing data have also yielded 
many insights into RNA structure modeling and functional RNA struc-
tural elements. For example, visualization of both PARIS data and 
RIC-seq data generated Hi-C-like connectivity maps for distinct RNAs, 
which were termed ‘structural domains’106 or ‘topological domains’55 
in different studies (Fig. 4d). For example, Li et al. implemented an 
algorithm to search for an optimal hierarchical division of large RNAs 
iteratively based on PARIS data, and successfully chopped the Zika 
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virus RNA into dozens of structural domains, notably reporting simi-
lar domain boundaries as two different Zika virus strains106. Note that 
studies of mutually exclusive interactions have collectively indicated 
that the coexistence of multiple conformations (that is, alternative 
structures) occurs ubiquitously in cells43,45.

There are much fewer tools utilizing proximity ligation-based 
probing data. Recently, IRIS111 was developed to include the long-range 
interaction information in PARIS data in its modeling (Fig. 4d). By 
converting PARIS data into supporting scores that represent pairing 
probabilities between nucleotides, IRIS is thus able to use information 
of interaction fragments from PARIS data to output representative 
secondary structural models.

Modeling aided by cryo-electron microscopy and small-angle 
X-ray scattering RNA structure data
In addition to integrating probing data to model RNA secondary struc-
tures in vivo, tools have also been built to integrate other types of data 
to model RNA tertiary structures. Researchers have started to assess 
RNA tertiary structures using cryo-EM; a recent development is the use 
of low-resolution density maps to computationally model RNA tertiary 
structures112 (Fig. 5a). Specifically, RNA structure probing experiments are 
first conducted to obtain RNA secondary structural information, which 
is then used to constrain the prediction of secondary structural models. 
Then, these secondary structural models are combined with cryo-EM den-
sity maps representing the overall architecture of the analyte RNA, to con-
struct all-atom models of RNA tertiary structure with auto-DRRAFTER113. 
These efforts have established that cryo-EM can routinely resolve maps 
of RNA-only systems and shown that cryo-EM maps enable coordinate 
estimation when complemented with multidimensional RNA structure 
mapping and auto-DRRAFTER computational modeling.

SAXS can also be used to characterize tertiary structures of RNA 
molecules (Fig. 5b). For example, RS3D is a program that adopts hierar-
chical moves and simulated annealing for 3D RNA structure resolving114. 

It incorporates RNA secondary structures and SAXS data to generate 
tertiary RNA structural models, and the results from RS3D can be fur-
ther refined using suitable force-field information.

Conclusion and future directions
As discussed before, RNA occupies a conceptual middle ground 
between DNA and proteins; and the methods used to study RNA struc-
ture share informative similarities with the sequencing, biophysical and 
computational technologies used to analyze DNA and proteins (Box 2). 
At the same time, we show how the intrinsic structural heterogeneity 
of RNA molecules and the sensitivity of their functional structures to 
cellular context make RNA structure determination a uniquely chal-
lenging research area.

Remarkably, there have been profound advances in RNA structural 
probing methods, for example increasing in throughput (from study-
ing single transcripts to the transcriptome-wide scale), moving from 
in vitro to in vivo, and achieving ever-increasing gains in resolution and 
scope by incorporating innovative chemical probes and sequencing 
technologies. Nonetheless, it is obvious that there is much room for 
further improvement of these methods.

For example, the regulation of RNAs is known to be strongly tied to 
their localization; we know that where a given RNA localizes in cells can 
determine whether it is translated, stored or degraded. One direction 
for RNA structure probing technology improvement is therefore to 
increase spatial resolution, seeking to reveal more fine-grained subcel-
lular structural maps and spatial structural maps in cells, which should 
broaden our knowledge about posttranscriptional regulation from a 
structural view. The well-established traditional cell compartment puri-
fication methods, such as using centrifugation and/or further immu-
noprecipitation, have successfully enriched the membrane-bound 
organelles (nucleus, mitochondria, and so on) and membraneless 
assemblies (P-bodies, stress granules and so on)102. Recently reported 
technologies like APEX-seq, which uses the peroxidase enzyme APEX2 

a

Density map

Predicted secondary structure

Predicted secondary structure

Cryo-EM

RNA probing
methods

Auto-DRRAFTER

3D model Model accuracy
estimation

Initial model

SAXS

RNA probing
methods

Local and
global moves

b

Scattering profile
q (Å–1)

l(q
)

3D model Refined model

Update secondary structure if necessary 

RS3D

Secondary structure constraints;
long range restraints;
SAXS χ2 test 

Fig. 5 | Integrative computational methods for RNA tertiary structure 
modeling based on experimental probing data. a, Methods that combine 
low-resolution density maps generated by cryo-EM and secondary structure 

models inferred from probing data to model RNA tertiary structures. b, Methods 
that combine SAXS scattering information and predicted secondary structure 
based on probing data to model RNA tertiary structures.



Nature Methods | Volume 19 | October 2022 | 1193–1207 1204

Review Article https://doi.org/10.1038/s41592-022-01623-y

for direct proximity labeling of RNA, can greatly expand the scope of 
experimentally accessible subcellular compartments115. These methods 
may be combined with current RNA structure probing technologies for 
RNA spatial structurome investigations.

Recent breakthroughs in single-cell experimental technologies 
offer a potential solution to resolve the RNA structures at the single-cell 
level, which should provide an opportunity to study the heterogeneity 
of RNA structure at the cellular (and thus tissue) levels during, for exam-
ple, the pathological development of diseases. However, hurdles need 
to be conquered to increase the signal-to-noise ratio to sufficiently 
recover RNA structural information.

Beyond experimental structure determination methods, com-
putational modeling methods have also made rapid advances. One 
continuing challenge, however, is that all learning-based methods 
(and especially those based on deep neural networks) likely suffer from 
overfitting, an issue acknowledged by many researchers in the field. The 
overfitting problem may be attributed to the incompatibility between 
the complexity of the models and the limited number of known RNA 
structures. Although several methods have used certain techniques 
like transfer learning and integration with thermodynamic energy 
terms to address this challenge, innovations from small sample learn-
ing are highly desired and will likely yield substantial improvements in 
prediction accuracy. On the other hand, the training datasets used as 
input by these models to date include mainly structures of tRNA and 
rRNA, and predominately with the data obtained in vitro. Thus, given 
the known variability/flexibility of RNA structures, we can assume 
that predictions will have difficulty in reflecting the structures as they 
actually occur in diverse cellular contexts. Emerging computational 
methods integrating structure probing data are likely going to radically 
bolster RNA structure studies; however, much remains to be done. 
Importantly, structure prediction should also consider the multiple 
conformations of an RNA, rather than the optimal one, especially for 
those tools that use only sequence as input, because an RNA can adopt 
multiple conformations.

Second, current deep learning-based RNA structure predictions 
have been limited to secondary structure predictions, owing largely to 
the insufficient quantity of experimentally validated RNA tertiary struc-
tures. However, there is a strong desire to model RNA tertiary struc-
tures with coordinate information98,113. Although deep learning-based 
RNA tertiary structure predictions lag far behind the state-of-the-art 
methods for protein tertiary structure prediction—which is certainly 
understandable given the very limited number of native RNA structures 
that have been reported—the historic advance presented by Alphafold2 
(ref. 99) for protein tertiary structure prediction and the remarkable 
breakthrough of ARES98 for RNA structural conformation scoring seem 
very likely to inspire the development of innovative computational 
methods for predicting RNA tertiary structures in the near future.

RNA structures have been applied in studies of RNA functions 
and regulation, for example, for predicting RBP binding101 and RNA 
modification sites12. Specific RNA structures are known to prevent the 
degradation of RNA25 and to increase the half-life, which can aid the 
design of stable mRNA vaccines. As our understanding of how RNA 
structures form, interact and function in cells improves, it seems obvi-
ous that researchers will begin to engineer RNAs with desired functions. 
Ideally, the same principles underlying endogenous RNA behavior will 
inform the design of de novo RNA molecules. It will also be exciting 
to see whether the RNA structure modeling tools will perform well as 
we expand into RNA design and engineering. Moreover, analogous to 
protein structure-guided drug screening and design, structured RNA 
molecules can be targeted by small molecules with high selectivity 
and strong affinity. RNA structural modeling can help to find poten-
tial drugs for treating human disease, with the particularly attractive 
prospect of targeting the mRNA molecules encoding ‘undruggable’ 
target proteins. In short, accurate RNA structural determination will 
be a prerequisite for RNA biotechnology and biomedical applications.
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