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Cytokines are a broad category of intercellular signaling pro-
teins that act in almost every aspect of human immunology, 
from anti-pathogen immune responses to tissue-damaging 

inflammation1,2. However, the precise characterization of cytokine 
signaling activities has proven difficult due to two vexing properties 
of cytokine activity: redundancy and pleiotropy. Many cytokines, 
especially those with similar cell surface receptors and downstream 
pathways, have cellular effects that appear redundant within a 
specific cellular context3. At the same time, cytokines often have 
pleiotropic functions within an organism that depend heavily on 
cell-type-specific receptor usage and the presence of other signaling 
components3.

This apparent redundancy and pleiotropy in cytokine activi-
ties are poorly captured by most immunological assays such as the 
enzyme-linked immunosorbent assay (ELISA) and Luminex xMAP, 
which directly measure cytokine release. Cytokine release can be 
transient, unlike the longer-lasting and more functionally relevant 
measurement of target activities4. Recognizing this limitation, 
researchers have attempted to create databases of cytokine signaling 
targets. For example, the ‘Interferome’ database identifies interferon 
target genes in humans and mice through the collection and analy-
sis of microarray data5. Gene-set enrichment analysis (GSEA) also 
annotates response genes for selected cytokines based on previous 
knowledge6. However, these databases and approaches cover a small 
fraction of cytokines, leaving most cytokine-induced target changes 
unexplored.

The need for systematic profiling approaches that allow mod-
eling of cytokine target activity is urgent because cytokines can 
trigger life-threatening symptoms in many diseases. For example, 

coronavirus disease 2019 (COVID-19) mortality has been attrib-
uted mainly to a virus-induced cytokine storm, defined by exces-
sive production of pro-inflammatory cytokines that lead to acute 
respiratory distress and widespread tissue damage7. Although 
pro-inflammatory cytokines help activate the immune response, 
there does not appear to be a strong relationship between cytokine 
storm severity and pathogen clearance. For example, successfully 
recovering patients with COVID-19 may not have any inflamma-
tory symptoms8. Cytokine release syndrome also causes severe side 
effects in many cancer treatments, such as immunotherapies9 and 
chimeric antigen receptor T cell therapies10. Similarly to the discon-
nect between the severity of immune-related symptoms and disease 
outcomes in COVID-19, complete tumor remission can occur in 
patients without cytokine release syndrome11. While the immu-
nological mechanisms of these observations remain unclear, they 
imply that if properly modulated, the benefits of cytokine signaling 
can be realized without substantial pathological effects.

With this goal in mind, and to model cytokine activity generally, 
we developed CytoSig (https://cytosig.ccr.cancer.gov/), a data-driven 
infrastructure hosted by the National Cancer Institute (NCI). CytoSig 
includes both a database of target genes modulated by cytokines and 
a predictive model of cytokine signaling activity and regulatory cas-
cade from transcriptomic profiles. To build the CytoSig platform, we 
first created the Framework for Data Curation (FDC) to assist expert 
annotations on metadata deposited on databases through natural 
language processing functions (https://curate.ccr.cancer.gov/). Using 
the FDC, we analyzed 9,271 published studies and curated 20,591 
transcriptomic profiles for human cytokine, chemokine and growth 
factor responses to create the CytoSig database and predictive model. 
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We validated CytoSig by showing that it can reliably predict cytokine 
target activities in both human clinical studies and our in vivo exper-
iments. Further, CytoSig identified CXCL8 signaling as a potential 
COVID-19 therapeutic target that may alleviate adverse inflamma-
tion without undermining protective immunity.

Results
The Framework for Data Curation on public repositories. We 
hypothesized that the large number of cytokine treatment datasets 
available publicly could serve as a knowledge base to model signal-
ing activities in diverse biological contexts. However, two hurdles 
must be overcome to transform this body of data into a useful 
model. First, the experimental design behind each published data-
set is unique, requiring labor-intensive expert interpretation of the 
metadata and standardization of the data into a format suitable for 
automated analysis. Second, one must identify and exclude experi-
ments that involve cell models, stimuli, doses or time intervals that 
are not physiologically relevant. More broadly, such challenges exist 
for many other biological topics that could be addressed by data 
aggregation. To overcome these hurdles, we established the FDC, 
which couples large-scale automatic data processing with natural 
language processing functions to assist expert annotation of experi-
mental design (Methods and Fig. 1a).

The FDC automatically extracts RNA-sequencing (RNA-seq) 
data from the Sequence Read Archive (SRA)12 and the European 
Nucleotide Archive (ENA)13, along with automatically extracting 
MicroArray data from the Gene Expression Omnibus (GEO)14 and 
ArrayExpress (AE)15. For metadata annotation, the FDC interacts 
with curators in iterative cycles. If the metadata structure and exper-
imental designs differ drastically across studies, as was the case for 
cytokine-response data, the initial cycle of curation relies heavily on 
human expertise. However, based on the initial curations, the cura-
tors may specify automatic annotation rules, including highlighting 
text patterns that drive annotation decisions, translating aliases to 
standard names, and implementing controlled vocabularies. These 
natural language processing functions will dramatically reduce the 
human effort required after iterative cycles. The FDC is suitable for 
a wide range of data collection projects and is available at https://
curate.ccr.cancer.gov/.

Generating the CytoSig database of cytokine-modulated genes. 
CytoSig aims to provide both a database of target genes modulated 
by cytokines and a predictive model of cytokine signaling activities 
from a sample’s transcriptomic profile (Fig. 1b). Both goals depend 
on an extensive data collection of cytokine-induced target genes. 
We first queried the AE and GEO databases with names and aliases 
of human cytokines, chemokines and growth factors. Note that, for 
brevity, we use the term ‘cytokine’ at times in this paper to refer 
to these three types of signaling molecules generally. The cytokine 
name search yielded 9,271 candidate studies. Of 9,271 candidates, 
5,186 studies had genome-wide expression matrices and could be 
automatically processed by the FDC.

After automatic data extraction, Ph.D. scientists with immunol-
ogy training conducted a curation of the 5,186 selected experiments 
(Fig. 1a). Each dataset was assigned two curators, such that the sec-
ondary curator would proofread annotations of the primary curator 
and correct any errors. This initial manual curation was time inten-
sive because the metadata structure and experimental designs dif-
fered drastically across studies. However, based on the rules learned 
from the initial curation, the natural language processing functions 
from the FDC accelerated the annotation process such that mini-
mal human effort was subsequently required. This semiautomated 
extraction system ensures that CytoSig will remain updated and rel-
evant as new datasets are released.

Of the 5,186 experiments examined, 962 experiments were 
designated as cytokine-response studies, which comprised 20,591  

nonredundant individual samples (Supplementary Table 1). 
Curators then labeled each sample with the treatment cytokine, the 
cell model, treatment dose and duration. We combined these human 
annotations with automatically parsed matrices of gene expression 
values and merged biological replicates, which generated 2,056 dif-
ferential expression signatures between cytokine treatments and 
controls (Fig. 1c). Certain cell models and experimental conditions 
tended to be more frequently used than others (Extended Data Fig. 
1a–f).

For target genes, a differential signature presents the direction 
of the expression change (up or down) and the magnitude of that 
change, expressed as log2 fold change (logFC), under each experi-
mental condition. These differential signatures have continuous 
magnitude values. So, rather than using cutoffs to define cyto-
kine targets, the differential magnitudes were used in our further 
analysis.

CytoSig data reflect signaling activity in human physiology. 
Because our datasets are generated through treatment experiments 
in cell cultures, we evaluated whether our collected cytokine tar-
gets are target genes under human physiological conditions. We 
measured the Pearson correlation between expression levels of 
the cytokine and its candidate targets in independent human tis-
sue data. For example, we defined interleukin (IL)-10 targets based 
on an IL-10 treatment profile conducted in monocytes16 and then 
measured the correlation between the IL-10 expression and average 
expression scores of its candidate targets across tumors in a lung 
adenocarcinoma cohort17, which we found to be 0.68 (Fig. 1d). We 
also found that the expression correlation between IL-10 targets and 
IL-10 receptors (IL-10RA + IL-10RB) is 0.62 (Fig. 1d). As a control 
to evaluate correlations expected by random, permutation of gene 
identities of the IL-10 treatment profile ten times resulted in a low 
average correlation of 0.04 between IL-10 and its target genes and a 
low correlation of 0.05 between the IL-10 receptors and its targets.

We computed correlations in this way between the expression 
levels of each cytokine and its candidate targets for all 2,056 cyto-
kine treatment profiles across The Cancer Genome Atlas (TCGA)18 
and the Genotype-Tissue Expression (GTEx)19 cohorts. The distri-
bution of correlations between the candidate target gene expression 
with the respective ligands and receptors was significantly higher 
than expected by chance (Fig. 1e). The correspondence between the 
expression of target genes and a cytokine ligand or receptor in inde-
pendent human tissue samples suggests that our data collection is 
useful for modeling cytokine signaling events in human physiology.

Although most of the cytokine-response profiles derived from 
cell culture models are relevant in human in vivo settings, experi-
mental conditions of some cytokines may not reflect physiological 
kinetics (Extended Data Fig. 1g and Supplementary Table 2). For 
analyses presented from this point forward, we only use differen-
tial expression signatures with significant positive correlations 
between expression levels of target genes and ligands or receptors in 
both TCGA and GTEx cohorts (false discovery rate (FDR) < 0.05; 
Methods). This criterion was met by 1,307 of 2,056 signatures.

For each cytokine, merging independent signatures can create a 
composite profile with superior performance than individual sig-
natures as measured by the correlation metrics described above 
(Extended Data Fig. 1h). Each cytokine’s composite signature is 
composed of the median logFC across all experiments for each 
gene, reflecting target genes induced or repressed in most condi-
tions. We compared the overall similarities of response by perform-
ing hierarchical clustering of the composite signatures of the 43 
cytokines that had at least five high-quality independent expression 
profiles (Fig. 1f). A few subclusters contained cytokines with very 
high correlations. For example, the composite response signature 
of IL-27 was very similar to that of interferon gamma (IFN-γ), and 
to a lesser extent, to type I (IFN-I) and type III (IFNL) interferons. 
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This observation is consistent with the downstream transcriptional 
similarity between IL-27 and IFN-γ, because they both act through 
STAT1 signaling20,21. Another cluster with high similarity contains 
tumor necrosis factor (TNF), IL-1A/IL-1B and CD40L (CD40L is 
both a soluble ligand and a cell surface molecule22), all of which acti-
vate NF-κB signaling23,24.

Although many cytokines have highly similar target responses, 
the same cytokine may also present context-specific differences in 
target response patterns. For example, the IFN-γ response signatures 
formed distinct clusters based on their cell origins. Macrophages 
and monocytes are clustered together and have different responses 
than other clusters, such as fibroblasts (Extended Data Fig. 1i).

Two regulatory cascades from primary to secondary cyto-
kines. The hierarchical cascade of cytokine regulation is a para-
digm in cellular signaling. For example, CXCL9, CXCL10 and 
CXCL11 (CXCR3 ligands) are immune-activating chemokines  
induced by IFN-γ25, which itself is regulated upstream by IL-12 
(ref. 26). Within a signaling cascade, a cytokine can also inhibit 
downstream signals. For example, IL-4 can block IL-1 and  
TNF signaling in human monocytes27. These hierarchical acti-
vations and inhibitions are essential to ensure rapid clearance of 
different pathogen classes while at the same time preventing an 
overzealous immune response25–27. The activation and repression 
relationships among CXCL9/CXCL10/CXCL11, IFN-γ, IL-12, 
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Fig. 1 | Curation of human cytokine-response data. a, The FDC can automatically process RNA-seq and MicroArray transcriptomic data from public 
repositories. Then, with the FDC’s natural language processing functions, curators read the metadata of each sample to annotate experimental conditions, 
including cytokine treatment, cell model, dose and duration. The output is differential logFC upon treatment. b, Two uses of the CytoSig framework: (1) 
query a gene name to view upstream cytokine regulators or downstream target genes (if the query is a cytokine); (2) predict cytokine signaling activities 
through transcriptomic profiles using a linear regression model. Input, the input transcriptomic profile of the sample as the response variable in regression; 
signature, the average response signature of cytokines as explanatory covariates; activity, the regression coefficients reflecting signaling activities. c, 
Count of treatment response profiles with biological replicates for different molecule types. d, Example correlation between the expression of IL-10 target 
genes and its ligand or receptor. Each dot represents a TCGA lung adenocarcinoma sample (n = 513). The x axis shows the expression of IL10 or receptor 
(IL-10RA + IL-10RB). The y axis presents the expression scores of IL-10 targets from a monocyte treatment experiment. Pearson correlation (r) indicates 
the human physiological relevance of the current data. e, Distribution of target score correlations. Correlations were computed using all cytokine-response 
profiles and TCGA or GTEx expression matrices. Distributions of correlations are shown by violin plots, smoothed by a kernel density estimator, for 
both real and randomized data through gene label permutations. The P value, calculated with the one-sided Wilcoxon signed-rank test, represents the 
statistical significance of correlations being higher than zero (n = 112 ligands and n = 111 receptors). f, Similarity of signaling response profiles. We created 
a composite signature for each cytokine that consisted of the median logFC across all experiments and then calculated pairwise correlations between 
composite signatures for the hierarchical clustering. Red branches highlight the clusters of similar cytokines discussed in the paper.
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IL-4 and IL-1 according to the examples discussed above were  
all statistically significant in our dataset (Fig. 2a and Extended 
Data Fig. 2a).

We systematically examined the changes induced by pri-
mary cytokines on secondary signals and identified two distinct 
pro-inflammatory clusters (Fig. 2b). Each group activates a dis-
tinct set of secondary targets. The first group, including TNF, IL-1, 
IL-17A, IL-36 and CD40L, triggers IL-1, IL-6, CXCL1, CXCL2, 
CXCL5, CXCL6, CXCL8 and CCL20 (Fig. 2a,b). These primary 
cytokines have target genes enriched in the NF-κB signaling path-
way (Extended Data Fig. 2b). The target chemokines of this group 
may attract or activate pro-inflammatory immune cells, such as 
neutrophils, fibroblasts and T cells28. We hereafter refer to this first 
group as the ‘NF-κB transcriptional group’.

The second group, including IFN-γ, IFN-I (IFN-α and IFN-β), 
IFNL and IL-27, trigger CXCL9, CXCL10, CXCL11 and TRAIL 
(Fig. 2b). These primary cytokines are known to be related to 
interferons because IL-27 has similar downstream transcriptional 
profiles with IFN-γ20 through STAT1 signaling21. Their secondary 
targets are chemokines for activated T cells (CXCL9, CXCL10 and 
CXCL11)25, or pro-apoptotic signals released by effector T cells 
(TRAIL)28. We hereafter refer to this second group as the ‘inter-
feron transcriptional group’.

Besides regulating a ligand, cytokines can also modulate recep-
tor activity as an alternative means of cascade regulation. For exam-
ple, CytoSig found that activin A activates CXCR4, while GMCSF 
represses CXCR4 (Fig. 2a,b). This result is consistent with previous 
studies of CXCR4 regulation29,30. Regulation of receptors in this way 
appears less frequent than ligand regulation: we observed just 4 of 
183 (2.2%) annotated receptors that had a logFC greater than two, 
whereas 33 of 253 (13%) annotated ligands had a logFC larger than 
two (Fig. 2b).

The CytoSig data reveal anti-inflammatory cytokines. In con-
trast to cytokines that induce secondary cytokines and chemokines, 
IL-4 and BMP6 repress other pro-inflammatory molecules, such as 
IL-1β, CXCL1, CXCL8 and CCL2 (Fig. 2b and Extended Data Fig. 
2a). GSEA on target genes of IL-4 and BMP6 revealed a depletion 
of inflammatory response pathways (Extended Data Fig. 2b,c). IL-4 
is a well-known anti-inflammatory cytokine that inhibits certain 
immune processes, although it may also cause allergic inflamma-
tion in a context-dependent manner31.

Besides IL-4 and BMP6, which directly suppress the tran-
scription of downstream cytokines and chemokines, other 
anti-inflammatory molecules may counteract inflammation by 
alternative mechanisms. For example, a previous study in mouse 
models demonstrated that transforming growth factor (TGF)-β sig-
naling directly targets cytotoxic T cell functions in mice32. Indeed, 
our collected data shows that TGF-β1 treatment in human T cells 
significantly downregulated granzyme A (GZMA), granzyme B 
(GZMB), and perforin (PRF1), which induce cell death in target 
cells attacked by T cells (Fig. 2c). Flow cytometry analysis in human 
and mouse primary T cells validated the inhibitory effect of TGF-β1 
on GZMA, GZMB and PRF1 (Fig. 2d,e and Extended Data Fig. 2d; 
gating strategy). Therefore, our data can reveal broad categories of 
anti-inflammatory cytokines.

We next examined how cytokines cooperate with and antagonize 
each other with respect to target genes across the human genome. 
To test whether pairs of cytokines co-regulate target genes, we enu-
merated genes with significant logFC values from both cytokines 
under analysis. Then, we compared the gene counts against values 
when gene labels were shuffled to compute the FDR (Methods). We 
defined significant results by an FDR threshold of 0.05 (Fig. 3a). In 
86% of statistically significant cases, cytokine pairs either enhanced 
or repressed target genes in concert (Fig. 3b). For example, TNF and 
IL-1β induced a similar set of genes and also repressed a similar set 

of genes when investigating average targets across all models in our 
data collection (Fig. 3a).

In 14% of the statistically significant cases, cytokines exhibited 
an antagonistic relationship, meaning that they had opposite sig-
naling effects on downstream targets (Fig. 3b). For example, IL-4 
and BMP6 downregulated many targets induced by IL-1β and TNF 
(Fig. 3a and Extended Data Fig. 3a). We also observed a similar rela-
tionship among four other cytokines: the IFN-γ target genes were 
antagonized by IL-10 and GCSF but enhanced by IL-27 (Extended 
Data Fig. 3b). Thus, our target co-regulation analysis identified 
four major anti-inflammatory regulators (IL-4, BMP6, IL-10 and 
GCSF), which antagonize chiefly pro-inflammatory molecules in 
two groups (Fig. 3c,d), referred to as the NF-κB and interferon tran-
scriptional groups (Fig. 2b).

BMP6 antagonizes pro-inflammatory cytokine target genes. 
Previous work demonstrated that IL-4 could inhibit NF-κB tran-
scription programs33, explaining the antagonistic relationship 
between IL-4 and cytokines in the NF-κB group. A previous study 
demonstrated that BMP6 could inhibit the CCL2 mRNA level 
induced by TNF34. However, to the best of our knowledge, no previ-
ous studies have reported BMP6 as an anti-inflammatory molecule 
that antagonizes many pro-inflammatory targets.

Our analysis indicated that BMP6 may antagonize the effect of 
IL-1β through downregulation of IL-1β-induced pro-inflammatory 
chemokines, with CXCL8 and CCL2 as the most significant targets 
(Fig. 3a). To validate our prediction, we first evaluated the intra-
cellular protein levels of CXCL8 and CCL2 upon IL-1β and BMP6 
treatments by flow cytometry in two human lung epithelial cell lines, 
A549 and NCI-H1299. Consistent with our data analysis, BMP6 
treatment significantly inhibited the IL-1β induction of CXCL8 
and CCL2 (Extended Data Fig. 4a–c). ELISA assays also indicated 
that levels of soluble CXCL8 and CCL2 were consistently lower in 
cells treated with BMP6 + IL-1β compared to IL-1β alone (Extended 
Data Fig. 4d; one-sided Wilcoxon signed-rank P value = 0.016).

CytoSig predicts signaling activities from expression data. 
Because the cytokine-response data in our collection reflect signal-
ing relationships in human tissues (Fig. 1e), we created the CytoSig 
model to predict signaling activities using the transcriptome profile 
of an input sample. The output of CytoSig is different from stan-
dard cytokine assays such as ELISA, which measure cytokine lev-
els instead of cytokine target activities. CytoSig utilized the ridge 
regression to search for features in an input transcriptome profile 
that can be explained by a cytokine’s influence on its target gene 
expression (Extended Data Fig. 5 and Methods).

As described in the introduction, redundancy and pleiotropy 
are major obstacles to modeling cytokine activity. To account for 
complications from signaling pleiotropy, our model only aims to 
predict each cytokine’s overall activity, instead of its effects on indi-
vidual genes or pathways. We analyzed each cytokine’s composite 
signature, averaged across at least five independent experiments. 
Significant enrichment of the composite signature of a cytokine in 
the input sample’s transcriptome should indicate the presence of sig-
naling events. To address signaling redundancy, we utilized a penal-
ized linear model that avoids reporting a cytokine as active if other 
cytokines with similar composite signatures have influenced target 
gene expression to a greater extent. For any input profile, our model 
reports a significant score for a cytokine only if predicted activities 
were significantly higher than expected by chance (Methods).

Accuracy validation using cytokine-blocking clinical response. 
To test the model accuracy, we reasoned that the participant’s 
clinical response upon cytokine-blocking therapies should reflect 
authentic cytokine activities in human tissues. Therefore, we com-
pared CytoSig predictions of cytokine activities with transcriptomic 
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data before and after cytokine-blocking therapies in inflamma-
tory diseases (Supplementary Table 3). For example, a microarray 
study measured the whole-blood transcriptome of individuals with 

arthritis at baseline and day 3 after anti-IL-1β canakinumab treat-
ment and evaluated the therapy response at day 15 after therapy35. 
Upon IL-1β neutralizing therapy, the IL-1β activity reduction at day 
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3 predicted by CytoSig correlated significantly with the participant’s 
clinical response evaluated at day 15 (Fig. 4a). For another example, 
an IFN-α vaccine trial among patients with systemic lupus profiled 
both whole-blood transcriptomes and clinical response as the titer 
of IFN-α neutralizing antibodies in blood after immunization36. 
The IFN-I activity reduction predicted by CytoSig correlated sig-
nificantly with the clinical response across patients (Fig. 4b).

Among all cytokine-blocking studies collected from GEO and 
AE databases, CytoSig predicted the activity reduction score to be 
at least negative one (one standard deviation below zero) for 85% of 
cytokines (Fig. 4c). The accuracy dropped to 0% when gene labels 
were permuted in the model. These results support the reliability of 
CytoSig on cytokine activity prediction in human tissues and dem-
onstrate the clinical utility to guide therapy decisions.

Accuracy validation on TGF-β isoform-specific activities. CytoSig  
predicts different activities for cytokines from the same family  

sharing receptors, such as TGF-β1 and TGF-β3. The validation in 
the previous section established that CytoSig can perform with high 
accuracy on a broad set of cytokines. To validate the accuracy of 
CytoSig’s predictions of signaling activities among cytokine iso-
forms sharing the same receptors and similar downstream path-
ways, we performed in vivo experiments with the 4T1 breast cancer 
mouse model using neutralizing antibodies to TGF-β isoforms.

Specifically, we profiled the transcriptomes of mouse 4T1 
tumors treated with neutralizing antibodies targeting all TGF-β 
isoforms and antibodies targeting only TGF-β1 and TGF-β2 (but 
not TGF-β3). The differential profile between pan-TGF-β and 
TGFβ1/2 antibodies can reflect the anti-TGF-β3 effects because the 
TGF-β3 isoform is the differential target between two antibodies. 
CytoSig predicted a significant reduction in TGF-β1 activity based 
on the differential transcriptomic profiles upon treatments for both 
anti-TGF-β antibodies, and a significant reduction of TGF-β3 activ-
ity only for the anti-TGF-β3 profile (Fig. 4d).
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Accuracy validation in tumors and cancer therapy response. To 
further evaluate CytoSig model accuracy, we utilized the International 
Cancer Genome Consortium (ICGC) tumor cohort37, which has no 
overlap with the previous TCGA and GTEx data in model training. 
We assumed that tumors with ligand or receptor expression levels 
higher than one standard deviation above the average level in the 
entire dataset reflected positive activity for that cytokine. Under this 
assumption, we evaluated the accuracy of CytoSig on predicting 
samples with significant cytokine signaling activities. Based on the 
receiver operating characteristic (ROC) curve and area under the 
ROC curve (AUC), 35 of 43 cytokines had a performance signifi-
cantly better than chance (Extended Data Fig. 6a,b). Therefore, the 
CytoSig model can predict target activities of most cytokines.

We also evaluated the CytoSig model in predicting the clinical 
outcome of anticancer therapies that inhibit cytokine signaling. 
Vascular endothelial growth factor (VEGF) blocking is a category 
of treatments inhibiting either VEGF ligands or VEGF receptors 
from promoting abnormal angiogenesis in tumors38,39. As the can-
cer driver, the pretreatment target pathway activity may predict 
targeted therapy efficacy and patient survival after treatment40. We 
found that high VEGF signaling activities predicted by CytoSig in 

pretreatment tumors, using data from two clinical studies38,39, were 
highly predictive of longer survival outcomes upon blocking the 
VEGF pathway through either ligand (bevacizumab) or receptors 
(sunitinib, inhibitor of multiple receptor tyrosine kinases, including 
VEGF receptors; Fig. 4e).

Immune checkpoint blockade is another treatment category 
whose responses depend on cytokine signaling by IFN-γ41. CD274, 
which encodes PDL1, is a target gene induced by IFN-γ signaling42; 
therefore, we evaluated the association between IFN-γ activity in 
pretreatment tumors and the anti-PDL1 therapy response, using 
data from an anti-PDL1 clinical trial in urothelial cancer43. IFN-γ 
activity predicted by CytoSig was highly predictive of overall sur-
vival outcome upon anti-PDL1 (Extended Data Fig. 6c). Moreover, 
for both anti-VEGF and anti-PDL1 clinical studies, the CytoSig pre-
dictions had better associations with the clinical outcome than other 
approaches, such as ligand or receptor expression and gene-set sig-
natures (Extended Data Fig. 6d).

Accuracy validation in single-cell transcriptomic data. 
Encouraged by the reliable performance on bulk data, we further 
evaluated the capability of the CytoSig to predict signaling activities 
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in single cells. The ideal evaluation standard for CytoSig predictions 
in single cells would be a method providing systematic measure-
ments of both transcriptome and cytokine activities in each single 
cell. However, to our knowledge, no such method currently exists. 
To validate the accuracy in single-cell data, we used transcrip-
tion factor (TF) activities as indicators of active cytokine signaling 
(Supplementary Table 4).

We computed TF activities for a single-cell transcriptomic profile 
using the RABIT framework, which leverages an extensive collec-
tion of chromatin immunoprecipitation and sequencing (ChIP–seq) 
profiles to predict TF activities through transcriptional patterns 
of TF target genes44. For example, using data from a COVID-19 
single-cell study45, RABIT predicted that most CD8+ T cells have 
positive STAT1 TF activity, reflected as a higher expression level of 
STAT1 ChIP–seq target genes compared to other genes (Fig. 5a). A 
minor CD8+ T cell population showed negative STAT1 TF activity. 
Consistent with the dependence of interferons and IL-27 on STAT1 
signaling (Supplementary Table 4), cells with positive TF activities 
had significantly higher signaling activities from the CytoSig model 
than cells with negative TF activities (Fig. 5a).

We utilized a ROC curve to measure the ability of CytoSig to 
predict TF activities based on the predicted cytokine activity. We 
found that the activity of CD8+ T cell effector cytokines, including 
interferons and TNF, all predicted downstream TF activities better 
than would be expected at random (Fig. 5b). Using the AUC values, 
we next evaluated the predictive performance of cytokine activities 
on their downstream TF activity for all cell types in the COVID-19 
single-cell study. The AUC metrics were consistently higher than 
expected by chance for 10 of 11 pairs of cytokines and downstream 
TFs (Fig. 5c and Supplementary Table 4). We observed similar high 

performance in another cancer study (Extended Data Fig. 7a). We 
performed such evaluation on 18 single-cell datasets and found that 
AUC metrics were consistently higher than would be expected at 
random (Fig. 5d).

CytoSig identifies signaling markers of severe COVID-19. The 
global spread of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is an urgent health crisis. The symptoms of COVID-
19 range from mild fever, cough and difficulty breathing to respi-
ratory failure and death7. While more severe outcomes have been 
associated with an exaggerated immune response, referred to as the 
cytokine storm, the immune-response mechanisms underlying the 
dramatic differences in disease severity remain unclear.

We applied CytoSig to analyze single-cell RNA-seq data from 
bronchoalveolar lavage fluid45 and peripheral blood46 of patients 
with COVID-19 (Fig. 6a). These datasets were used earlier in 
this paper to establish reliable prediction accuracy in a single-cell 
RNA-seq data (Fig. 5c,d and Extended Data Fig. 7b). Many cyto-
kine signaling activities are significantly associated with the severity 
differences in COVID-19 symptoms. For example, among macro-
phages from lavage fluid, IL-10 activity is significantly higher in 
patients with severe disease than in those with mild disease and in 
healthy controls (Fig. 6b,c and Supplementary Table 5). In contrast, 
among CD8+ T cells from blood, the IFN-I activity is highest in 
patients with mild illness compared to those with severe disease or 
healthy controls (Fig. 6d,e). This is consistent with previous studies 
reporting a lack of IFN-I response among both patients47 and cul-
tured cells upon SARS-CoV-2 infection48.

Analysis of differential activity among individuals with severe 
disease, those with mild disease and healthy individuals revealed a 
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few cytokines as signaling markers of COVID-19 symptom severity. 
Among patients with severe COVID-19, we found elevated IL-1B 
activities in macrophages, the most populous cell type from bron-
choalveolar lavage fluid45 (Fig. 6f). This result of IL-1B activation 
in macrophages is consistent with previous reports7. Meanwhile, 
IL-10 had high activity levels among patients with severe disease 
in lavage and blood myeloid cells, including macrophages, mono-
cytes and neutrophils (Fig. 6g and Extended Data Fig. 8), a result 

also consistent with published studies49,50. IL-10 is known to inhibit 
antigen presentation by dendritic cells to cytotoxic T cells, thus 
impairing T cell-mediated antiviral immunity51. IL-10 can also 
suppress macrophage activation for fighting against intracellular 
pathogens52. Thus, in severe cases of COVID-19, the cytokine envi-
ronment may compromise the antiviral immune response while 
triggering pathological inflammation. We observed that monocytes 
and macrophages have high expression levels of IL-10 and IL-1B, 

Peripheral
blood

Bronchoalveolar
lavage

a
Macrophage

CD8+ T

IL-10b

d

c

e

–4–2024

Activity

f

P = 2 × 10–2

g

S
ev

er
ity

Lavage - macrophage

S
ev

er
ity

Lavage

Blood

NK

Myeloid dendritic cell

P = 2.7 × 10–4

P = 1.4 × 10–3

Severe Mild Healthy

12

9

8

3

A
ct

iv
ity

A
ct

iv
ity

0

–3

–6

18

12

6

0

–6

Macrophage

Macrophage

Classical monocyte

Nonclassical monocyte

Neutrophil

Others

IFN-1

OthersCD8+ T

CD8+ T cell

CD4+ T cell

B cell

Severe

Severe_146

Severe_152

Severe_149

Severe_148

Severe_143

Severe_145

Mild_144

Mild_141

Mild_142

Mild Healthy

Healthy_100

Healthy_52

Healthy_51

B
M

P
6

B
M

P
6

IL
-4

IL
-4

IL
-1

2

IL
-2

IL
-3

T
R

A
IL

A
ct

iv
in

 A

B
D

N
F

E
G

F

T
G

F
- β

3

LI
F

IL
-2

7

IF
N

-1

IF
N

- γ
IL

-1
β

B
M

P
4

N
O

G
C

S
F

IL
-1

0

IL
-2

2

IL
-3

6

O
S

M

F
G

F
2

IL
-1

β

IL
-1

0

LI
F

Fig. 6 | Signaling features underlying the COVID-19 symptom difference. a, Sample source sites. We analyzed single-cell RNA-seq datasets from the 
bronchoalveolar lavage and peripheral blood samples from patients with COVID-19. b, IL-10 activities in macrophages from lavage fluid. Each dot presents 
a single cell from the COVID-19 study with t-distributed stochastic neighbor embedding (t-SNE) coordinates computed per the original publication45. The 
color represents the predicted IL-10 activity. Circles highlight the cluster of macrophages. c, Enrichment of IL-10 activities in macrophages from lavage fluid 
from patients with severe illness. The violin plots present IL-10 activity distributions in different patient groups, smoothed by a kernel density estimator. 
The color legend is per b. The two-sided Wilcoxon rank-sum P value was computed to compare activities of severe (n = 6) and mild (n = 3) patient groups. 
d, IFN-I activities in CD8+ T cells from blood. The IFN-I activities in CD8+ T cells (circles) are shown as per b, with uniform manifold approximation and 
projection (UMAP) coordinates from the original publication46. e, Depletion of IFN-I activities in peripheral blood CD8+ T cells from patients with severe 
disease. The two-sided Wilcoxon rank-sum P value was computed to compare activities of severe (n = 14) and mild (n = 13) patient groups within each 
cell type. f, Differential signaling activities in macrophages from lavage fluid. The heat map presents cytokines whose predicted signaling activities were 
significantly different between individuals with severe disease, those with mild disease and healthy individuals. g, Summary of signaling activities in 
COVID-19. The heat map includes cell types with significant differences in signaling activities among individuals with severe disease, those with mild 
disease and healthy individuals. Each cell shows the median value across all individuals in each group. Only cytokines with at least three significant values 
in at least three cell types were included.
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thus potentially serving as cytokine-producing cells (Extended Data 
Fig. 9).

CXCL8 as a candidate therapeutic target for severe COVID-
19. Direct IL-1B or IL-10 blockade may compromise the antiviral 
response53 or fail to alleviate inflammation54. Therefore, inhibition 
of downstream targets could serve as alternative approaches. With 
this in mind, we analyzed the downstream targets induced by IL-1B 
or IL-10. We found that IL-1B target CXCL8 had higher expression 
levels in macrophages from lavage samples of patients with severe 
COVID-19 (Extended Data Fig. 10). Meanwhile, in blood neutro-
phils, IL-10 target CXCL1 had higher expression levels among indi-
viduals with severe illness than in those with mild illness and in 
healthy controls (Extended Data Fig. 10).

CXCL1 and CXCL8 all bind to the CXCR2 receptor and 
serve as primary chemokines in neutrophil recruitment. A high 
neutrophil-to-lymphocyte ratio in peripheral blood indicates severe 
disease and organ failure55. Aberrant formation of neutrophil extra-
cellular traps may contribute to severe damage to the lung paren-
chyma in COVID-19 (ref. 56). A phase I clinical trial evaluated the 
CXCL8 blocking antibody in treating solid tumors and has not 
observed any dose-limiting toxicities57, which indicates the poten-
tial of therapy repurposing.

Discussion
We have introduced CytoSig, a data-driven platform to model cyto-
kine activities. CytoSig complements existing cytokine release assays 
because it can predict cytokine target activities from bulk transcrip-
tomic data available from many large-scale cohorts and single-cell 
RNA-seq data that provides resolution down to individual cells. The 
acquisition of both types of data is now routine, making CytoSig 
useful to a broad spectrum of research questions.

CytoSig offers particular advantages in analyzing single-cell data 
because it is not affected by the absence of cytokine-producing cells 
or zero read counts for ligand or receptor genes. This advantage is 
especially important because current single-cell technologies have 
difficulty capturing some cell types, such as neutrophils58. Many 
studies also sort cells using markers such as CD45, which may 
exclude cytokine-producing cell populations. Moreover, the drop-
out events, reflected as zero read counts, on transiently expressed 
cytokine genes further complicate analysis. The CytoSig model uses 
a reliable alternative strategy, analyzing receiver cells’ transcrip-
tional patterns across many cytokine target genes.

A limitation of CytoSig is the ascertainment bias of public data-
sets, which leads to many experiments on a few cytokines, cell 
models or experimental conditions, and a lack of data on others. 
There are currently 67 human cytokines, 42 chemokines and 133 
growth factors annotated in the literature28. However, our collection 
from public databases captures high-quality profiles for 43 of the 
242 documented molecules (17.8%) due to the lack of data available 
for most signaling molecules. Also, most datasets were generated 
through a few models, such as monocytes or fibroblasts, without 
sufficient coverage on diverse cell lineages. Such a gap indicates a 
need for attention on a broad range of cytokines and cell models 
beyond a few deeply studied molecules and systems.

Despite these limitations, the CytoSig platform provides biolo-
gists and clinicians with a powerful resource to study signaling 
activities in laboratory or clinical samples. Furthermore, indepen-
dent of CytoSig, the FDC is a general resource for data scientists to 
accelerate data curation projects. Using the FDC, our plans to con-
tinuously integrate new datasets will provide the community with 
an ever-growing repository for generating new biological insights.
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Methods
The Framework for Data Curation from public databases. The FDC aims to 
automate the data curation process as much as possible with two components: 
(1) semiautomated metadata annotation; (2) automatic gene expression matrix 
extraction. Databases processed by the FDC include AE15, GEO14, ENA13 and 
SRA12. The FDC server is built using Python 3 and Dango 3 frameworks with 
MySQL 8 as the database backend. The natural language processing functions are 
created in the web browser frontend using the jQuery 3 JavaScript library.

The first FDC component for metadata annotation utilizes a three-stage 
approach. In the first stage, the users should query the GEO and AE databases 
with keywords related to their biological topic. The SRA and ENA metadata are 
available through the GEO and AE, respectively. The database query will generate 
a list of candidate datasets. After uploading the candidate list to the FDC, the users 
can define pattern-matching rules, implemented as regular expressions59, to narrow 
down query results. In the second stage, users should browse study summaries 
and determine which datasets are relevant to their study topic. To accelerate the 
process, users could define a set of highlighting rules, implemented as regular 
expressions59, so that curators only need to focus on the most relevant texts.

In the third stage, users will extract metadata fields for each experimental profile. 
The FDC aims to reduce human manual edits as much as possible, with automatic 
rules and text transformation functions defined by users. The FDC will automatically 
parse each sample’s study design information and summarize all potentially relevant 
fields in a candidate table. The users can define a set of automatic mapping rules to 
convert aliases, such as biological molecule and cell model names, to their standard 
names. The FDC also provides automated functions to extract and transform text 
information from candidate metadata columns. Based on these functions, curators 
will standardize metadata columns into controlled vocabularies.

The second FDC component can automatically extract MicroArray and 
RNA-seq public databases. For Affymetrix MicroArray data on the AE and GEO, 
we generated expression matrices from CEL files through the R Oligo package60. 
For other MicroArray platforms, we downloaded the processed data through the 
R GEOquery61 and Python Orange62 packages for GEO and AE, respectively. For 
RNA-seq data from the ENA and SRA databases, we downloaded the fragments 
per kilobase of transcript per million mapped reads (FPKM) data through the 
RNASeq-er Application Programming Interface63. In total, our framework 
extracted 27,181 independent human transcriptomics datasets deposited before 
02 February 2020. Many datasets from public repositories are not gene expression 
studies, thus cannot be automatically analyzed by the second FDC component. 
However, the first FDC component can still assist the metadata annotation for 
non-transcriptomic data.

Besides the two primary components introduced above, the FDC also 
provides other assistant modules, such as curator management for a project and 
result proofreading panels if project managers want to review the annotations 
from curators. With the standardized metadata matrix from the first component 
and gene expression matrix from the second component, users can perform 
algorithmic data analysis for their biological topics.

Collection of human cytokine-response data based on the FDC. In the first step, 
we queried names and aliases of human cytokines, chemokines, growth factors28 
and a few immunosuppressive signals in the tumor microenvironment64 through 
the query interface of GEO and AE. The SRA and ENA metadata are available 
through the GEO and AE, respectively. Our query returned 9,271 candidate 
series, 5,186 of which had processed data matrices from the FDC. The other 4,085 
datasets did not have FDC-processed data for several reasons. Some studies using 
NanoString platforms only focus on hundreds of genes instead of genome wide. 
Some MicroArray or RNA-seq studies may have corrupted raw data, leading to FDC 
extraction failures. We also excluded all micro-RNA and noncoding RNA studies.

In the second step, we recruited Ph.D. scientists with immunology training 
for data annotations based on the FDC. Curators focused on data curation 
for several months. A second curator proofread all annotations of the first 
curator and corrected errors. Most studies among the 5,186 candidates only 
mentioned cytokines in their description but did not study the signaling 
response. The curators read descriptions of 5,186 experiments and identified 
962 of them as cytokine-response studies, including 20,591 nonredundant 
samples (Supplementary Table 1). Then, curators read descriptions of 20,591 
samples and labeled cytokine treatment, cell model, dose and duration, using the 
semiautomated functions on the FDC. We established a set of control vocabularies 
about signal names, cell models, concentrations and duration units.

Together with data matrices extracted and expert annotations, we generated 
differential gene expression profiles, defined as the logFC between treatment 
and control conditions. We only kept experiments with biological replicates and 
acquired 2,056 logFC vectors after merging biological replicates. Meanwhile, we 
merged IFN-α and IFN-β as IFN-I, representing type I interferons, due to the high 
Pearson correlation of 0.698 between their composite profiles. We also combined 
IL-36A and IL-36B as IL-36 due to the high correlation of 0.938 between their 
composite profiles.

Data quality control. To test the human physiological relevance of data collection, 
we defined a quality-control metric as the Pearson correlation between expression 

levels of cytokine target genes and the ligands or receptors in independent human 
tissue data. We used TCGA18 and GTEx19 datasets. Each TCGA and GTEx sample 
measures a bulk tissue’s average expression that contains both producer and 
receiver cells for cytokines.

To measure the overall expression of target genes, we performed a linear 
regression for each pair of cytokine-response and tissue expression profiles as 
‘tissue expression = A × cytokine profile + B,’ and computed the cytokine profile’s 
target score as A/standard error(A) using the ordinary least-squares method65. 
The target score represents the enrichment of a response signature in the tissue 
expression profile. We then analyzed the Pearson correlation between the target 
score and ligand or receptor expression across tissue samples (Fig. 1e).

TCGA has 33 tumor cohorts, and GTEx has 27 tissue cohorts. For each 
cytokine profile, we utilized the one-sided Wilcoxon test to evaluate whether the 
correlations with the ligand or receptor were higher than zero across both TCGA 
and GTEx cohorts (FDR < 0.05 with Benjamini–Hochberg correction). We only 
included 1,307 profiles that passed the threshold in further analysis.

Target cooperation and antagonization analysis between cytokine pairs. We 
computed FDRs between each cytokine pair to test the statistical significance 
of co-regulating target genes. For each target gene C, there are three types of 
co-regulations from a cytokine pair:

	1.	 Cytokine A and B both induce target gene C.
	2.	 Cytokine A and B both suppress target gene C.
	3.	 Cytokine A (or B) induces target C, but the other cytokine B (or A) represses 

target C.

First, we defined two logFC thresholds of cytokine A and B for the FDR 
computation. For type 1 co-regulation (co-enhance), we computed the 

FDR (thresA, thresB) as Random count (logFCA ≥ thresA, logFCB ≥ thresB)
/gene count (logFCA ≥ thresA, logFCB ≥ thresB). The gene count 
derives directly from the data. The random count is equal to 

N × probability (logFCA ≥ thresA) × probability (logFCB ≥ thresB). N represents 
the total number of genes. We computed both probabilities from the logFC rank of 
each gene. In summary, the FDR computations are as follows:

N × prob (logFCA ≥ thresA) × prob
(

logFCB

≥ thresB
)

/gene count (logFCA ≥ thresA, logFCB ≥ thresB)

Similarly, for type 2 co-regulation (co-repress), we computed the FDR as:

N × prob (logFCA ≤ thresA) × prob
(

logFCB

≤ thresB
)

/gene count (logFCA ≤ thresA, logFCB ≤ thresB)

For type 3 co-regulation (antagonize), we computed the FDR as:

N × prob (logFCA ≥ thresA) × prob (logFCB ≤ thresB)/gene count
(

logFCA

≥ thresA, logFCB ≤ thresB
)

After computing the FDR at each threshold combination (thres_A and 
thres_B), we adjusted FDRs into monotonically decreasing values with respect 
to increasing threshold values, following the q-value procedure66. Finally, for the 
triplet of each cytokine pair and target gene, its statistical significance is the FDR 
(logFC_A and logFC_B) under each co-regulation category.

Penalized linear model to predict cytokine target activities. The CytoSig linear 
model is programmed through a combination of Python 3 and GNU Compiler 
Collection 4C++. We only included 43 cytokines with at least five high-quality 
experiments (‘Data quality control’). We utilized a linear model to identify each 
signaling molecule’s signature patterns in an input sample’s expression profile. 
Composite profiles of cytokine response were the explanatory variables, and an 
input sample’s transcriptomic profile was the response variable. The regression 
coefficients represent cytokine target activities. The linear regression with all 
cytokine composite profiles as explanatory variables will reduce a cytokine’s 
coefficient if other cytokines with similar response profiles have more extensive 
impacts on the sample’s transcriptomic pattern67.

The expression values, from either RNA-seq or MicroArray, should be 
transformed by log2(x + 1). We also recommend quantile normalization across 
conditions. Some software packages, such as RMA or DESeq, will automatically 
include all normalizations. We recommend input differential profiles between the 
two conditions. If data are from a sample collection without pairs, the value of each 
gene across all samples should be mean centralized.

Many cytokine profiles were highly similar (Fig. 1f); such signature 
collinearity will create large result variance in a regular linear regression65. 
Therefore, we used the penalized ridge regression, which trades off the result 
bias to reduce the variance. The vector y is the input sample’s expression profile. 
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The matrix X contains composite profiles of 43 cytokines. The parameter λ 
is the penalty. The ridge regression aims to minimize the objective function 
(y − Xβ)T(y − Xβ) + λ × βTβ. The coefficient β represents signaling activities.

To optimize parameters, we evaluated two types of model performance:

	1.	 Prediction performance. This evaluates how the fitted model of cytokine 
activities predicts a sample’s gene expression profile. We use the fivefold 
cross-validation R2 ratio as the prediction performance metrics.

	2.	 Inference performance. This evaluates whether coefficients on cytokine 
covariates of the fitted model represent the actual cytokine activities in a 
sample. We used the correlation between model coefficients and the ligand or 
receptor expression across samples as the inference performance metrics for 
each cytokine.

Typically, the training of ridge regression models only evaluates the prediction 
performance through cross-validation to determine the optimal penalization 
factor and coefficients65. However, we also evaluated the inference performance 
because the goal of the CytoSig model is to infer cytokine signaling activities. 
The collinearity among cytokine-response profiles may not affect the prediction 
performance but will induce significant variance on model coefficients65, thus 
undermining the inference performance. The penalty factor in the ridge model will 
reduce the model variance at the cost of lowering prediction performance. Thus, 
we aimed to find a penalty factor as a trade-off between two performance aspects.

On average, the cross-validation R2 metric reaches its maximal point at a low 
penalty factor and deteriorates while the penalty factor is increasing (Extended 
Data Fig. 5a,b). In contrast, the inference performance, measured as correlation 
values, monotonically increases with increasing penalties (Extended Data Fig. 
5c,d). Therefore, we selected a value of 10,000, which is the minimal lambda to 
achieve 80% best-inference performance and 70% best-prediction performance. 
Such a penalty will control both result variance and bias in the ridge regression.

We also evaluated XG Boost, a popular machine learning algorithm68 
(Extended Data Fig. 5). The XG boost with tree learners outperformed ridge 
regression in prediction but does not provide any coefficients on cytokine 
covariates for the inference purpose due to the tree structure of learners. The 
prediction performance of XG boost with linear learners quickly deteriorates to 
zero with increasing penalties although it has a high inference performance. Ridge 
regression is the only method with reasonable performance in both prediction and 
inference metrics.

We utilized a permutation test to estimate ridge coefficients’ standard errors 
after shuffling gene identities 1,000 times. The z-scores (coefficient − random_
average_coefficient)/standard_deviation on each cytokine represents its target 
activity.

T cell activation and TGF-β1 treatment assay. Human primary T cells were 
sourced from Hong Kong Red Cross Transfusion Service. Peripheral blood 
mononuclear cells were isolated from healthy donors using the Ficoll Paque Plus 
(GE healthcare, 17-1440-03) via density gradient centrifugation. CD8+ T cells 
were purified from fresh peripheral blood mononuclear cells by magnetic negative 
selection using the human CD8+ T cell isolation kit (Miltenyi Biotec, 130-096-
495). Isolated cells were stimulated with the human T cell TransAct (Miltenyi 
Biotec, 130-111-160) in the presence or absence of human recombinant TGF-β1 
(R&D systems, 240-B-002) at 5 ng ml−1 for 72 h. Cells were cultured in MACS 
GMP medium, which is TexMACS GMP medium (Miltenyi Biotec, 170-076-309) 
supplemented with 10% inactivated fetal bovine serum (FBS; Gibco, 10082147), 
50 µM 2-mercaptoethanol (Gibco, 21985023), 10 mM N-acetyl-l-cysteine and 1% 
penicillin–streptomycin (P/S; Gibco, 15140122) at 1 × 106 cells per ml.

Mouse CD8+ T cells were isolated from splenocytes of one 8-week-old male 
C57BL/6J mouse using the CD8a T cell isolation kit (Miltenyi Biotec, 130-104-
075) by magnetic negative selection. Isolated CD8+ T cells were stimulated with 
plate-bound anti-mouse CD3 (BioLegend,100202, clone 17A2) at 5 µg ml−1 
(1:100 dilution) and soluble anti-mouse CD28 (BioLegend, 102102, clone 37.51) 
at 2 µg ml−1 (1:250 dilution) in the presence or absence of human recombinant 
TGF-β1 (R&D systems, 240-B-002) at 5 ng ml−1 for 72 h. Cells were cultured in 
complete RPMI 1640 medium, which is RPMI 1640 Medium (Gibco, 11875119) 
supplemented with 10% inactivated FBS (Gibco, 10082147), 20 mM HEPES (Gibo, 
15630080), 1 mM sodium pyruvate (Gibco, 11360070), 50 µM 2-mercaptoethanol 
(Gibco, 21985023), 2 mM l-glutamine (Gibco, 25030024) and 1% P/S (Gibco, 
15140122) at 1 × 106 cells per ml.

Human inadequate whole blood was collected following informed consent and 
protocols were approved by the ethics committee at the University of Hong Kong 
and the Hong Kong Red Cross Blood Transfusion Service. Animal experiments 
were approved by the committee of the Use of Live Animals in Teaching and 
Research at the University of Hong Kong and performed strictly according to the 
animal protocol 5310-20. C57BL/6J mice were purchased from the Laboratory 
Animal Unit of the University of Hong Kong.

BMP6 and IL-1β in vitro treatment combinations. NCI-H1299 (CRL-5803) and 
A549 (CCL-185) cells were purchased from American Type Culture Collection 
(ATCC). NCI-H1299 cells are cultured in high-glucose DMEM medium (Gibco) 
supplemented with 10% FBS (Gibco BRL) and 100 IU per ml P/S. Human A549 

cells were cultured in F12-K medium (ATCC, 30-2004) supplemented with 10% 
FBS and 100 IU per ml P/S.

NCI-H1299 and A549 cells were seeded in a six-well plate at the density of 
2 × 105 cells per well. On the next day, cells were treated with human recombinant 
IL-1β (R&D systems, 201-LB-005, 10 ng ml−1) alone or in combination with 
human recombinant BMP6 (R&D systems, 507-BP-020, 10 ng ml−1) for 12 h. In an 
alternative sequential treatment schedule, cells were pretreated with IL-1β first for 
12 h, then BMP6 or media control for another 12 h. Reconstitution buffers of the 
IL-1β (PBS containing 0.1% BSA) and BMP6 (4 mM HCl containing 0.1% BSA) 
were used as negative controls.

Flow cytometry. For the evaluation of intracellular markers on A549 and H1299 
cells, the following antibodies were used at the indicated dilutions:

PE anti-human PRF1 (BioLegend, 353303, clone B-D48, 1:50 dilution),
PE anti-mouse PRF1 (BioLegend, 154305, clone S16009A, 1:50 dilution),
PE anti-human GZMA (BioLegend, 507206, clone CB9, 1:50 dilution),
PE anti-mouse GZMA (BioLegend, 149703, clone 3G8.5, 1:100 dilution),
FITC anti-human/mouse GZMB (BioLegend, 515403, clone GB11, 1:50 

dilution),
APC anti-human/mouse MCP-1 (CCL2, BioLegend, 505909, clone 2H5, 1:200 

dilution),
FITC anti-human CXCL8 (BioLegend, 511406, clone E8N1, 1:50 dilution).
Cells were fixed before permeabilization according to the manufacturer’s 

instructions of wash buffer (BioLegend, 421002), and followed by intracellular 
staining with the antibodies. Flow cytometry was performed on an ACEA 
NovoCyte Quanteon and raw data were analyzed using FlowJo (Version 10.7).

To determine the gating threshold to detect marker-positive cells, we used the 
forward scatter height (FSC-H) and side scatter height (SSC-H) for dead cell and 
debris removal. FSC-H/width and SSC-H/width were used to select single cells. We 
included unstained cells to define the threshold that separates positive populations 
from negative control cells (Extended Data Figs. 2d and 4c).

CXCL8 and CCL2 detection by enzyme-linked immunosorbent assay. A549 
cells were seeded in a six-well plate at a density of 2 × 105 cells per well. On the next 
day, cells were treated with human recombinant IL-1β (R&D systems, 201-LB-005, 
10 ng ml−1), human recombinant BMP6 (R&D systems, 507-BP-020, 10 ng ml−1) 
and combinations of IL-1β and BMP6 for 24 h. Reconstitution buffers of IL-1β 
(PBS containing 0.1% BSA) and BMP6 (4 mM HCl containing 0.1% BSA) were 
used as negative controls.

The amount of released CCL2 and CXCL8 from tumor cells in the supernatants 
was measured by ELISA assay using human CCL2 DuoSet ELISA kit (R&D 
systems, DY279) and human CXCL8 DuoSet ELISA kit (R&D systems, DY208). 
Optical density value was determined using a microplate reader (TECAN, Infinite 
200) at a wavelength of 450 nm with the correction wavelength set at 570 nm.

Upon treatment combinations of IL-1β and BMP6 after 24 h, supernatants 
from different conditions were 200× diluted and measured. The experiment was 
repeated independently in three batches. In each batch, a standard curve was 
created to measure the relationship between fluorescence values and seven 2× 
concentration dilutions from 2,000 pg ml−1 and 1,000 pg ml−1 for CXCL8 and 
CCL2, respectively. The In(concentration + 1) and fluorescence values followed a 
linear relationship. We fitted a linear regression model to convert the fluorescence 
measurements to concentrations.

Anti-TGF-β1 animal studies. XOMA068 (pan-TGF-β1, TGF-β2, TGF-β3), 
XOMA089 (TGF-β1, TGF-β2 selective) and anti-KLH (control) antibodies, 
supplied by XOMA, were all fully human IgG2(κ) antibodies generated by phage 
display and affinity maturation in our previous study69. Briefly, fully human 
antibody phage display libraries were used to discover a number of antibodies that 
bind and neutralize various combinations of TGF-β1, TGF-β2 or TGF-β3. The 
primary panning did not yield any uniformly potent pan-isoform neutralizing 
antibodies; therefore, an antibody that displayed potent TGF-β1 and TGF-β2 
inhibition but more modest affinity versus TGF-β3, was affinity matured by 
shuffling with a light chain sub-library and further screening. This process yielded 
the high-affinity pan-isoform neutralizing clone. Antibodies were diluted in 10 mM 
histidine and 142 mM l-arginine (pH 6.0) buffer ‘vehicle’ for in vivo studies.

Animal studies were conducted under protocol LC-070, approved by the 
Animal Care and Use Committee of the NCI. The animals were on a 12 h:12 h 
light:dark cycle. The ambient temperature was 72 ± 2 °F, and the humidity was kept 
between 30–70%. Around 40,000 4T1 mouse mammary tumor cells were surgically 
implanted into four mammary fat pads of 8-week-old female BALB/c mice. From 
day one after surgery, mice were treated with TGF-β antibodies at 5 mg per kg body 
weight intraperitoneally three times per week for 2 weeks. Tumors were surgically 
resected on day 13 when they reached 0.8–1 cm in diameter and were snap frozen 
for molecular analysis. The NCI Ethics Committee requires that animals must be 
euthanized at the time of observation if the tumor size is approaching 20 mm, in 
any dimension. None of the tumors in our experiment exceeded this limitation.

RNA was isolated from tumor samples using the RNeasy method (Qiagen) 
according to the manufacturer’s instructions following tissue lysis with a Precellys 
24 Homogenizer (Bertin Instruments). Tumor RNA that passed quality control 
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(RNA Integrity Number > 7) was sequenced on HighSeq 2500 using Illumina 
TruSeq v4 chemistry, generating 50–100 million pass-filtered reads per sample. 
There were six mice in the XOMA089 group, and seven mice in the XOMA068 
group and anti-KLH group. No data points were excluded from the analysis.

Identification of signaling signatures in COVID-19 severe symptoms. For each 
single-cell dataset, we computed the cytokine activities for individual cells using 
the CytoSig model and got the mean value for each cell type in each patient. Then, 
for each cell type, we compared activities between different patient groups using 
the two-sided Wilcoxon rank-sum test and converted the P values to FDRs by 
the Benjamini–Hochberg correction. FDR < 0.05 is the threshold for the result 
significance.

For the COVID-19 study on bronchoalveolar lavage45 and peripheral blood46 
samples, we performed comparisons between individuals with severe and mild 
disease, and between individuals with disease (severe and mild) and healthy 
individuals. Our analysis only reported results identified in both comparisons with an 
FDR < 0.05. We made an exception for the analysis of neutrophils; among neutrophils 
from peripheral blood, a few cytokines’ signaling differences between patients with 
severe and mild disease achieved a statistical significance of FDR = 0.051. We believe 
these results are still significant, and thus have reported them in our analysis.

We used the original coordinates of two-dimensional embedding from each 
publication (Fig. 6b,d). The bronchoalveolar lavage study45 utilized t-SNE that 
projects the single-cell RNA-seq profiles in two dimensions with distances between 
dots representing the profile similarities. The peripheral blood study46 utilized 
UMAP, a dimensionality reduction approach.

Statistics and reproducibility. All comparisons between two groups used the 
two-sided Wilcoxon rank-sum test, a non-parametric test without any assumptions 
on the data distribution. Similarly, all comparisons between group values and zero 
used the non-parametric Wilcoxon signed-rank test. No data were excluded from 
any analyses.

No statistical method was used to predetermine sample size. Instead, we 
selected a fixed sample size in the following experiments. In the in vitro validation 
of TGF-β1’s inhibitory role (Fig. 2e) and BMP6’s anti-inflammatory role (Extended 
Data Fig. 4), we used a sample size of three, the minimum number to achieve 
statistical significance of P value ≤ 0.05 in the two-sided Wilcoxon rank-sum 
test. All cell culture replicates lead to reproducible successful results (Fig. 2e and 
Extended Data Fig. 4b,d). In the TGF-β blocking in vivo experiment (Fig. 4d), 
we used a minimal mouse number of six, suggested by a previous study to detect 
differential expression events through RNA-seq70. Our recent study demonstrated 
that four tumors (smaller than our sample size of six) for each condition would be 
sufficient to detect differentially expressed genes between conditions71.

Mouse identities were randomized before in vivo experiments. Randomizations 
were not performed for in vitro cell cultures because all conditions were derived 
from a homogeneous cell line population. Blinding was not performed in our 
experiments because the robust phenotype of our results is based on strictly 
objective measurements by equipment instead of any human estimations. The 
outcome assessments included flow cytometry (Fig. 2e and Extended Data Fig. 
4a–c) ELISA assay plate reader (Extended Data Fig. 4d) and RNA-seq (Fig. 4d). 
None of these measurements involved human subjective perception.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The processed data of cytokine treatment response are available at https://cytosig.
ccr.cancer.gov/, visible after user registration and login. The RNA-seq data of 
TGF-β neutralizing antibody treatment is available at NCBI GEO under accession 
GSE174686.
The TCGA data are available at https://gdc.cancer.gov/ and were downloaded on 28 
January 2020.
The ICGC data are available at https://dcc.icgc.org/ and were downloaded on 09 
April 2020.
The GTEx data are available at https://gtexportal.org/home/datasets/ and were 
downloaded on 26 October 2019.
The gene expression datasets of human inflammatory disease (Fig. 4a–c) are 
available under the GEO accession codes listed in Supplementary Table 3. Other 
individual datasets analyzed are available under the database accession codes listed 
in Supplementary Table 6. Source data are provided with this paper.

Code availability
The interactive analysis modules of CytoSig are available at https://cytosig.
ccr.cancer.gov/. The source code of CytoSig is available at https://github.com/
data2intelligence/CytoSig/. Both applications are available under the NCI CytoSig 
software use agreement. The FDC server is available at https://curate.ccr.cancer.
gov/ under the NCI FDC software use agreement.
Besides the software released above, we also provide source codes for essential 
analysis steps. The source code for automatic processing of treatment response 

data from the FDC server is available at https://github.com/data2intelligence/
FDC_treatment_profile/. The source code for quality control of cytokine-response 
data when building the CytoSig model is available at https://github.com/
data2intelligence/CytoSig_data_filter/.
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Extended Data Fig. 1 | Curation of Human Cytokine Response Data. a, The histogram of experimental cell-type models among collected treatment profiles. 
For each cell-type model, we counted the number of differential expression profiles upon cytokine treatment in that model as the Profile Count. b, The 
count of treatment response profiles for top-20 most frequently used cell models. c, The histogram of treatment durations among collected treatment profiles. For 
each duration, we counted the number of differential expression profiles upon cytokine treatment with that duration as the Profile Count. d, The count of 
treatment response profiles for top-20 most frequently used durations. e, The histogram of experimental doses among collected treatment profiles. For each dose, 
we counted the number of differential expression profiles upon cytokine treatment with that dose as the Profile Count. f, The count of treatment response 
profiles for top-20 most frequently used doses. g, The association between cytokine response profiles’ quality and treatment duration. We evaluated the quality 
for each treatment response profile as the correlation of expression levels between target gene scores and its ligand or receptor. Each dot represents one 
cytokine response profile with its treatment duration on the X-axis and median correlation across all TCGA or GTEx cohorts on the Y-axis. Activin A has 
high quality data with long treatment durations, while EGF has high quality data with transient treatment duration. h, The composite profile quality depends 
on the number of independent experiments merged. Four cytokines have more than 100 response profiles passing quality filters. We evaluated the quality 
of composite profiles after down-sampling the number of independent experiments merged. The quality metric is the correlation of expression between 
target genes and its ligand (blue) or receptor (yellow). The dots and error bars represent the median and standard deviation from 100 randomizations. 
Black triangle dots represent the down-sampling point that achieves 90% of the highest correlation. i, Similarities among IFNG response signatures from 
diverse cell models. An average response signature was computed for each cell model. Then, average response signatures were hierarchically clustered 
based on Pearson correlations.
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Extended Data Fig. 2 | Target Genes in Response to Cytokine Treatments. a, Differential expression of target cytokines (x-axis) regulated by IL4 or BMP6 
(y-axis). The thick line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers 
encompass 1.5 times the interquartile range. The difference between group values and zero among treatment profiles that passed quality controls was 
tested using the two-sided Wilcoxon signed-rank test, with p-values and sample counts labeled. b, Gene set enrichment among cytokine response targets. The 
normalized enrichment score from the gene set enrichment analysis (GSEA)6 represents the overall enrichment of pathway members among target genes 
from each cytokine’s composite signature. c, Normalized enrichment scores from panel b among pairs of hallmark categories and cytokines. d, Gating strategy of 
flow analysis. The forward scatter height (FSC-H) and side scatter height (SSC-H) are used for dead cell and cell debris removal. FSC-H width and SSC-H 
width are used to gate the single cells. We include unstained cells to define the gate threshold that separates positive populations and negative control 
cells.
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Extended Data Fig. 3 | Co-regulation between Cytokines on Target Genes. a, Target co-regulation between TNFA and other anti-inflammatory cytokines. b, 
Target co-regulation between IFNG and other cytokines.
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Extended Data Fig. 4 | BMP6 represses CXCL8 and CCL2 induced by IL1B. a, Representative plots of CXCL8 and CCL2 protein levels upon BMP6 and IL1B 
cotreatments in A549 cells. We utilized flow cytometry to measure CXCL8 and CCL2 intracellular protein levels after 12-hour treatments with IL1B, 
IL1B + BMP6, and media control. The X-axis shows the signal intensity measured by flow cytometry. The Y-axis shows the A549 fraction distribution with 
modal normalization, scaling the maximum Y-axis value to 100%. The percentage of cells with signal intensity above the gate threshold (vertical line, panel 
c) is indicated. b, Summary plots of CXCL8 and CCL2 protein levels upon BMP6 and IL1B treatments. In three cell-culture replicates, A549 and H1299 cells were 
treated either simultaneously or sequentially with combinations of BMP6 and IL1B. The mean fraction of cells with an intensity above the gate thresholds 
(defined in panel c) is plotted with standard deviations as error bars (n = 3 cell-culture replicates per condition). The two-sided Wilcoxon rank-sum test 
p-values were computed to compare groups. c, Gating strategy of flow analysis. The forward scatter height (FSC-H) and side scatter height (SSC-H) are 
used for dead cell and cell debris removal. FSC-H width and SSC-H width are used to gate the single cells. We include unstained cells to define the gate 
threshold that separates positive populations and negative control cells. d, CXCL8 and CCL2 soluble protein levels by ELISA in A549 cells. A549 cells were 
treated with BMP6 and IL1B in combinations for 24 hours. The mean soluble cytokine levels were measured by ELISA with standard error of the mean as 
error bars (n = 3 independent experiments).
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Extended Data Fig. 5 | CytoSig model selection. a, Prediction performance measured as the cross-validation (CV) R2 in TCGA cohorts. For each 
algorithm, median 5-fold CV R2 metrics across all TCGA datasets were shown at different penalty values with standard error of the mean (SEM) as 
error bands. The horizontal line indicates 70% of the optimal CV R2 of ridge regression. The vertical line marks the lambda value of 10,000, the penalty 
used in the CytoSig model. b, Prediction performance measured as the cross-validation (CV) R2 metrics in GTEx cohorts, shown as panel a. c, Inference 
performance measured as the correlation between model coefficients and cytokine expression in TCGA cohorts. For each algorithm, we computed the 
median correlation values between model coefficients and cytokine ligand or receptor expression at different penalty values, with SEM as error bands. 
The vertical line marks the Lambda value of 10000, which is the penalty reaching 80% of the optimal correlation. XG Boost with tree learner cannot be 
evaluated for inference performance because its tree structure cannot provide coefficients as cytokine response. d, Inference performance measured as 
the correlation between model coefficients and cytokine expression in GTEx cohorts, shown as panel c.
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Extended Data Fig. 6 | CytoSig Predicts Cytokine Activities in Tumors and Cancer Therapy Response. a, Receiver Operating Characteristic (ROC) curve of 
IFNG activity prediction. For each dataset from the ICGC, the ROC curve presents false-positive rates against true-positive rates at different IFNG activity 
thresholds. b, Area under the ROC Curve (AUC) as the prediction accuracy. We computed the ROC curves for all cytokines following the procedure in a. Each 
bar represents the median AUC among all ICGC cohorts, with standard errors of the mean as error bars (n = 9 independent datasets). The AUC baseline 
is 0.5, representing a random prediction. We applied the one-sided Wilcoxon signed-rank test to evaluate whether AUC values are higher than 0.5 for 
each signal, and converted p-values to false discovery rates (FDR) through the Benjamini-Hochberg correction. c, IFNG activity predicts overall survival upon 
Atezolizumab treatment in urothelial carcinoma43. The Kaplan-Meier plot presents patient fractions (Y-axis) with different overall survival (X-axis) among 
pre-treatment tumors with high and low IFNG activities predicted by CytoSig. The activity cutoff is selected through maximizing the difference between 
high and low groups. The p-value was from the two-sided Wald test using continuous values without cutoffs. d, Signaling activity computed by CytoSig better 
predicts clinical outcome than other metrics. We compared three approaches to compute cytokine activities, including expression levels of ligand, receptors, 
and CytoSig predictions. For IFNG activity, we also utilized a geneset signature developed by Merck to predict checkpoint blockade response41, as well as 
the PDL1 expression. The association between activity and survival outcome was computed as the Wald test z-score in Cox-PH regression.
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Extended Data Fig. 7 | CytoSig Reliably Predicts Cytokine Activity in Single Cells. a, Result for a liver cancer cohort72 (n = 11 cell types per boxplot). The 
thick line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 
1.5 times the interquartile range. b, Result for a COVID-19 peripheral blood cohort46 (n = 15 cell types per boxplot). The boxplot is defined as panel a.
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Extended Data Fig. 8 | Differential signaling activities from COVID-19 samples. The heatmap presents cytokines whose predicted signaling activities are 
significantly different among severe, mild, healthy individuals in a COVID-19 peripheral blood cohort46 (false discovery rate < 0.05).
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Extended Data Fig. 9 | Gene expression of cytokines with differential signaling activities from COVID-19 samples. IL1B and IL10 gene expression in 
diverse cell types. The violin plots present the expression of IL1B and IL10 in patient groups, with distributions smoothed by a kernel density estimator.
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Extended Data Fig. 10 | Potential Therapeutic Targets to Overcome COVID-19 Induced Tissue Damage. a, Target genes of cytokines with elevated activities 
among severe patients. Arrow-headed edges indicate up-regulation, and flat-headed edges indicate down-regulation. For each cell type, red square nodes 
represent cytokines with high activity scores among severe patients, and blue diamonds represent anti-inflammatory signals with low activities. The 
network only includes targets whose expression values are significantly higher compared between severe and mild patients, and between disease and 
healthy controls. b, Example of gene expression in different patient groups. The violin plots present gene expression distributions in patient groups, 
smoothed by a kernel density estimator. Examples from lavage macrophages45 are in the left, and peripheral blood neutrophils46 are in the right. Y axis 
indicated values from individual cells.
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